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Abstract

Artificial pancreas (AP) systems provide automated regulation of blood glucose concentration 

(BGC) for people with type 1 diabetes (T1D). An AP includes three components: a continuous 

glucose monitoring (CGM) sensor, a controller calculating insulin infusion rate based on the CGM 

signal, and a pump delivering the insulin amount calculated by the controller to the patient. The 

performance of the AP system depends on successful operation of these three components.

Many APs use model predictive controllers that rely on models to predict BGC and to calculate 

the optimal insulin infusion rate. The performance of model-based controllers depends on the 

accuracy of the models that is affected by large dynamic changes in glucose-insulin metabolism or 

equipment performance that may move the operating conditions away from those used in 

developing the models and designing the control system. Sensor errors and missing signals will 

cause calculation of erroneous insulin infusion rates. And the performance of the controller may 

vary at each sampling step and each period (meal, exercise, and sleep), and from day to day.

Here we describe a multi-level supervision and controller modification (ML-SCM) module is 

developed to supervise the performance of the AP system and retune the controller. It supervises 

AP performance in 3 time windows: sample level, period level, and day level. At sample level, an 

online controller performance assessment sub-module will generate controller performance 
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indexes to evaluate various components of the AP system and conservatively modify the 

controller. A sensor error detection and signal reconciliation module will detect sensor error and 

reconcile the CGM sensor signal at each sample. At period level, the controller performance is 

evaluated with information collected during a certain time period and the controller is tuned more 

aggressively. At the day level, the daily CGM ranges are further analyzed to determine the 

adjustable range of controller parameters used for sample level and period level.

Thirty subjects in the UVa/Padova metabolic simulator were used to evaluate the performance of 

the ML-SCM module and one clinical experiment is used to illustrate its performance in a clinical 

environment. The results indicate that the AP system with an ML-SCM module has a safer range 

of glucose concentration distribution and more appropriate insulin infusion rate suggestions than 

an AP system without the ML-SCM module.
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1. INTRODUCTION

1.1 Overview of Artificial Pancreas and performance assessment

Artificial pancreas (AP) systems regulate blood glucose concentration (BGC) of people with 

type 1 diabetes (T1D) and those without a functional pancreatic beta cell population. An AP 

relies on a continuous glucose monitoring (CGM) sensor to provide BGC information at a 

high frequency (sampling time of 5 minutes), a controller to calculate the insulin infusion 

rate based on the CGM signal (BGC estimate) and an insulin pump that infuses the insulin 

calculated by the controller to a subcutaneous port on the body.

The performance of the AP relies on correct operation of all the three components, the CGM 

sensor, controller, and insulin pump. Various control strategies, ranging from proportional-

integral-derivative (PID) control(Kovatchev et al., 2009; Renard et al., 2010; Ruiz et al., 

2012; Sherr et al., 2013; G. Steil et al., 2006; G. M. Steil et al., 2011) to model-based 

techniques such as model predictive control(Harvey et al., 2014; Kovatchev et al., 2009; 

Luijf et al., 2013; Magni et al., 2007), generalized predictive control (GPC)(El-Khatib et al., 
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2014; Eren-Oruklu et al., 2009; Turksoy et al., 2014b), and knowledge-based systems with 

fuzzy logic(Atlas et al., 2010; Mauseth et al., 2010)have been used in developing the control 

algorithms for the AP. All strategies except the fuzzy logic approach use mathematical 

models that estimate BGC and insulin in formulating the control algorithms. The fuzzy logic 

controllers use rules derived from experiential knowledge and medical facts.

One of the challenges for AP systems is variation in BGC dynamics among different people 

with T1D and also from day to day, even minute to minute, for the same person. Factors 

such as meals and exercise will influence BGC dynamics. Various AP control systems have 

been proposed to address the effects of these factors and improve AP system.(Dassau et al., 

2008; Perfect et al., 2012; Turksoy et al., 2015; Turksoy et al., 2014b; Turksoy et al., 2016) 

In a fully automated AP system, no announcement of meals or exercise is provided by 

patients as to meals or activities, and the controller needs to adapt to the dynamic changes in 

the human body by updating its model and/or insulin dose calculation algorithm. GPC uses a 

recursively updated data-driven model when a new CGM signal value is available.(El-Khatib 

et al., 2014; Eren-Oruklu et al., 2009; Turksoy et al., 2014b) Various modules that identify 

specific conditions such as meal detection module(Lee et al., 2009; Turksoy et al., 2016) and 

exercise module(Turksoy et al., 2015) provide additional information for making more 

accurate control decisions. However, the controller performance is often limited by the size 

of the database and richness of the historical information for training and tuning the 

controllers. For a new patient with different BGC dynamics (e.g., different insulin 

sensitivity), unexpected conditions (e.g., large meal, different types of exercise) or illness, 

the AP system may not able to regulate the BGC. Besides the challenges of the BGC 

dynamics, the performance of AP system also relies on the accuracy of CGM values 

reported. Sensor failures such as signal bias and outliers, and missing data will also affect 

insulin infusion rate calculation and may endanger the safety of the patient. (Baysal et al., 

2014; Del Favero et al., 2014; Facchinetti et al., 2016) In this paper, we focus on the 

detection of controller performance deterioration caused by changes in glucose and insulin 

concentration dynamics and sensor failures, the diagnosis of the cause for the deterioration, 

and the retuning of the controller.

A multi-level supervision and modification (ML-SCM) module is developed to supervise the 

performance of the AP system and modify it to adapt to the patient’s current state and 

mitigate the impact of CGM sensor faults. The ML-SCM module contains three sub-

modules based on different time scales: sample level supervision module (SLSM), period-

level supervision module (PLSM) and 24-hour day level supervision module (DLSM). In 

previous work, an index based online controller performance assessment (CPA) module 

(Feng, Turksoy, & Cinar, 2016) and a hybrid CGM sensor error detection and functional 

reconciliation (SED&FR) module(Feng, Turksoy, Samadi, et al., 2016) based on outlier-

robust Kalman filter (ORKF) and locally-weighted partial least square (LW-PLS) were 

developed for a GPC based AP(Turksoy et al., 2014a; Turksoy et al., 2014b). These two 

modules were capable of retuning the controller and reconciling the CGM signal values at 

each sampling time. In the ML-SCM module, the performance of the AP will not only be 

assessed at the sample level but also at period-level and day level. The CPA module is 

enhanced with more indexes to track different aspects of controller performance and 

combined with the SED&FR module to formulate the SLSM. The dynamic changes in the 
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body triggered by meal or physical activity will last for many sampling times. Hence, the 

ML-SCM module should accommodate the effects of different situations over different time 

periods. The PLSM based on linear quadratic Gaussian (LQG) control-based tradeoff curve, 

and DLSM based on daily BG distribution analysis are developed to assess the AP 

performance in longer time scales.

1.2 Generalized predictive controller for the AP system

We have already developed an AP control system based on adaptive constrained weighted 

recursive identification methods and generalized predictive controller (GPC) (Figure 1), 

GPC model-based adaptive control.(Turksoy et al., 2014a) We have enhanced recursive time 

series modeling to assure the stability of every multi-input single-output model developed, 

used these models in our GPC, and introduced rules that improve its performance in 

presence of physical activity. (Turksoy et al., 2014a; Turksoy et al., 2014b; Turksoy et al., 

2016) We also integrated a meal detection module to improve the performance against post-

meal high glucose level for an AP without any meal announcement. (Turksoy et al., 2016)

A single-variable version of this controller is used to conduct simulations with the UVa/

Padova simulator. An autoregressive moving average model with exogenous inputs 

(ARMAX) is used to predict glucose concentration (GC) measured with a CGM.(Turksoy et 

al., 2014a) The insulin infusion rates computed in previous steps and past and current CGM 

readings are the inputs to the model. Model parameters are updated recursively at each 

sampling time and then the updated model provides GC predictions to the controller. The 

controller then computes the insulin dose to be infused.

In this paper, we outline the components of the controller that are relevant to the ML-SCM 

module and focus on the objective function for model estimation and the objective function 

of the GPC.

The optimum coefficients of the recursive ARMAX model are obtained by minimizing the 

objective function:

V θ̂ = ∑k = 1
N λN − ke(k)2 (1)

where θ̂ is the vector of estimated model coefficients, N is the number of samples, λ is the 

forgetting factor, and e denotes the modeling error. The recursive model is updated by giving 

different weights to previous data based on part of the data that is more important to adjust 

the model. λ is the critical parameter that adjusts the relative importance of GC data 

collected and the effective size of the moving window for the input data.

Another important component of the controller is its objective function. The constrained 

controller signal I(k) is calculated by minimizing the objective function J (N1,N2,Nu w):
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J(N1, N2, Nu, w) = min
I(k)

∑
j = N1

N2
GCpred k + j k − r k + j 2 + ∑

j = 1

Nu
w j(k) ∗ ΔI k + j − 1 2

s . t . IMin ≤ I ≤ IMax

(2)

where N1 and N2 are the first and last time instants of the modeling horizon and Nu is the 

control horizon. I denotes the insulin infusion rate suggestions and only the first element I 
(k)of is implemented. GCpred (k+j|k) is the predicted CGM reading at step k + j in the future 

based on the previous data at and before step k, r is the reference value, ΔI represents the 

changes of insulin infusion, and wj is the jth diagonal element of weight matrix w(k) for ΔI. 

Insulin delivery is constrained by both the ability of the insulin pump and the maximum 

value calculated by the model to prevent hypoglycemia, and insulin value cannot be 

negative.

At step k, the equations for r (k+j) and w(k)are

r(k) = G(k) (3)

r(k + j) = (1 − μ)r(k + j − 1) + μr0 s . t . j = [1, 2, …, Nu] (4)

ISC(k) = GCpred . /[r(k + 1), r(k + 2), …, r(k + Nu)]T (5)

TDD(k) = ISC(k) . ∗ BW (6)

ISF(k) = 1800./TDD(k) (7)

w(k) = diag(ISF(k)) (8)

where BW is the body weight and r0 = 100 mg/dl is the constant “reference”, the desired GC 

trajectory(Turksoy et al., 2014a) and ./ denotes elementwise division. For Eq. 2 - 8, μ 
(between 0-1) is the parameter that determines the speed of approximation of the reference 

trajectory to r0 such that as μ is reduced, the reference trajectory becomes smoother. The 
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weight wj in (2) is also influenced by μ and as μ is reduced, more weight is put on the insulin 

efficiency term. In other words, μ determines the aggressiveness of the controller in bringing 

the BGC closer to the reference r0, μ is closer to 1 for more aggressive control action. A 

constant value is assigned to μ according to the age group and insulin resistance level of the 

subject (Table 2). (Turksoy et al., 2014a)

This GPC-based AP is used to illustrate the performance of the ML-SCM. The detailed 

algorithm of failure detection and modification of AP system according to the ML-SCM is 

described in section 2. Simulations and results are reported in section 3. Discussion of the 

results is presented in section 4. Conclusions are provided in section 5.

2. METHOD

The ML-SCM includes three sub-level supervision modules: SLSM at sample level, PLSM 

at period level and DLSM at day (24-hour) level. The SLSM has an online CPA sub-module 

based on the computation and interpretation of several indexes, and a hybrid online sensor 

error detection and functional redundancy (SED&FR) sub-module. At each sampling time, 

the performance of the different components of the controller and the CGM sensor signal are 

evaluated and AP controller is modified conservatively. In PLSM, the controller 

performance during a specific time period is evaluated by the tradeoff curve method and the 

AP controller is modified more aggressively since more information has been collected and 

evaluated compared to SLSM. In DLSM, the BG variation within a 24-hour period is 

analyzed and the range of controller parameter retuning and insulin correction in SLSM and 

PLSM are modified.

2.1 Sample Level Supervision Module

The SLSM has two sub-modules, a CPA and a SED&FR. In previous work(Feng, Turksoy, 

& Cinar, 2016), an online CPA module with six indexes to track different aspects of a 

model-based controller was developed. The indexes used in the previous CPA module 

included model prediction error index (IMPE), model error elimination speed index (IMEES), 

dangerous change potential index (IDCP), dangerous change index (IDC), insulin constraints 

limitation index (IICL), and weight ratio index (IWR). Three different types of controller 

failures, model prediction error, insulin constraints error, and weight ratio error, are detected 

and the controller is modified accordingly. The equations of these six indexes, controller 

failure detection and controller modification based on those indexes are described in the part 

I of appendix. Two additional indexes: idle index(Hägglund, 1999) (Ii) and performance 

watchdog(Rhinehart, 1995) (IPW) are added to the CPA sub-module to detect sluggish 

control and offset from set-point (reference trajectory), respectively.

The Ii describes the relation between times of positive and negative correlation between the 

control signal (insulin infusion rate suggested) ΔI and the controlled variable (CGM signal) 

increments ΔG:

Ii(k) =
tpos(k) − tneg(k)
tpos(k) + tneg(k) (9)
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tpos(k)
tpos(k − 1)(1 − αi) + Tsαi i f ΔI(k) ∗ ΔG(k) > 0

tpos(k − 1) i f ΔI(k) ∗ ΔG(k) ≤ 0 (10)

tneg(k)
tneg(k − 1) ∗ (1 − αi) + Tsαi i f ΔI(k) ∗ ΔG(k) > 0

tneg(k − 1) i f ΔI(k) ∗ ΔG(k) ≥ 0 (11)

where k indicates the time steps with 5-minutes sampling time, and ΔI(k) is the change 

between two consecutive samples (G (k) − G (k − 1)). The positive values of Ii (k) >0.4 

indicate sluggish control.(Horch, 2000)

The performance watchdog index IPW (k) represent the ratio of the controlled variable 

(CGM) variance, calculated in two different ways:

I pw(k) =
σy1

2 (k)

σy2
2 (k)

(12)

σy1
2 (k) = σy1

2 (k − 1) ∗ (1 − αi) + αi ∗ (
G(k) − r0

r0
)
2

(13)

σy2
2 (k) = σy2

2 (k − 1) ∗ (1 − αi) + αi ∗ (ΔG(k)
ΔGn )

2
(14)

The variance σy1
2 (k) represents the normalized accumulated deviation of sample k from the 

reference value (r0). Variance σy2
2  indicates the normalized distance between two consecutive 

samples. In this case, the averaged absolute consecutive samples difference is used for 

normalization (ΔGn = ∑ j = 1
k ΔG( j)

k ). The forgetting factor αi is introduced in both Ii and 

IPW to make them adaptive to the time-varying characteristics of the human body. IPW >3 

indicates that the CGM measurement is steady at a value which is far from the reference 

value (large offset).(Horch, 2000)

When Ii and IPW indicate sluggish control or large offset, the parameter μ, which determines 

the aggressiveness of the controller, will be increased according to:
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Islug(k) =
1 i f Ii(k) > 0.4&GC(k) > r0
0 otherwise

(15)

Ioffset(k) =
1 i f IPW(k) > 3&GC(k) > r0
0 otherwise

(16)

β f = max( 1
∑ j = k − Nu

k Islug( j)
, 1
∑ j = k − Nu

k Ioffset( j)
) (17)

μ(k) =
β f ∗ μ(k − 1) + (1 − β f ) ∗ μmax i f GC(k) > r0&(Islug(k) = 1 or Ioffset(k) = 1)

μ(k − 1) otherwise
(18)

Instead of a constant value related only to the insulin sensitivity and age group of the patient 

(Table 2), μ is updated at each sampling time based on the current conditions of the AP. The 

values listed in Table 2 now become the initial value of μ (μ(1)). μ is increased only when 

CGM is larger than reference value. When sluggish control or large offset was detected 

based on the accumulated time of error, μ is increased towards its upper bound (μmax). When 

large offset is detected by IPW, a correction insulin bolus (Icor) needs to be delivered in order 

to bring the GC back to the reference value. Icor is based on ISF:

Icor(k) = min(
GC(k) − r0
ISF(k, 1, 1) , Icor

max) i f ∑ j = k
k − 1 Icor(k) = 0&Ioffset(k) = 1 (19)

where ISF (k,1,1) denotes the first element of(ISF(k)) More correction insulin need to wait 

until the effect of previous correction insulin bolus is cleared or it becomes clear that the 

previous correction is insufficient. A maximum constraint Icor
max  was defined to prevent 

potential hypoglycemia that may be caused by the correction bolus. The clearance time 

(Ncor) changes according to the type of rapid-acting insulin. For this experiment, Ncor =24 to 

simulate 2-hour insulin clearance time.

If CGM< r0 and may have potential towards hypoglycemia, then μ will be decreased towards 

the lower bound (μmin). To include this change, Eq. 18 is modified as:

βhypo =
r0 − GC(k)

r0
i f GC(k) < r0 (20)
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μ(k) =
(1 − βhypo)μ(k − 1) + (βhypo)μmin i f GC(k) < r0
β f μ(k − 1) + (1 − β f )μma x i f GC(k) > r0&(Islug(k) = 1 or Ioffset(k) = 1)
μ(k − 1) otherwise

(21)

In the CPA sub-module, μ is varied between μmin to μmax, in order to optimize the 

aggressiveness of the controller. The insulin infusion rate suggestion from the controller is 

modified when sluggish control or prediction error occurs (Eq. 19 and A.11), and these 

additional insulin doses are constrained by Icor
max. The constraints μmin, μmax and Icor

max may 

also be changed as more information is collected from the operation of the AP, as described 

in Section 2.3 (PLSM).

The hybrid sensor error detection and functional redundancy (SED&FR) module of the 

SLSM detects and mitigates the effects of abnormal CGM sensor behavior (Figure 2).(Feng, 

Turksoy, Samadi, et al., 2016) All CGM sensor signals are analyzed and reconciled in 

SED&FR module before transmission to other modules of the controller. This module uses 

two techniques, an outlier-robust Kalman filter (ORKF) and a locally-weighted partial least 

squares (LW-PLS) regression model, which leverage the advantages of automatic 

measurement error elimination with ORKF and data-driven prediction with LW-PLS. The 

module includes a nominal angle analysis (NAA) method to distinguish between signal 

faults and large changes in sensor values caused by real dynamic changes in glucose-insulin 

metabolism and insulin kinetics. The SED&FR module also smooths CGM signal jumps 

caused by CGM calibration with BGC measurements collected from finger sticks.

At each CGM reading (5 min sampling time), the SLSM module (Figure 3) will first 

reconcile the CGM value in the SED&FR sub-module. The reconciled CGM value and the 

information from the controller will be sent to the CPA sub-module. CPA sub-module will 

generate 8 indexes to assess different aspects of controller performance and modify the 

controller parameters such as λ, insulin constraints, weight in controller objective function, 

and the aggressiveness parameter μ. GC prediction and insulin infusion rate suggestions will 

also be corrected based on the faults indicated by these indexes.

2.2 Period-Level Supervision Module

The PLSM is developed based on LQG tradeoff curve to assess the performance of GC 

regulation during a specific period of time that may include various disturbances to GC such 

as meals and exercise.

For GPC objective function (Eq. 2) if N1 = 1, Nu = N2, N → ∞, the objective function 

converges to the LQG objective function(CLARKF et al., 1987):

J
N2

JGPC = E[GC − r]2 + wE[ΔI]2 (22)
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The GPC control decisions optimized its objective function irrespective of the fact that only 

the first control move is actually implemented.(Huang, 1998) Hence, the LQG problem can 

be solved by the infinite GPC solution. The infinite value of N2 may cause a large 

calculation burden to solve the linear least squares problem. The model in GPC may not 

accurate enough to give a GC prediction over a long horizon. In practice, a finite value of N2 

is usually enough to achieve the approximate infinite horizon LQG solution via the GPC 

approach(Huang, 1998). In this case, N1, N2, and Nu in LQG objective function are set to the 

same values used in the GPC objective function (Eq. 2).

Once the problem is formulated as an LQG problem, the tradeoff curve (Figure 4) can be 

calculated by varying the weight w. The weights used to generate the tradeoff curve are 

denoted as wt. w is varying at each time step (Eq. 1 to 8). In order to generate the tradeoff 

curve, wt is assigned values in the range 0.1 *w (k) to 2 * w (k) with increment of 0.1 * w 
(k). By using different wt, a set of E [GC − r f]2 and E [ΔI]2 are plotted as tradeoff curve at 

each time period (period length=Nu). The operation point is calculated based on previous 

data by using

Ey(k) = ∑ j = N1

N2 [GC(k + j − N2) − r(k + j − N2)]2/Nu (23)

EI(k) = ∑ j = 1
Nu ΔI(k + j − 1 − N2)2/Nu (24)

Comparing the tradeoff curve and the operation point positions, the performance of 

controller is as expected or better than expected if the operation point is at or below the 

tradeoff curve, respectively. If the operation point is above the tradeoff curve, the controller 

is not at its optimal condition. And if current GC(k) is close or at hypoglycemia or 

hyperglycemia thresholds (indicated by dangerous change index (IDC) in Eq A.4) the 

controller will be retuned through the following procedure:

hypo(k) =
1 i f IDC = − 1
0 otherwise

(25)

hyper(k) =
1 i f IDC = 1
0 otherwise

(26)

When k mod Nu = 0, if operating point (EI (k), Ey (k)) is above the tradeoff curve:
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μ(k) =

max(μ(k − 1) − μSL
d , μmin) i f ∑

j = k − Nu

k
hypo( j) > 0

max(μSL
i + μ(k − 1), μmax) i f ∑

j = k − Nu

k
hypo( j) = 0& ∑

j = k − Nu

k
hyper( j) > 0

μ(k − 1) otherwise

s . t . μSL
d = μ(k − Nu) − min(μ(k − Nu + 1), μ(k − Nu + 2), …, μ(k − 1))

μSL
i = max(μ(k − Nu), μ(k − Nu + 1), …, μ(k − 1)) − μ(k − Nu) (27)

hypo (k) and hyper(k) are denoting the hypoglycemia and hyperglycemia danger indicated 

by IDC, respectively. Once the operation point (EI (k), Ey (k)) is above the tradeoff curve if 

hypo =1 during every Nu samples, μ will be decreased by μSL
d , and if no such hypo exists and 

hyper =1, μ will be increased by μSL
i . The factor μ is still limited by upper and lower bounds, 

μmxa and μmin. μSL
d  and μSL

i  are the largest reduction or increase increments of μ in the past 

Nu steps, respectively. This way, PLSM has a more aggressive parameter retuning strategy 

than SLSM since more information is available to PLSM.

2.3 Day Level Supervision Module

BGC dynamic changes can be affected by many factors such as a meal, physical activity and 

sleep throughout the day. The performance assessment of AP based on just one time period 

is not informative about various changes that may occur at different times and cannot tune 

the controller for optimal performance over a day. For example, a large value is assigned to μ 
for post-meal hyperglycemia, will yield an aggressive controller during sleep and may drive 

the BGC into hypoglycemia. The day Level Supervision Module (DLSM) analyzes the 

performance of AP during past 24 hours and guides future controller retuning accordingly.

In the DLSM, first the CGM values are separated into 3 different categories and their 

frequency of occurrence is captured by parameters C1, C2, and C3 based on the values of 

GC. The classification procedure is:

When k mod 288 = 0, set C1, C2, and C3 equal to 0.

For j from k − 287 to k:
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if GC(j) ≤ 70 C1 = C1 + 1
elseif 180 ≤ GC(j) ≤ 70 C2 = C2 + 1

else C3 = C3 + 1
(28)

where, C1, C2, and C3 indicate the number of GC samples in hypoglycemia, euglycemia, 

and hyperglycemia range in the last 24 hours, respectively. For a sampling time of 5 minutes, 

there are 288 samples in 24 hours. If C1 > 0, hypoglycemia has occurred during the last 24-

hours period and the adjustable range of the controller parameters and constraints for insulin 

need to be changed to be more conservative to reduce hypoglycemia potential in the future. 

The maximum and minimum GC within the previous 24 hours are denoted as GCmax and 

GCmin. The adjustable range of controller parameters and the constraints for insulin 

calculations are modified as

ISFm = ∑j = k − 287
k ISF(j, 1, 1) (29)

Icor
max = max(0.1, Icor

max −
r0 − GCmin

ISFm
)

μmax = max(0.1, μmax − min(0.05,
r0 − GCmin

r0
))

μmin = max(0.05, μmin − min(0.05,
r0 − GCmin

r0
))

i f C1 > 0

Icor
max = max(3, Icor

max +
180 − GCmax

ISFm
)

μmax = min(1, μmax + min(0.05,
180 − GCmax

r0
))

μmin = min(0.05, μmin − min(0.05,
180 − GCmax

r0
))

i f C3 > 0&[∑ j = k − 287
k hypo(k) = 0

(30)

Hypoglycemia may cause more immediate treats than the hyperglycemia. Consequently, the 

constraints for aggressive control system modification are stricter when BGC is near the 

hypoglycemia limit. If there has been a hypoglycemia episode in the past 24 hours, the 

constraints for correction insulin and the upper bound of μ are reduced based on the distance 

between the minimum GC value and the reference value. And if GC values larger than 

180mg/dl occurred in the past 24 hours and there were no hypoglycemia threat during that 

period, the constraints for correction insulin and the upper bound of μ are reduced based on 
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the distance between the maximum GC value and the hyperglycemia threshold (180mg/dl). 

To prevent extreme cases causing large variation in Icor
max and μmin, the absolute deviation of 

μmax and μmin is limited as 0.1 for each 24-hour period supervision and the constraints for 

the Icor
max, μmax,, and μmin are set as [0.1, 3], [0.1 1], and [0.05 1], respectively. The initial 

values for Icor
max, μmax, and μmin are 1, 0.65, and 0.4.

2.4 Multi-level Supervision Module

The ML-SCM (Figure 5) is developed to supervise the performance of AP system in 

different time scales by using and coordinating SLSM, PLSM, and DLSM. The ML-SCM is 

capable of detecting the errors in CGM readings reported to the AP, assessing the 

performance of the AP control system, and retuning it to improve its performance. The 

CGM signal is reconciled by SED&FR sub-module at each sampling time. The reconciled 

CGM signal is used by all other modules of the AP. SLSM and PLSM will modify the AP 

controller settings to suggest more accurate insulin infusion rate and these modifications are 

guided by DLSM.

The summary of parameters, index, and indicators used in the ML-SCM is described in 

Table 3.

3. RESULTS

3.1 Simulations

Thirty in silico subjects (10 adults (Adu), 10 adolescents (Ado), and 10 children (Chi)) in the 

UVa/Padova simulator were tested by using AP control systems with four different 

supervision conditions: without any supervision and modification (S&M), with SLSM, with 

SLSM and PLSM, and with ML-(including SLSM, PLSM and DLSM). Each patient was 

simulated 10 times with a 3-day scenario. For CGM seeds provided by the simulator. 

Different meal plans are given for different age groups (Table 4). The detailed result of AP 

system when different sub-modules of ML-SCM are operational is displayed in the part II of 

appendix. The comparison of average percent time in various ranges of BGC for AP systems 

for each age group is reported in Table A.5 (Detailed data of each subject is displayed in 

Table A.4). The number of severe hyperglycemia and hypoglycemia periods, maximum and 

minimum BGC, and insulin usage are listed in Table A.6 and Table A.7. The BGC percent 

time in each BGC concentration range on different days for AP systems with different ML-

SCM modules is given in Table A.6.

The performance of the AP system is consistently improving by using additional supervision 

modules (Tables A.5 to A.7). Overall, more BGC values are shown to be in the euglycemia 

range with ML-SCM, average the BGC values in range (70-180 mg/dl) have increased by 

14% compared to the AP system without S&M. The AP system with the ML-SCM 

successfully modified its parameters to reduce serious hypo- and hyperglycemia (BGC>250 

or BGC<50) (Table A.6). AP system with ML-SCM had better insulin efficiency for keeping 

BGC in target range. For the 3-day simulation, the total insulin use is reduced by about 2.3% 

on average compared to the AP system without S&M.
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3.2 Clinical Assessment of the AP with ML-SCM

A clinical experiment was conducted to illustrate the performance of the AP with and 

without ML-SCM. A multivariable AP was used(Turksoy et al., 2014a). The same subject 

participated in two experiments using the AP with and without ML-SCM. Both experiments 

lasted for 56 hours (From first day 8:00 to third day 16:00). The AP suggested insulin 

boluses, and the subject had the same meal scenarios (Table 5) and basal insulin plan.

Besides the meal, the subject may also eat additional carbohydrates, the so-called rescue 

carbohydrate (RC), when the BGC level is considered to be dangerous in order to prevent 

the occurrence of hypoglycemia. After the warning for RC is issued, consuming the RC is 

decided by the subject and the endocrinologist based on the CGM measurements and their 

experience. Since it is potentially dangerous to keep the subject in the low BGC range, the 

amount of RC is considered to evaluate the number of hypoglycemia episodes the subject 

may have during the experiment. The CGM measurements in the three days and insulin 

infusion rate of the two experiments are compared in Figure 6 along with the carbohydrate 

information.

The CGM values are higher for the AP with ML-SCM for two reasons. First, the subject had 

much higher GC in the morning every day and then had breakfast and lunch but did not 

perform any exercise, challenging the AP controller. Second, the controller was modified to 

be less aggressive in order to reduce the reliance on RC for preventing hypoglycemia. The 

intent was to move away from the GC remaining close to hypoglycemia threshold because 

hypoglycemia is more dangerous in the short term to cause immediate harm to the subject 

(Cryer et al., 2003). For AP system without ML-SCM, the CGM values remain above the 

hypoglycemia limit but low even after taking RC based on predictive hypoglycemia alarms. 

Without taking RC, there would have been a large number of hypoglycemic events. During 

the three-day experiment, the subject consumed 184 g when the AP with ML-SCM was used 

compared to 402 g RC using the AP without ML-SCM. The AP without ML-SCM was too 

aggressive for this subject and the subject had to rely on taking additional carbohydrates as 

RC to maintain the CGM in range.

On the first day, since the initial CGM value is higher in CGM 1 (AP with ML-SCM) 

compared with CGM 2 (AP without ML-SCM), more small doses of insulin bolus were 

given to bring the CGM back to safe range (Figure 6). Around 5 PM on the first day a low 

CGM value appeared and the controller was modified to be less aggressive to prevent future 

hypoglycemia. For the CGM 2 trace (AP without ML-SCM), since the controller is not 

modified by the ML-SCM module, low CGM values appeared at 1 PM, 4:40 PM, 6:00 PM 

and 8:00 PM on the first day.

On the second day, CGM 2 still has multiple low CGM values including one after lunch 

(1:30PM). For CGM 1, only one CGM value is close to the hypoglycemia threshold because 

of exercise. On the third day, there was no exercise when the AP system with ML-SCM was 

used and the CGM 1 value is higher compared with CGM 2, and the controller is modified 

to be more aggressive. Hence, the insulin bolus amount is much larger on the third day 

compared to the case using the AP without ML-SCM.
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4. DISCUSSION

The percentage of time in severe hyperglycemia (BGC>250 mg/dl) has increased for some 

subjects such as Adu3 and Adu10, when SLSM was used with respect to the AP without an 

ML-SCM (Table A.5). This is because the factors that influence the BGC dynamics, such as 

meals, often last much longer than one sampling time (5 minutes). The AP system 

modification based on one sample need to be more conservative to avoid a controller tuning 

that would be too aggressive. For example, as the BGC increases after a meal, the insulin 

infusion rate should be large enough to prevent hyperglycemia but not too large to cause 

hypoglycemia later. Since hypoglycemia may have more immediate threat to patient, the 

system is modified conservatively to reduce the potential for hypoglycemia.

By adding SLSM and PLSM, the improvement of BGC percentage between 180-70 mg/dl is 

almost the same in different days comparing with AP system without S&M (Table A.8). 

Improvement with ML-SCM is more significant in the second and third day than the first 

day, because DLSM has modified the adjustable range of the parameters in the AP system 

and constraints for correction insulin 24 hours after the beginning of the experiment. With 

data of a whole day, more information is available about the performance of the AP system, 

and the AP system is modified to reduce both hyperglycemia and hypoglycemia (Tables A.5, 

A.7, A.8).

In the PLSM, the horizon in LQG tradeoff curve is set the same as the GPC in the AP 

system, because there is no explicit information about the exact disturbance(s) (such as meal 

and sleep) to the glucose metabolism of the subject. If the information about the conditions 

were available, the range of the time period can be set to cover that condition from the 

beginning to end of the disturbance.

Besides meals, other factors such as exercise, stress and sleep may influence the dynamics of 

BGC. Because of the limitations of the simulator, the effects of exercise are not tested in this 

paper. In future work, different condition such as meal, exercise, and sleep need to be 

identified and the AP system should be modified to have a specified strategy to calculate 

insulin infusion rates for these various conditions.

5. CONCLUSION

A novel module for AP system performance assessment and modification based on multiple 

time scales is developed and tested. The ML-SCM integrates the CGM sensor error 

detection and signal reconciliation with controller performance assessment and modification. 

Three different levels of supervision modules are developed based on their time windows. 

The results indicate that the AP system with ML-SCM can improve its performance.
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APPENDIX

Part I: Index based controller failure detection and controller modification

Table A.1

Summary of all indexes and indicators in CPA

Indexes and indicators Definition Equation number for definition

IMPE Model prediction error index A.1

IMEES Error elimination speed index A.2

IDCP Dangerous change potential index A.3

IDC Dangerous change index A.4

IICL Insulin constraints limitation index A.5

IWR Weight ratio index A.6

IPE Prediction error indicator A.7

IICE Insulin constraints error indicator A.8

IWRE Weight ratio error indicator A.9

Index generation:

IMPE(k) = GCpred(k k − 1) − GC(k) (A.1)

IMEES(k) =
IMEES(k − 1) + st if IMPE(k) ≥ MEmax

0 if IMPE(k) < MEmax (A.2)

IDCP(k) =

180 − GC(k)
GC(k) − GC(k − 1) if GC(k) − GC(k − 1) > 0&70 < GC(k) < 180

GC(k) − 70
GC(k − 1) − GC(k) if GC(k − 1) − GC(k) > 0&70 < GC(k) < 180

(A.3)

IDC(k) =
1 if (IDCP(k) < IDCP

max &GC(k) − GC(k − 1) > 0) or (GC(k) > 180)

−1 if (IDCP(k) < IDCP
max &GC(k) − GC(k − 1) < 0) or (GC(k) > 70)

0 otherwise

(A.4)

IICL(k) =
IICL(k − 1) + 1 if I(k) = IMax

0 if I(k) < IMax
(A.5)
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IWR =
∑j = N1

N2 [GCpred(k + j k) − r(k + j)]2

∑j = 1
Nu w ∗ ΔI(k + j − 1)2 (A.6)

Controller failure detection (Binary numbers 1 and 0 are used to indicate the presence or 

absence of such errors):

IPE = 1 if IMPE > IMPE
max or IMEES ≥ IMEES

max

0 otherwise
(A.7)

IICE = 1 if IDC = 1&IICL ≥ IICL
max

0 otherwise
(A.8)

IWRE =
1 if IWR > 1&IDC = 1 or IDC = − 1
0 otherwise

(A.9)

Controller retuning based on indexes:

λ′(k k − 1) =
1 − 1 −

IMPE
den ∗ λ(k k − 1) if IPE = 1 &IMPE<IMPE

SE &λ′(k k − 1) > 0.5

0.05 if IPE = 1 & IMPE<IMPE
SE or λ′(k k − 1) < 0.5

(A.10)
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I′(k) =

I(k) ∗ 1 +
log10 GC(k) − GCpred(k k − 1) ∗ BW

α ∗ ISF if GC(k) − GCk − 1
pred (k k − 1) > 0 &(IDC = 1 or IDC = 0) &IPE = 1

min(I(k) ∗ 1 −
log10 GCpred(k k − 1) − GC(k) ∗ BW

α ∗ ISF if GC(k) − GCk − 1
pred (k k − 1) < 0 &IDC = 0 &IPE = 1

s . t . 0 < I′(k) < I(k)

+ Icor
max

(A.11)

GCpred′(k + 1 k) = GCpred(k + 1 k) − GCpred(k k − 1) − GC(k) ∗ β if IPE = 1 (A.12)

IMax′ =
IMax ∗ γ if IMax′ < 35 (U/hour) & IICE = 1

35(U/hour) if IMax′ ≥ 35 (U/hour) & IICE = 1 (A.13)

J(N1, N2) = minI(k)∑j = N1
N2 [GCpred(k + j k) − r(k + j)]2 if IWRE = 1 (A.14)

Table A.2

Value for parameter ISF

Adult Adolescent Child

Sensitive 0.8 0.8 0.4
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Adult Adolescent Child

Normal 1 1 0.5

Resistant 1.2 1.2 0.6

Table A.3

Summary of parameters and their values in CPA

Parameters Definition Equation number Value

MEmax Threshold of IMPE to determine IMEES A.2 10

IDCP
max

Threshold of IDCP to determine IDC A.4 4

IMPE
max

Threshold of IMPE to determine IPE A.7 20

IMEES
max

Threshold IMEES of to determine IPE A.7 30

IICL
max

Threshold IICL of to determine IICE A.8 40

IMPE
SE

Threshold of IMPE to tuning λ A.10 30

α Parameter for tuning I′ A.11 270

β
Proportional feedback constant for GCpred′ A.12 0.35

γ Filter constant determines how fast the insulin constraint 
is increasing

A.13 1.1

den Parameter for tuning I′ A.10 60 (adults, 
adolescents) 90 
(children)

Part II: Comparison of AP performance under different conditions

Table A.4

Comparison of performance between AP system without S&M, with SLSM, SLSM and 

PLSM, and with ML-SCM (percent time in each concentration range. The insulin sensitivity 

level (ISL): S sensitive, N normal, and R resistant. A: <250 mg/dl, B: 250-180 mg/dl, C: 

180-70 mg/dl, D: 70-50 mg/dl, E: >50 mg/dl)

Subject
Type

ISL BW
(kg)

BGC without S&M BGC with SLSM BGC with SL&PLSM BGC with ML-SCM

A B C D E A B C D E A B C D E A B C D E

Ado 1 S 68.7 0 3 83 8 5 0 4 84 8 4 0 2 88 6 4 0 0 91 5 4

Ado 2 R 51 22 30 48 0 0 20 27 53 0 0 16 22 62 0 0 12 15 73 0 0

Ado 3 N 44.8 28 33 38 1 0 26 33 40 1 0 25 28 47 0 0 24 23 53 0 0

Ado 4 N 49.6 14 20 64 1 1 13 20 66 0 1 13 19 67 1 0 10 11 78 1 0

Ado 5 S 47.1 17 26 57 0 0 16 23 61 0 0 13 20 67 0 0 10 14 76 0 0

Ado 6 N 45.4 4 8 85 1 2 4 7 86 1 2 4 6 89 1 0 4 5 90 1 0
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Subject
Type

ISL BW
(kg)

BGC without S&M BGC with SLSM BGC with SL&PLSM BGC with ML-SCM

A B C D E A B C D E A B C D E A B C D E

Ado 7 N 37.9 37 40 23 0 0 35 37 28 0 0 31 33 36 0 0 26 24 50 0 0

Ado 8 R 41.2 36 39 25 0 0 35 36 29 0 0 32 33 35 0 0 29 26 45 0 0

Ado 9 R 43.9 42 41 17 0 0 41 40 19 0 0 40 38 22 0 0 38 28 34 0 0

Ado 10 N 47.4 10 17 73 0 0 10 16 74 0 0 9 15 76 0 0 5 7 88 0 0

Mean 47.7 21 26 51 1 1 20 24 54 1 1 18 22 59 1 0 16 15 68 1 0

Adu 1 S 102.3 0 3 86 5 7 0 5 84 5 6 2 4 86 5 3 2 4 89 3 2

Adu 2 S 111.1 0 1 84 8 7 0 3 84 7 6 2 3 88 3 4 1 4 92 2 1

Adu 3 S 81.6 2 6 74 18 0 4 9 74 13 0 4 7 77 12 0 0 3 88 9 0

Adu 4 S 63 1 3 78 10 7 2 4 79 9 6 3 2 80 9 6 3 3 82 9 3

Adu 5 R 94.1 6 10 74 8 2 6 10 76 6 2 6 9 77 6 2 6 7 79 8 0

Adu 6 N 66.1 5 3 24 1 67 2 3 41 1 53 3 4 49 5 39 2 3 80 6 9

Adu 7 S 91.2 2 7 86 2 2 2 5 89 2 2 2 4 90 2 2 2 5 92 1 0

Adu 8 N 102.8 0 3 84 7 7 1 3 84 6 6 1 4 84 6 5 0 1 88 5 5

Adu 9 R 74.6 1 4 91 3 1 1 4 92 2 1 1 2 94 2 1 0 1 99 0 0

Adu 10 S 73.9 0 3 76 16 5 2 4 78 12 4 2 3 81 10 4 2 4 82 9 4

Mean 86.1 2 4 76 8 11 2 5 78 6 9 3 4 81 6 7 2 4 87 5 2

Chi 1 S 34.6 40 43 17 0 0 39 39 22 0 0 38 37 25 0 0 37 28 35 0 0

Chi 2 N 28.5 21 30 47 2 1 20 29 49 2 0 13 20 65 2 0 11 14 74 1 0

Chi 3 S 41.2 11 19 69 1 0 10 18 71 1 0 9 13 77 1 0 7 11 82 0 0

Chi 4 S 35.5 0 5 82 7 6 0 4 84 7 5 3 4 87 4 2 3 6 88 3 0

Chi 5 N 37.8 14 24 62 0 0 13 21 66 0 0 13 19 68 0 0 10 13 77 0 0

Chi 6 N 41 4 8 74 9 5 4 7 77 8 4 4 8 77 7 4 4 6 80 8 2

Chi 7 R 45.5 6 14 76 2 2 5 10 82 2 1 4 8 85 2 1 4 8 85 2 1

Chi 8 R 23.7 3 8 89 0 0 2 8 90 0 0 2 5 93 0 0 2 3 95 0 0

Chi 9 R 35.5 9 15 75 0 1 9 13 78 0 0 8 13 79 0 0 8 10 82 0 0

Chi 10 N 35.2 42 44 14 0 0 40 38 22 0 0 33 33 34 0 0 28 24 48 0 0

Mean 35.9 15 21 61 2 2 14 19 64 2 1 13 16 69 2 1 11 12 75 1 0

Overall 56.6 13 17 62 4 4 12 16 65 3 3 11 14 70 3 3 10 10 76 2 1

Table A.5

Comparison of performance between AP system without S&M, with SLSM, SLSM and 

PLSM, and with ML-SCM. Average percent time for each population group in each 

concentration range (A: <250 mg/dl, B: 250-180 mg/dl, C: 180-70 mg/dl, D: 70-50 mg/dl, E: 

>50 mg/dl)

Subject
Type

BW
(kg)

BGC without S&M BGC with SLSM BGC with SL&PLSM BGC with ML-SCM

A B C D E A B C D E A B C D E A B C D E

Ado 47.7 21 26 51 1 1 20 24 54 1 1 18 22 59 1 0 16 15 68 1 0
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Subject
Type

BW
(kg)

BGC without S&M BGC with SLSM BGC with SL&PLSM BGC with ML-SCM

A B C D E A B C D E A B C D E A B C D E

Adu 86.1 2 4 76 8 11 2 5 78 6 9 3 4 81 6 7 2 4 87 5 2

Chi 35.9 15 21 61 2 2 14 19 64 2 1 13 16 69 2 1 11 12 75 1 0

Overall 56.6 13 17 62 4 4 12 16 65 3 3 11 14 70 3 3 10 10 76 2 1

Table A.6

Comparison of performance between AP systems with SLSM and without S&M

Subject
Type

BGC without S&M BGC with SLSM

Average
daily

hyper-
glycemia
episodes
(GC>250

mg/dl)

Average
daily
hypo-

glycemia
episodes
(GC<50
mg/dl)

Max GC
(mg/dl)

Min GC
(mg/dl)

Average
total

insulin use
(U/3 days)

Average
daily

hyper-
glycemia
episodes
(GC>250

mg/dl)

Average
daily
hypo-

glycemia
episodes
(GC<50
mg/dl)

Max GC
(mg/dl)

Min GC
(mg/dl)

Average
total

insulin use
(U/3 days)

Ado 1 0.00 0.13 246 12 93 0.00 0.11 248 13 88

Ado 2 2.38 0.00 326 98 148 2.14 0.00 307 98 151

Ado 3 3.01 0.00 297 69 128 2.94 0.00 293 77 129

Ado 4 1.63 0.17 349 25 151 1.31 0.17 348 32 150

Ado 5 1.84 0.00 291 95 131 1.70 0.00 287 95 132

Ado 6 0.45 0.43 271 17 91 0.45 0.43 271 30 91

Ado 7 4.28 0.00 308 99 134 4.18 0.00 296 99 134

Ado 8 4.10 0.00 424 100 218 3.86 0.00 423 100 219

Ado 9 4.73 0.00 479 100 270 4.55 0.00 474 95 270

Ado 10 1.17 0.00 271 95 143 1.15 0.00 269 95 147

Mean 2.36 0.07 326 71 151 2.23 0.07 322 73 151

Adu 1 0.00 0.83 217 37 133 0.00 0.81 218 39 131

Adu 2 0.00 0.80 239 29 140 0.00 0.77 245 30 140

Adu 3 0.21 0.00 222 50 87 0.45 0.00 223 51 85

Adu 4 0.11 0.67 262 32 110 0.22 0.64 263 33 110

Adu 5 0.63 0.50 306 31 205 0.68 0.49 307 49 205

Adu 6 0.52 1.07 291 7 76 0.20 0.99 289 8 94

Adu 7 0.21 0.30 274 43 147 0.22 0.29 279 45 141

Adu 8 0.00 0.47 238 31 146 0.11 0.47 239 29 146

Adu 9 0.10 0.97 253 27 157 0.11 0.34 253 33 149

Adu 10 0.00 0.70 242 41 106 0.22 0.70 251 43 105

Mean 0.18 0.63 254 33 131 0.22 0.55 257 36 131

Chi 1 4.54 0.00 338 83 158 4.51 0.00 318 81 158

Chi 2 2.32 0.50 373 23 115 2.30 0.43 353 30 112

Chi 3 1.26 0.00 290 40 110 1.16 0.00 288 44 103

Chi 4 0.00 0.50 249 28 86 0.00 0.39 250 37 85
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Subject
Type

BGC without S&M BGC with SLSM

Average
daily

hyper-
glycemia
episodes
(GC>250

mg/dl)

Average
daily
hypo-

glycemia
episodes
(GC<50
mg/dl)

Max GC
(mg/dl)

Min GC
(mg/dl)

Average
total

insulin use
(U/3 days)

Average
daily

hyper-
glycemia
episodes
(GC>250

mg/dl)

Average
daily
hypo-

glycemia
episodes
(GC<50
mg/dl)

Max GC
(mg/dl)

Min GC
(mg/dl)

Average
total

insulin use
(U/3 days)

Chi 5 1.43 0.00 320 83 128 1.39 0.00 320 82 128

Chi 6 0.43 0.93 318 19 128 0.43 0.92 330 26 128

Chi 7 0.69 0.57 295 26 115 0.58 0.56 302 26 117

Chi 8 0.31 0.00 283 80 59 0.24 0.00 279 80 60

Chi 9 1.06 0.37 309 21 111 0.97 0.15 309 22 109

Chi 10 4.22 0.00 341 96 157 4.58 0.00 337 96 162

Mean 1.63 0.30 312 50 117 1.62 0.25 309 52 116

Overall 1.39 0.33 297 51 133 1.35 0.29 296 54 133

Table A.7

Comparison of performance between AP systems with SLSM and PLSM, and with ML-

SCM

Subject
Type

BGC with SLSM and PLSM BGC with ML-SCM

Average
daily

hyper-
glycemia
episodes
(GC>250

mg/dl)

Average
daily
hypo-

glycemia
episodes
(GC<50
mg/dl)

Max BGC
(mg/dl)

Min BGC
(mg/dl)

Average
total

insulin use
(U/3 days)

Average
daily

hyper-
glycemia
episodes
(GC>250

mg/dl)

Average
daily
hypo-

glycemia
episodes
(GC<50
mg/dl)

Max BGC
(mg/dl)

Min BGC
(mg/dl)

Average
total

insulin use
(U/3 days)

Ado 1 0.00 0.11 248 14 82 0.00 0.07 249 22 75

Ado 2 1.83 0.00 293 98 152 1.27 0.00 290 98 153

Ado 3 2.60 0.00 283 90 129 2.51 0.00 283 96 129

Ado 4 1.46 0.17 345 53 150 1.05 0.00 343 59 150

Ado 5 1.44 0.00 279 94 133 1.02 0.00 273 94 134

Ado 6 0.47 0.42 271 38 90 0.41 0.40 271 39 90

Ado 7 3.62 0.00 293 99 135 2.63 0.00 292 99 140

Ado 8 3.24 0.00 423 100 220 3.21 0.00 413 100 230

Ado 9 4.47 0.00 459 91 273 4.25 0.00 403 68 275

Ado 10 1.01 0.00 264 95 147 0.59 0.00 264 94 148

Mean 2.01 0.07 316 77 151 1.69 0.03 308 77 152

Adu 1 0.21 0.63 255 41 130 0.23 0.50 263 41 125

Adu 2 0.21 0.48 247 33 136 0.11 0.43 261 38 130

Adu 3 0.43 0.00 232 51 82 0.00 0.00 237 51 80

Adu 4 0.31 0.63 263 33 109 0.33 0.53 266 36 91

Adu 5 0.68 0.17 308 52 204 0.63 0.00 309 56 204

Adu 6 0.35 0.95 288 9 105 0.23 0.83 286 26 113
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Subject
Type

BGC with SLSM and PLSM BGC with ML-SCM

Average
daily

hyper-
glycemia
episodes
(GC>250

mg/dl)

Average
daily
hypo-

glycemia
episodes
(GC<50
mg/dl)

Max BGC
(mg/dl)

Min BGC
(mg/dl)

Average
total

insulin use
(U/3 days)

Average
daily

hyper-
glycemia
episodes
(GC>250

mg/dl)

Average
daily
hypo-

glycemia
episodes
(GC<50
mg/dl)

Max BGC
(mg/dl)

Min BGC
(mg/dl)

Average
total

insulin use
(U/3 days)

Adu 7 0.24 0.27 282 46 133 0.22 0.10 290 49 122

Adu 8 0.11 0.45 247 29 146 0.00 0.37 251 24 144

Adu 9 0.11 0.23 252 33 148 0.00 0.00 249 78 145

Adu 10 0.23 0.53 255 43 94 0.21 0.27 263 46 94

Mean 0.29 0.43 263 37 129 0.20 0.30 267 45 125

Chi 1 3.87 0.00 313 80 156 4.02 0.00 302 76 155

Chi 2 1.46 0.05 346 40 111 1.11 0.00 325 52 99

Chi 3 1.06 0.00 286 47 101 0.78 0.00 279 63 100

Chi 4 0.34 0.07 252 45 82 0.32 0.00 257 53 71

Chi 5 1.35 0.00 321 77 129 1.18 0.00 325 70 130

Chi 6 0.41 0.73 336 26 128 0.41 0.60 347 34 120

Chi 7 0.48 0.56 335 26 124 0.44 0.37 349 42 136

Chi 8 0.23 0.00 278 80 60 0.23 0.00 270 80 60

Chi 9 0.89 0.05 310 37 107 0.93 0.00 310 87 101

Chi 10 3.38 0.00 333 96 162 2.96 0.00 315 96 162

Mean 1.35 0.15 311 55 116 1.24 0.10 308 65 113

Overall 1.22 0.22 297 57 132 1.04 0.13 295 62 130

Table A.8

Comparison BGC percent time in each concentration range for AP systems without S&M, 

with SLSM, SLSM and PLSM, and with ML-SCM on different days (percent time in each 

concentration range. A: >250 mg/dl, B: 250-180 mg/dl, C: 180-70 mg/dl, D: 70-50 mg/dl, E: 

<50 mg/dl)

Time
BGC without S&M BGC with SLSM BGC with SL&PLSM BGC with ML-SCM

A B C D E A B C D E A B C D E A B C D E

Day1

Ado 20 29 50 1 0 19 28 52 1 0 17 26 56 1 0 17 26 56 1 0

Adu 2 4 83 8 3 2 5 83 8 2 4 4 86 6 0 4 4 86 6 0

Chi 16 25 57 2 0 15 22 61 2 0 12 18 68 2 0 12 18 68 2 0

Mean 12 19 64 4 1 12 18 66 3 1 11 16 70 3 0 11 16 70 3 0

Day2

Ado 22 24 52 1 1 21 23 55 1 0 19 20 61 0 0 17 10 73 0 0

Adu 2 5 72 7 14 3 6 75 5 11 3 5 77 5 10 3 4 87 4 2

Chi 19 18 61 1 1 18 16 64 1 1 17 15 67 1 0 16 10 73 1 0

Mean 14 16 62 3 5 13 15 65 3 5 13 13 69 2 3 12 8 78 2 1

Day3 Ado 22 24 51 2 1 20 22 55 2 1 19 20 59 1 1 16 8 74 1 1
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Time
BGC without S&M BGC with SLSM BGC with SL&PLSM BGC with ML-SCM

A B C D E A B C D E A B C D E A B C D E

Adu 1 3 75 6 15 1 4 76 6 13 1 3 79 7 10 1 3 89 4 3

Chi 11 21 62 3 3 10 19 66 3 2 9 16 71 3 1 9 6 83 1 1

Mean 11 16 63 4 6 10 15 66 4 5 10 13 70 4 4 9 6 81 2 1
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Highlights

• A multi-level supervision module is developed for model-based control 

systems.

• Sensor error detection and controller performance assessment are integrated.

• The performance of artificial pancreas is evaluated in different time scales.

• The controller is retuned by adjusting controller parameters and constraints.
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Figure 1. 
AP system with GPC algorithm
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Figure 2. 
Flow diagram of SED&FR algorithm
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Figure 3. 
Flow diagram of SLSM procedure
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Figure 4. 
Example of tradeoff curve analysis
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Figure 5. 
Flow chart of AP system with multi-level supervision module
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Figure 6. 
Performance comparison of AP system with and without ML-SCM (1: AP system with ML-

SCM, 2: AP system without ML-SCM)
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Table 1

Acronyms List

Acronyms Description

AP Artificial Pancreas

BGC Blood Glucose Monitoring

T1D Type 1 Diabetes

CGM Continuous Glucose Monitoring

PID Proportional-Integral-Derivative

MLSM Multi-level Supervision and Modification

SLSM Sample-level Supervision Module

PLSM Period-level Supervision Module

DLSM Day-level Supervision Module

SED&FR Sensor Error Detection and Functional Reconciliation

ORKF Outlier-Robust Kalman Filter

LW-PLS Locally-Weighted Partial Least Squares

LQG Linear Quadratic Gaussian

GPC Generalized Predictive Control

ARMAX Autoregressive Moving Average Model with Exogenous Inputs

CPA Controller Performance Assessment

NAA Nominal Angle Analysis
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Table 2

Value setting for μ

Sensitive Normal Resistant

Adolescent 0.2 0.3 0.55

Adult 0.2 0.3 0.55

Child 0.45 0.7 0.9
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Table 3

Summary of parameters, index and indicators

Indexes and indicators Definition Equation number for definition

μ Aggressiveness factor 4

Ii idle index 9

Ipw performance watchdog 12

Islug sluggish control indicator 15

Ioff set large offset indicator 16

Icor correction insulin bolus 19

hypo Hypoglycemia indicator 25

hyper Hyperglycemia indicator 26

μSL
d

Aggressiveness factor decrement 27

μSL
i

Aggressiveness factor increment 27

Icor
max

Maximum of correction insulin bolus 29

μmax Maximum of aggressiveness factor 30

μmin Minimum of aggressiveness factor 30
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Table 4

Three-day meal scenarios for different age groups (Carbohydrate (g))

Time Adolescent Adult Children

Day 1 09:45 48 60 36

13:30 47 59 35

17:45 75 94 56

21:30 31 39 23

Day 2 09:10 55 69 41

13:45 70 88 53

18:00 65 81 49

22:00 20 25 15

Day 3 09:00 40 50 30

14:00 68 85 51

18:20 75 94 56

22:30 25 31 19

Daily average 206 258 155
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