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Abstract

Most analyses of randomised trials with incomplete outcomes make untestable assumptions and 

should therefore be subjected to sensitivity analyses. However, methods for sensitivity analyses are 

not widely used. We propose a mean score approach for exploring global sensitivity to departures 

from missing at random or other assumptions about incomplete outcome data in a randomised 

trial. We assume a single outcome analysed under a generalised linear model. One or more 

sensitivity parameters, specified by the user, measure the degree of departure from missing at 

random in a pattern mixture model. Advantages of our method are that its sensitivity parameters 

are relatively easy to interpret and so can be elicited from subject matter experts; it is fast and non-

stochastic; and its point estimate, standard error and confidence interval agree perfectly with 

standard methods when particular values of the sensitivity parameters make those standard 

methods appropriate. We illustrate the method using data from a mental health trial.
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1 Introduction

Missing outcome data are a threat to the validity of randomised controlled trials, and they 

usually require untestable assumptions to be made in the analysis. One common assumption 

is that data are missing at random (MAR) (Little and Rubin, 2002). Other possible 

assumptions may be less implausible in particular clinical settings. For example, in smoking 

cessation trials, the outcome is binary, indicating whether an individual quit over a given 

period, and it is common to assume that missing values are failures — “missing=failure” 

(West et al., 2005); while in weight loss trials, missing data is sometimes assumed to be 

unchanged since baseline — “baseline observation carried forward” (Ware, 2003).
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The US National Research Council (2010) suggested measures that should be taken to 

minimise the amount of missing outcome data in randomised trials, and described analysis 

strategies based on various assumptions about the missing data. This report recommended 

that “Sensitivity analyses should be part of the primary reporting of finding from clinical 

trials. Examining sensitivity to the assumptions about the missing data mechanism should be 

a mandatory component of reporting.” However, among “several important areas where 

progress is particularly needed”, the first was “methods for sensitivity analysis and 

principled decision making based on the results from sensitivity analyses”. Sensitivity 

analysis is also an essential part of an intention-to-treat analysis strategy, which includes all 

randomised individuals in the analysis strategy (White et al., 2011a, 2012): even if the main 

analysis is performed under MAR and hence draws no information from individuals with no 

outcome data, such individuals are included in sensitivity analysis and hence in the analysis 

strategy.

Sensitivity analysis is often done by performing two different analyses, such as an analysis 

assuming MAR and an analysis by last observation carried forward, and concluding that 

inference is robust if the results are similar (Wood et al., 2004). Better is a principled 

sensitivity analysis, where the data analyst typically formulates a model including 

unidentified ‘sensitivity parameter(s)’ that govern the degree of departure from the main 

assumption (e.g. from MAR), and explores how the estimate of interest varies as the 

sensitivity parameter(s) are varied (Rotnitzky et al., 1998; Kenward et al., 2001). We 

consider global sensitivity analyses where the sensitivity parameter(s) are varied over a 

range of numerical values that subject-matter experts consider plausible.

Likelihood-based analyses assuming MAR can usually ignore the missing data mechanism 

and simply analyse the observed data (Little and Rubin, 2002). Under a missing not at 

random (MNAR) assumption, however, it is usually necessary to model the data of interest 

jointly with the assumed missing data mechanism. The joint model can be specified as a 

pattern-mixture model, which explicitly describes the differences between profiles of 

patients who complete and drop out (Little, 1993, 1994), or as a selection model, which 

relates the chance of drop-out to the (possibly missing) response values either directly 

(Diggle and Kenward, 1994; Kenward, 1998) or indirectly through a random effect 

(Follmann and Wu, 1995; Roy, 2003). Rotnitzky et al. (1998) proposed a selection model for 

incomplete repeated measures data and showed how to estimate it by inverse probability 

weighting, given values of the sensitivity parameters. Scharfstein et al. (2003) adopted a 

non-parametric Bayesian approach to analysing incomplete randomised trial data, and 

argued that sensitivity parameters are more plausibly a priori independent of other 

parameters of interest in a selection model than in a pattern-mixture model. Scharfstein et al. 
(2014) proposed a fully parametric approach based on a selection model. On the other hand, 

Daniels and Hogan (2000) advocated a pattern-mixture framework as “a convenient and 

intuitive framework for conducting sensitivity analyses”.

We use the pattern-mixture model in this paper because its sensitivity parameters are usually 

more easily interpreted (White et al., 2007, 2008). For a binary outcome, a convenient 

sensitivity parameter is the informative missing odds ratio (IMOR), defined, conditional on 

covariates, as the odds of positive outcome in missing values divided by the odds of positive 
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outcome in observed values (Higgins et al., 2008; Kaciroti et al., 2009). For a continuous 

outcome, a convenient sensitivity parameter is the covariate-adjusted mean difference 

between missing and observed outcomes (Mavridis et al., 2015).

Most estimation procedures described for general pattern-mixture models are likelihood-

based (Little, 1993, 1994; Little and Yau, 1996; Hedeker and Gibbons, 2006), while the 

National Research Council (2010) describes point estimation using sensitivity parameters 

with bootstrap standard errors. In this paper we propose instead using the mean score 

method, a computationally convenient method which was originally proposed under a MAR 

assumption for incomplete outcome data (Pepe et al., 1994) and for incomplete covariates 

(Reilly and Pepe, 1995). The method is particularly useful to allow for auxiliary variables, so 

that outcomes can be assumed MAR given model covariates and auxiliary variables but not 

necessarily MAR given model covariates alone (Pepe et al., 1994). We are not aware of the 

mean score method having been used for sensitivity analysis.

The aim of this paper is to propose methods for principled sensitivity analysis that are fast, 

non-stochastic, available in statistical software, and agree exactly with standard methods in 

the special cases where standard methods are appropriate. We focus on randomised trials 

with outcome measured at a single time, allowing for continuous or binary outcomes, or 

indeed any generalised linear model, and for covariate adjustment.

The paper is organised as follows. Section 2 describes our proposed method. Section 3 

proposes small-sample corrections which yield exact equivalence to standard procedures in 

special cases. Section 4 illustrates our method in QUATRO, a mental health trial with 

outcome measured at a single time. Section 5 describes a simulation study. Section 6 

discusses the implementation of our method, possible alternatives, limitations and 

extensions.

2 Mean score approach

Assume that for the ith individual (i = 1 to n) in an individually randomised trial, there is an 

outcome variable yi, and let ri be an indicator of yi being observed. Let nobs and nmis = n − 

nobs be the numbers of observed and missing values of y respectively. Let xi be a vector of 

covariates including the pS-dimensional fully-observed covariates xSi in the substantive 

model, comprising an intercept, an indicator zi for the randomised group, and (optionally) 

baseline covariates. xi may also include fully-observed auxiliary covariates xAi that are not 

in the substantive model but that help to predict yi, and/or covariates xRi that are only 

observed in individuals with missing yi and describe the nature of the missing data: for 

example, the reason for missingness.

The aim of the analysis is to estimate the effect of randomised group, adjusting for the 

baseline covariates. We assume the substantive model is a generalised linear model (GLM) 

with canonical link,

E yi xSi; βS = h βS
TxSi (1)
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where h(.) is the inverse link function. We are interested in estimating βSz, the component of 

the pS-dimensional vector βS corresponding to z.

If we had complete data, we would estimate βS by solving the estimating equation 

US* βS = 0 where US* βS = Σi USi* βS  and

USi* βS = yi − h βS
TxSi xSi . (2)

The mean score approach (Pepe et al., 1994; Reilly and Pepe, 1995) handles missing data by 

replacing US* βS  with US(βS), its expectation over the distribution of the missing data given 

the observed data. We write US(βS) = ∑i USi(βS) and USi βS = E USi* βS xi, ri, riyi . Then by 

the repeated expectation rule, E USi βS xSi = E USi* βS xSi  since xi includes xSi, so US(βS) = 

0 is an unbiased estimating equation if US* βS = 0 is.

To compute USi(βS), we need only E [yi|xi, ri = 0], because (2) is linear in yi. We estimate 

this using the pattern-mixture model

E yi xi, ri; βP = h βP
TxPi + Δ (xi)(1 − ri) (3)

where xPi = (xSi, xAi) of dimension pP; the subscript P distinguishes the parameters βP and 

covariates xPi of the pattern-mixture model from the parameters βS and covariates xSi of the 

substantive model. Models (1) and (3) are typically not both correctly specified: we return to 

this issue in the simulation study.

In equation (3), Δ(xi) is a user-specified departure from MAR for individual i. MAR in this 

setting means that p(ri = 1|xi, yi) = p(ri = 1|xi), which implies E [yi|xi, ri] = E [yi|xi] and 

hence Δ(xi) = 0 for all i. A simple choice of Δ(xi) that expresses MNAR is Δ(xi) = δ, where 

the departure from MAR is the same for all individuals. Differences in departure from MAR 

between randomised groups are often plausible and can have strong impact on the estimated 

treatment effect (White et al., 2007), so an alternative choice is Δ(xi) = δzi . The departure 

Δ(xi) could also depend on reasons for missingness coded in xRi: for example, it could be 0 

for individuals lost to follow-up (if MAR seemed plausible for them), and δzi for individuals 

who refused follow-up.

Putting it all together, the mean score method solves

∑
i

yi βP − h βS
TxSi xSi = 0 (4)

where ỹi(βP) is defined as yi if ri = 1 and h βP
TxPi + Δ (xi)(1 − ri)  if ri = 0.
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2.1 Estimation using full sandwich variance

The parameter βP in (3) is estimated by regressing yi on xPi in the complete cases (ri = 1). 

Once βP is estimated, we calculate the ỹi(β̂P) using the known values Δ(xi) and solve (4) for 

βS. The whole procedure amounts to solving the set of estimating equations U(β) = 0 where 

β = βS
T, βP

T T, U(β) = (US(β)T, UP(βP)T)T, US(β) = ∑i USi(β), UP(βP) = ∑i UPi(βP),

USi β = riyi + (1 − ri)h(βP
TxPi + Δ (xi)) − h(βS

TxSi) xSi,

UPi βP = ri yi – h βP
TxPi xPi .

(5)

Pepe et al. (1994) derived a variance expression for βS assuming categorical xSi. To 

accommodate any form of xSi, we instead obtain standard errors by the sandwich method, 

based on both estimating equations. The sandwich estimator of var (β̂) is

V = B−1CB−T (6)

where B = −dU/dβ evaluated at β = β̂, C = ∑iUi(β̂)Ui(β̂)T and Ui(β) = (USi(β)T, UPi(βP)T)T. 

B and C are given in Section A of the Supplementary Materials.

2.2 Estimation using two linear regressions

A special case arises if there are no auxiliary variables, so xPi = xSi for all i, and h(.) is the 

identity function, as in linear regression. Then we can rearrange (5) to give

USi β − UPi βP = (1 − ri) Δ xi − βS − βP
TxSi xSi .

Thus (βS − βP) may be estimated by linear regression of (1 − ri)Δ(xi) on xSi. This estimate is 

uncorrelated with β̂P because cov (USi(β) − UPi(βP), UPi(βP)) = 0. This gives a direct way to 

estimate βS, and its variance var (β̂P) + var (β̂S − β̂P), from standard linear regressions.

In particular, consider a two-arm trial with no covariates, and write the coefficients of zi in 

(1) and (3) as βSz and βPz. Then βSz − βPz is estimated as the difference between arms in the 

mean of (1 − ri)Δ(xi), which is a1δ1 − a0δ0 where aj is the proportion of missing data in arm j 
= 0, 1 and δj is the average of Δ(xi) over individuals with missing data in arm j = 0, 1. 

Therefore the estimated parameter of interest is β̂Sz = βP̂z + a1δ1 − a0δ0 as in White et al. 
(2007); the same result can be derived in other ways.

3 Equivalence to standard procedures

We now consider two special cases which can be fitted by standard procedures: (1) when 

MAR is assumed and there are no auxiliary variables, so incomplete cases contribute no 

information and the standard procedure is an analysis of complete cases, and (2) when 

‘missing = failure’ is assumed for a binary outcome, so the standard procedure is to replace 

missing values with failures. Our aim is that point estimates, standard errors and confidence 
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intervals produced by the mean score procedure should agree exactly with those produced 

by the standard procedures in these cases.

Equality of point estimates is easy to see. In case (1), we have Δ(xi) = 0 and xPi = xSi for all 

i, so if βP solves UP(βP) = 0 then β = (βP, βP) solves US(β) = 0. In case (2), ‘missing = 

failure’ can be expressed as Δ(xi) = −∞ for all i, so the mean score procedure gives yi* = 0

whenever ri = 0, and solving US(βS, βP) = 0 gives the same point estimate as replacing 

missing values with failures.

Exact equality of variances between mean score and standard procedures depends on which 

finite sample corrections (if any) are applied. Many such corrections have been proposed to 

reduce the small-sample bias of the sandwich variance estimator and to improve confidence 

interval coverage (Kauermann and Carroll, 2001; Lu et al., 2007). Here, we assume that the 

standard procedures use the commonly used small-sample correction factor for the sandwich 

variance var βS = f V where f = n/(n − p*), n is the sample size and p* is the number of 

regression parameters (in linear regression) or 1 (in other GLMs): this is for example the 

default in Stata (StataCorp, 2011).

Exact equality of confidence intervals between mean score and standard procedures 

additionally depends on the distributional assumptions used to construct confidence 

intervals. Here, we assume that standard procedures for linear regression construct 

confidence intervals from the t distribution with n − p* degrees of freedom, and that standard 

procedures for other GLMs construct confidence intervals from the Normal distribution.

With missing data, we propose using the same small-sample correction factor, distributional 

assumptions and degrees of freedom, but replacing n by an effective sample size neff as 

shown below. Thus we propose forming confidence intervals for linear regression by 

assuming βS ∼ tne f f − p* βS,
ne f f

ne f f − p*V  and for other GLMs by assuming 

βS ∼ N βS,
ne f f

ne f f − p*V .

3.1 Full sandwich method

For the full sandwich method of Section 2.1, we propose computing neff as nobs + (Imis/
Imis*)nmis where Imis is the influence of the individuals with missing values, and Imis* is the 

same individuals’ influence if the missing values had been observed. The comparison of the 

same individuals is crucial, because missing individuals, if observed, would have different 

influence from observed individuals.

To determine Imis, we consider weighted estimating equations ∑i wiUi(β) = 0 with solution 

βw. Differentiating with respect to w = (w1, . . . , wn)T at w = 1 gives UT + dU(β)
dβ

dβw
dw = 0

where U is a n × (pS + pP) matrix with ith row Ui(β). Since also dU(β)
dβ = − B, we get
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dβw
dw = − B−1UT . (7)

We now define the influence of observation i as

Imis, i =
dβwS

T

dwi
VS

−1dβwS
dwi

where the S subscript denotes the elements corresponding to βS. Hence we define the 

influence of the individuals with missing values as Imis = ∑i(1 − Ri)Imis,i.

To determine Imis* , we let βwS*  be the (unknown) parameter estimate that would be obtained 

if the complete data had been observed, following the pattern-mixture model (3). In this case 

the influence would be

Imis, i* =
dβwS* T

dwi
VS

−1dβwS*
dwi

.

We define the “full-data influence” as the expectation of Imis, i*  over the distribution of the 

complete data given the observed data, under the pattern-mixture model (3). From (7) we get 
dβw*
dwi

= −B−1Ui*
T

 and Ui*
T = yi* − h βs

TxSi xSi, so that

E Imis, i* = E yi* − h(βs
TxSi)

2 xSi
T BSS

−TVS
−1BSS

−1xSi (8)

and E yi* − h(βs
TxS) 2

 is evaluated as the squared residual plus the residual variance from 

model (1) for individual i. Finally, Imis* = ∑i (1 − ri)E Imis, i* . In case (1), Imis = 0 so neff = 

nobs, as in standard analysis. In case (2), Imis* = Imis so neff = n, again as in standard 

analysis.

3.2 Two linear regressions method

For the two linear regressions method of Section 2.2, the small-sample correction to the 

variance is naturally applied separately to each variance in var βP + var βS − βP = Vsmall

say. We can derive the corresponding variances without small-sample correction as 
nobs − p

nobs
var βP + n − p

n var βS − βP = V large say. To compute neff, we use the heuristic 

Vsmall ≈
ne f f

n
e f f − p

V large and hence we estimate neff by solving Vsmall =
ne f f

n
e f f − p

p

V large . In 
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case (1), var βS − βP = 0 so neff = nobs, as in standard analysis. Case (2) does not apply to 

linear regression.

4 Example: QUATRO trial

The QUATRO trial (Gray et al., 2006) was a randomised controlled trial in people with 

schizophrenia, to evaluate the effectiveness of a patient-centred intervention to improved 

adherence to prescribed antipsychotic medications. The trial included 409 participants in 

four European centres. The primary outcome, measured at baseline and 1 year, was 

participants’ quality of life, expressed as the mental health component score (MCS) of the 

SF-36 (Ware, 1993). The MCS is designed to have mean 50 and standard deviation 10 in a 

standard population, and a higher MCS score implies a better quality of life. The data are 

summarised in Table 1.

We first estimate the intervention effect on MCS, adjusted for baseline MCS and centre. 

Thus in the substantive model (1), h(.) is the identity link, yi is MCS at 1 year for participant 

i, and xSi is a vector containing 1, randomised group zi (1 for the intervention group and 0 

for the control group), baseline MCS and dummy variables for three centres. We have no xAi 

or xRi.

We also estimate the intervention effect on a binary variable, MCS dichotomised at an 

arbitrary value of 40, where for illustration we use baseline MCS and dummy variables for 

centre as auxiliary variables xAi. Thus in the substantive model (1), h(η) = 1/{1 + exp (−η)} 

is the inverse of the logit link, yi is dichotomised MCS at 1 year for participant i, and xSi is a 

vector containing 1 and zi.

In both analyses, we replace the 23 missing values of baseline MCS with the mean baseline 

MCS: while such mean imputation is not valid in general, it is appropriate and efficient in 

the specific case of estimating intervention effects with missing baseline covariates in 

randomised trials (White and Thompson, 2005; Groenwold et al., 2012).

As expected (results not shown), the point estimate, standard error and confidence interval 

from the mean score method agree exactly with standard methods under MAR and under 

missing=failure, using the small-sample corrections of Section 3.

We consider three sets of sensitivity analyses using the mean score method around a MAR 

assumption, with departures from MAR (1) in the intervention arm only (Δ(xi) = δzi), (2) in 

both arms (Δ(xi) = δ), or (3) in the control arm only (Δ(xi) = δ(1 − zi)) (White et al., 2012). 

For the quantitative outcome, the investigators suggested that the mean of the missing data 

could plausibly be lower than the mean of the observed data by up to 10 units (equal to 

nearly one standard deviation of the observed data), so we allow δ to range from 0 to -10 

(Jackson et al., 2010). The investigators were not asked about missing values of the 

dichotomised outcome, so for illustrative purposes we allow δ to range from 0 to -6, which 

is close to “missing=failure”.

Figure 1 shows the results of these sensitivity analysis using the two linear regressions 

method for the quantitative outcome (upper panel) and using the full sandwich method for 
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the dichotomised outcome (lower panel). Results are more sensitive to departures from 

MAR in the intervention arm because there are more missing data in this arm. However, the 

finding of a non-significant intervention effect is unchanged over these ranges of sensitivity 

analyses. This means that the main results of the trial are robust even to quite strong 

departures from MAR.

Figure 2 shows the effective sample size for these two analyses. Effective sample size 

increases from 367 at MAR for both analyses. For the dichotomised outcome it is near the 

total sample size of 409 when δ = −6 in both arms. For the quantitative outcome it does not 

pass 370 because the range of δ is more moderate.

5 Simulation study

We report a simulation study aiming (i) to evaluate the performance of the mean score 

method when it is correctly specified, (ii) to compare the mean score method with 

alternatives, and (iii) to explore the impact of the incompatibility of models (1) and (3). We 

assume the sensitivity parameters Δ(xi) are correctly specified.

5.1 Data generating models

We generate data under four data generating models (DGMs), each with four choices of 

parameters. We focus on the case of a binary outcome. In DGMs 1-3, we generate data 

under a pattern-mixture model. In DGM 1, there are no baseline covariates, so xi = xSi = xPi 

= (1, zi). We generate a treatment indicator zi ∼ Bern(0.5); a missingness indicator ri with 

logit P(ri|zi) = α1 + αzzi; and a binary outcome yi following model (3) with logit P(yi|zi, ri) = 

βP1 + βPzzi + βPr(1 − ri). The substantive model (1) is then logit P(yi|zi) = βS1 + βSzzi. 

Because this substantive model contains only a single binary covariate, it is saturated and 

cannot be mis-specified. Therefore both substantive model and pattern-mixture model are 

correctly specified

DGM 2 extends DGM 1 by including xi ∼ N(0, 1) as a single baseline covariate independent 

of zi, so xi = (1, xi, zi). The missingness indicator follows logit P(ri|xi, zi) = α1 + αxxi + αzzi 

and the binary outcome follows model (3) with logit P(yi|xi, zi, ri) = βP1 + βPxxi + βPzzi + 

βPr(1 − ri). The substantive model is as in DGM 1 with xSi = (1, zi), and xAi = (xi) is an 

auxiliary variable in the analysis. Thus the substantive model and pattern-mixture model are 

again both correctly specified.

DGM 3 is identical to DGM 2, but now xi is included in the substantive model, which is 

therefore logit P(yi|xi, zi) = βS1 + βSxxi + βSzzi with xSi = xPi = (1, xi, zi). Now the 

substantive model is incorrectly specified while the pattern-mixture model remains correctly 

specified.

DGM 4 is a selection model. Here zi and xi are generated as in DGM 2, then yi is generated 

following the substantive model logit P(yi|xi, zi) = βS1 + βSxxi + βSzzi and ri is generated 

following logit P(ri|xi, zi, yi) = α1 + αxxi + αzzi + αyyi. Here the substantive model is 

correctly specified while the pattern mixture model is mis-specified.
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For the parameter values, we consider scenarios a-d for each DGM. In scenario a, the sample 

size is nobs = 500; the missingness model has αx = αz = αy = 1 and we choose α1 to fix πobs 

= P(r = 1) = 0.75; and the pattern mixture model has βP1 = 0, βPx = βPz = 1, βPr = −1. (αx 

and βPx are ignored in DGM 1, αy is ignored in DGM 1-3 and βPr is ignored in DGM 4.) 

Scenarios b-d vary scenario a by setting nobs = 2000, πobs = 0.5, and βPr = −2 respectively. 

1000 data sets were simulated in each case. Table 2 summarises the simulation design.

5.2 Analysis methods

The mean score (MS) method is implemented as described in sections 2 and 3, with logit 

link. xi is used as an auxiliary in DGM 2. In DGM 1-3, Δ(xi) is taken to equal the known 

value −βPr for all individuals; in DGM 4, Δ(xi) is not known but (for the purposes of the 

simulation study) is estimated by fitting the pattern-mixture model to a data set of size 

1,000,000 before data deletion.

The MS method is compared with analysis of data before data deletion (Full); analysis of 

complete cases (CC), which wrongly assumes MAR; and two alternative methods that allow 

for MNAR, multiple imputation (MI) and selection model with inverse probability weighting 

(SM).

In the MI approach (Rubin, 1987; White et al., 2011b), the imputation model is equation (3), 

and data are imputed with an offset Δ(xi) in the imputation model. The number of 

imputations is fixed at 30.

In the SM approach, we use the response model logit p(ri = 1|yi, xi) = αTxPi+Δ*(xi)yi where 

the sensitivity parameter Δ*(xi) expresses departure from MAR as the log odds ratio for 

response per 1-unit change in yi. In DGM 4, Δ*(xi) is taken to equal the known value αy; in 

DGM 1-3, Δ*(xi) is not known but (for the purposes of the simulation study) is estimated by 

fitting the selection model to a data set of size 1,000,000 before data deletion. The 

parameters α cannot be estimated by standard methods, since some yi are missing, so we use 

a weighted estimating equation which does not involve the missing yi’s (Rotnitzky et al., 
1998; Dufouil et al., 2004; National Research Council, 2010):

∑
i

xPi
ri

h(αTxPi + Δ * (xi)yi)
− 1 = 0.

The substantive model is then fitted to the complete cases with stabilised weights 

p ri = 1 xSi / p ri = 1 yi, xi , where p ri = 1 xSi  is estimated by the same procedure as 

p ri = 1 yi, xi  but with no Δ*(xi)yi or xAi terms (Robins et al., 2000). Variances are 

computed by the sandwich variance formula, ignoring uncertainty in α̂.

5.3 Estimand

The estimand of interest is the coefficient βSz in the substantive model. It is computed by 

fitting the substantive model to the data set of size 1,000,000 before data deletion. We 

explore bias, empirical and model-based standard errors, and coverage of estimates β̂Sz.
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5.4 Results

Results are shown in Table 3. CC is always biased, often inefficient, and poorly covering. 

Small bias (at most 3% of the true value) is observed in the “Full” analysis (i.e. before data 

deletion) in some settings: this is a small-sample effect (Nemes et al., 2009), since as noted 

above, the true value and “Full” are calculated in the same way with large and small samples 

respectively. Taking “Full” as a gold standard, MS, MI and SM methods all have minimal 

bias (at most 2% of true values). Precisions of MS and MI are similar, with SM slightly 

inferior in DGM 2. Coverages are near 95%, with some over-coverage for SM in some 

settings, as a consequence of slightly overestimated standard errors (results not shown) due 

to ignoring uncertainty in α̂ (Lunceford and Davidian, 2004). The performance of MS is not 

appreciably worse when the selection model is mis-specified (DGM 3) or when the pattern-

mixture model is mis-specified (DGM 4). Computation times for MI are 15-18 times longer 

than for MS, which is 10-30% longer than SM.

6 Discussion

We have proposed a mean score method which works well when the sensitivity parameters 

are known. In practice, of course, the sensitivity parameters are unknown, and a range of 

values will be used in a sensitivity analysis.

The main practical difficulty in implementing any principled sensitivity analysis is choosing 

the value(s) of the sensitivity parameters. This is a subjective process requiring subject-

matter knowledge and is best done by discussion between statisticians and suitable ‘experts’, 

typically the trial investigators. By using the pattern-mixture model, we use a sensitivity 

parameter Δ(xi) that is easier to communicate with ‘experts’ than the corresponding 

parameters in selection models or shared parameter models. The procedure has been 

successfully applied in several trials (White, 2015). Special attention is needed to the 

possibility that Δ(xi) varies between randomised groups, because estimated treatment effects 

are highly sensitive to such variation (White et al., 2007). As with all aspects of trial 

analysis, plausible ranges of the Δ(xi) parameters should be defined before the data are 

collected or before any analysis. An alternative approach would report the “tipping point”, 

the value of Δ(xi) for which the main results are substantively affected, leaving the reader to 

make the subjective decisions about the plausibility of more extreme values (Liublinska and 

Rubin, 2014). Presenting this information could be complex without subjective decisions 

about the difference in Δ(xi) between randomised groups. Effective methods are therefore 

needed for eliciting sensitivity parameters.

Our method does not incorporate data on discontinuation of treatment, unless this can be 

included as an auxiliary variable. Our method would however be a suitable adjunct to 

estimation of effectiveness in a trial with good follow-up after discontinuation of treatment. 

Further work is needed to combine our sensitivity analysis with models for outcome before 

and after discontinuation of treatment (Little and Yau, 1996). In a drug trial in which follow-

up ends on discontinuation of treatment, we see our method as estimating efficacy or a de 
jure estimand; if effectiveness or a de facto estimand is required then post-discontinuation 

missing data in each arm may be imputed by the methods of Carpenter et al. (2013). Further 

work is needed to perform a full sensitivity analysis in this setting.
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Our use of parametric models makes our results susceptible to model mis-specification, and 

indeed in many cases models (1) and (3) cannot both be correctly specified except under 

MAR. However, the simulation study shows that the impact of such model inconsistency is 

small relative to the impact of assumptions about the missing data and the difficulty of 

knowing the values of the sensitivity parameters.

We compared the mean score method with multiple imputation and inverse probability 

weighting. In the case of a quantitative outcome, MI can be simplified by imputing under 

MAR and then adding the offset to the imputed data before fitting the substantive model and 

applying Rubin’s rules. We could also impute under MAR and then use a weighted version 

of Rubin’s rules to allow for MNAR (Carpenter et al., 2007). Both MI methods are subject 

to Monte Carlo error and so seem inferior to the mean score method. A full likelihood-based 

analysis of the selection model would also be possible, and a Bayesian analysis could 

directly allow for uncertainty about Δ(xi) in a single analysis (Mason et al., 2012). These 

alternative approaches are both more computationally complex.

The proposed mean score method can be extended in various ways. We have illustrated the 

method for departures from a MAR assumption, but it can equally be used if the primary 

analysis with a binary outcome assumed “missing = failure”, by varying Δ(xi) from −∞ 
rather than from 0. The method is also appropriate in observational studies, except that mean 

imputation for missing covariates is not appropriate in this context. The method can be 

applied to a cluster-randomised trial as described in Section B of the Supplementary 

Materials. Further work could allow the imputation and substantive models to have different 

link functions, non-canonical links to be used with suitable modification to US, and 

extension to trials with more than two arms.

Sensitivity analysis should be more widely used to assess the importance of departures from 

assumptions about missing data. The proposed mean score approach provides data analysts 

with a fast and fully theoretically justified way to perform the sensitivity analyses. It is 

implemented in a Stata module rctmiss available from Statistical Software Components 

(SSC) at https://ideas.repec.org/s/boc/bocode.html.

Supplementary Materials

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
QUATRO trial: sensitivity analysis for the estimated intervention effect on the MCS (with 

95% confidence interval) over a range of departures from MAR.

White et al. Page 16

Stat Sin. Author manuscript; available in PMC 2018 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. 
QUATRO data: effective sample size in sensitivity analysis.
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Table 1

QUATRO trial: data summary.

Intervention
(n=204)

Control
(n=205)

Centre Amsterdam (%) 50 (25%) 50 (24%)

Leipzig (%) 49 (24%) 48 (23%)

London (%) 45 (22%) 47 (23%)

Verona (%) 60 (29%) 60 (29%)

MCS at baseline Mean (SD) 38.4 (11.2) 40.1 (12.1)

Missing (%) 13 (6%) 10 (5%)

MCS at 1 year Mean (SD) 40.2 (12.0) 41.3 (11.5)

> 40 (%) 99 (57%) 104 (54%)

Missing (%) 29 (14%) 13 (6%)
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Table 2

Simulation study: data generating models.

DGM Type PM correct? SM correct? Auxiliary variables?

1 Pattern-mixture Yes Yes No

2 Pattern-mixture Yes Yes Yes

3 Pattern-mixture Yes No No

4 Selection No Yes No

Parameters Description

a Base case

b Larger sample size

c More missing data

d Larger departure from MAR
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