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Abstract

Stenotrophomonas maltophilia and Burkholderia cepacia complex (Bcc) have been increas-

ingly recognized as relevant pathogens in hospitalized, immunocompromised and cystic

fibrosis (CF) patients. As a result of complex mechanisms, including biofilm formation and

multidrug resistance phenotype, S. maltophilia and Bcc respiratory infections are often

refractory to therapy, and have been associated with a worse outcome in CF patients. Here

we demonstrate for the first time that N-acetylcysteine (NAC), a mucolytic agent with antioxi-

dant and anti-inflammatory properties, may exhibit antimicrobial and antibiofilm activity

against these pathogens.

The antimicrobial and antibiofilm activity of high NAC concentrations, potentially achiev-

able by topical administration, was tested against a collection of S. maltophilia (n = 19) and

Bcc (n = 19) strains, including strains from CF patients with acquired resistance traits. Mini-

mum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations (MBCs)

ranged from 16 to 32 mg/ml and from 32 to >32 mg/ml, respectively. Sub-MIC concentra-

tions (i.e., 0.25 ×MIC) slowed down the growth kinetics of most strains. In time-kill assays,

2-day-old biofilms were more affected than planktonic cultures, suggesting a specific anti-

biofilm activity of NAC against these pathogens. Indeed, a dose- and time-dependent anti-

biofilm activity of NAC against most of the S. maltophilia and Bcc strains tested was

observed, with a sizable antibiofilm activity observed also at 0.5 and 1 ×MIC NAC concen-

trations. Furthermore, at those concentrations, NAC was also shown to significantly inhibit

biofilm formation with the great majority of tested strains.
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Introduction

N-acetylcysteine (NAC) has long been used in clinical practice for its mucolytic, antioxidant

and anti-inflammatory properties [1]. In addition, in vitro studies have revealed that NAC may

exhibit some intrinsic antimicrobial and antibiofilm activity against several clinically relevant

pathogens (including Gram-positive and Gram-negative bacteria and yeasts), although knowl-

edge on this topic remains limited and the underlying mechanisms are poorly understood ([2]

and references therein, [3–7]). The concentrations at which the antimicrobial and antibiofilm

activities of NAC have been observed were variable but usually higher than those achievable by

systemic routes of administration (i.e., oral, intramuscular or intravenous), which can result in

peak plasma concentrations of 0.2–1.2 mg/ml [8]. However, NAC can also be administered

topically, either by nebulization or direct instillation [2,9], and reach at the site of infection the

higher concentrations needed for the antimicrobial and antibiofilm activity. Despite initial

concerns about the potential negative interaction of NAC on antibiotic activity [10], two recent

articles have demonstrated that NAC does not negatively affect the activity of the major antibi-

otic classes, with the exception of carbapenems [11,12].

By virtue of its multiple beneficial effects and high tolerability, a renewed interest in the

potential therapeutic efficacy of topical NAC has recently emerged, especially for the manage-

ment of cystic fibrosis (CF) and other chronic respiratory diseases (e.g. chronic obstructive

pulmonary disease, and non-CF bronchiectasis) [2].

With regard to the difficult-to-treat pathogens associated with these diseases, NAC was pre-

viously shown to exert some antimicrobial and antibiofilm activity against Pseudomonas aeru-
ginosa [2,13], but its activity against Stenotrophomonas maltophilia and Burkholderia cepacia
complex (Bcc) remains unexplored.

S. maltophilia and Bcc are ubiquitous environmental microorganisms that act as relevant

opportunistic pathogens in immunocompromised and hospitalized patients (especially patients in

high-risk wards, such as Intensive Care Units), and those affected by CF [14–21]. Respiratory

infections by S. maltophilia and Bcc are often recalcitrant to antibiotic therapy, as a consequence

of complex and still largely unexplored mechanisms, which involve also a wide range of intrinsic

and acquired antimicrobial resistance mechanisms, and the propensity to grow as biofilms [22,23].

Despite the pathogenic role of S. maltophilia in CF individuals has long been a matter of

debate, chronic lung colonization by this pathogen has been recently associated with an

increased risk of pulmonary exacerbation, lung transplantation and death [14,19,23].

Bcc is a versatile group of 21 species, of which Burkholderia cenocepacia and Burkholderia
multivorans show a higher prevalence in CF infections compared to other Bcc species [24]. B.

cenocepacia has a well-recognised impact on post-transplant morbidity and mortality, repre-

senting a contraindication to lung transplantation [25].

In order to find new drugs and combinations to improve the outcome of chronic lung colo-

nization by S. maltophilia and Bcc in CF patients, a renewed interest has been recently focused

on inhaled route of administration, which allow to achieve higher drug concentrations in the

lungs, whilst limiting systemic toxicity [16,17].

Here we demonstrate, for the first time, that NAC may exhibit antimicrobial activity against

S. maltophilia and Bcc grown either in planktonic phase or in biofilms, at concentrations

achievable by topical administration.

Materials and methods

Bacterial strains tested, identification and susceptibility testing

A total of 38 strains were investigated (S. maltophilia, n = 19; Bcc, n = 19), including CF isolates

(Table 1). Identification was performed by MALDI-TOF MS, and Bcc strains were also
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Table 1. Features of the 38 S. maltophilia and B. cepacia complex strains investigated.

Straina Species Originb Antibioticsc N-acetylcysteine

MLST MIC (μg/ml) MIC

(mg/ml)

MBC

(mg/ml)CAZ MEM LVX SXT MIN

Z63 S. maltophilia - BSI 2 - �0.25 0.5 0.125 16 32

Z64 S. maltophilia - BSI 64 - 4 2 2 16 >32

Z65 S. maltophilia - IAI 64 - 2 1 1 32 >32

Z66 S. maltophilia - LRTI �1 - 1 0,5 0.25 16 32

Z116 S. maltophilia - LRTI 16 - 2 0.5 0.25 32 >32

Z117 S. maltophilia - LRTI 64 - 0.5 0.5 0.25 16 >32

Z118 S. maltophilia ST162 LRTI 8 - 2 0.5 0.25 16 >32

Z119 S. maltophilia - LRTI 32 - 2 0.5 0.50 32 >32

Z120 S. maltophilia ST334 LRTI 32 - 1 0.5 0.5 16 32

Z128 S. maltophilia - LRTI 4 - 1 �0.25 0.25 16 >32

Z129 S. maltophilia - LRTI 4 - 1 �0.25 0.25 16 >32

Z130 S. maltophilia - IAI 16 - 16 0.5 2 16 >32

Z131 S. maltophilia - BSI 64 - 32 >8 1 16 >32

Z132 S. maltophilia - LRTI 2 - 16 1 1 32 >32

Z133 S. maltophilia - LRTI 2 - 1 1 0.25 32 >32

Z155 S. maltophilia ST335 CF 32 - 4 >8 2 16 >32

Z156 S. maltophilia - CF 16 - 2 1 0.25 32 32

Z157 S. maltophilia - CF 4 - 2 0.5 1 32 >32

Z158 S. maltophilia - CF 16 - 0.5 �0.25 0.25 16 >32

Z136 B. multivorans ST1396 CF >64 8 64 4 8 32 >32

Z161 B. multivorans - CF >128 8 256 4 16 16 >32

LMG 16656 B. cenocepacia ST28 CF 128 32 8 >8 16 16 >32

Z135 B. cenocepacia - CF 64 8 >256 4 64 32 >32

Z139 B. cenocepacia - CF 8 4 4 1 16 32 >32

Z140 B. cenocepacia - CF 16 16 >256 > 8 8 16 >32

Z142 B. cenocepacia ST32 CF 2 4 32 8 8 16 >32

Z144 B. cenocepacia - CF 4 8 32 8 8 16 >32

Z146 B. cenocepacia - LRTI 16 16 128 8 4 32 >32

Z151 B. cenocepacia - LRTI 4 4 2 0.5 2 32 >32

Z160 B. cenocepacia - CF 16 16 32 8 4 16 >32

Z163 B. cenocepacia - CF >128 16 128 1 8 16 >32

Z141 B. cepacia - CF 8 8 128 4 8 32 >32

Z145 B. stabilis ST51 CF 128 8 32 8 4 16 >32

Z148 B. stabilis ST51 LRTI 4 1 2 �0.25 1 16 32

Z162 B. stabilis - CF 32 4 8 1 1 16 32

Z137 B. metallica - CF 4 4 16 2 1 32 >32

Z138 B. seminalis ST1398 CF 2 2 64 2 2 16 >32

Z147 B. contaminans - LRTI 4 4 1 0.5 1 32 >32

aThe 12 strains selected for planktonic time-kill assays and biofilm experiments are underlined.
bBSI, bloodstream infection; IAI, intra-abdominal infection; LRTI, lower respiratory tract infection; CF, cystic

fibrosis.
cCAZ, ceftazidime; MEM, meropenem; LVX, levofloxacin; SXT, trimethoprim-sulfamethoxazole; MIN, minocycline.

https://doi.org/10.1371/journal.pone.0203941.t001
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identified by PCR/sequencing of the recA gene [26]. In addition, species identification and

Multi Locus Sequence Typing (MLST) of the six Bcc strains selected for time-kill assays and

biofilm experiments were further determined following whole genome sequencing (WGS).

Bacterial DNA was extracted using the phenol:chloroform method [27], and it was subjected

to WGS with a MiSeq platform (Illumina, Inc., San Diego, CA), using a 2 × 300 bp paired-end

approach, and reads were assembled using SPAdes [28]. Draft genome assemblies were used

for downstream analyses at the Oxford PubMLST site (https://pubmlst.org/) and at the Center

for Genomic Epidemiology site (https://cge.cbs.dtu.dk/services/KmerFinder/). The same

approach was also used for three of the six S. maltophilia strains selected for time-kill assays

and biofilm experiments. New ST-types were identified for S. maltophilia (i.e., Z120, ST334;

Z155, ST335) and Bcc (i.e., Z136, ST1396; Z138, ST1398). Antimicrobial susceptibility was

determined using the reference broth microdilution method [29].

Preparation of NAC-containing medium

N-acetylcysteine stock solutions (100 g/L) were prepared immediately before use, by dissolving

N-acetylcysteine powder (Zambon, Bresso, Italy) in sterile double-distilled water, pH adjust-

ment at 6.5–6.8 with NaOH, and filtering through a 0.22-μm membrane filter. All experiments

were performed in CAMHB (Becton Dickinson, Milan, Italy), starting from an appropriately

concentrated medium in order to avoid broth dilution when testing high N-acetylcysteine

concentrations.

In vitro antimicrobial activity of NAC against planktonic cultures

Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations

(MBCs) of NAC were determined by broth microdilution (range of NAC concentration tested,

0.25–32 mg/ml) [29]. The effect of sub-MIC NAC concentrations (i.e., 0.25 × MIC) on the

growth kinetics was determined in duplicate by recording the optical density at 600 nm over

20 h, using CAMHB inoculated with ~1.5 × 106 CFU/ml.

Twelve strains (S. maltophilia, n = 6; Bcc, n = 6) (Table 1) were selected for time-kill assays

with planktonic and biofilm cultures. The selected strains were representative of diverse origin

(i.e., CF and non-CF LRTI), resistance phenotype (e.g., susceptibility to trimethoprim-sulfa-

methoxazole), and Bcc species. B. contaminans and B. metallica were not included at this stage,

in order to test two B. cenocepacia belonging to diverse ST-types, and two B. stabilis strains

belonging to the same ST-type, but showing diverse origin and resistance phenotype.

Planktonic time-kill assays were performed according to Clinical and Laboratory Standards

Institute guidelines, in CAMHB [30]. Briefly, exponential phase bacterial cultures (OD600

*0.15) were diluted to ~5 × 105 CFU/ml (final volume 10 ml) and exposed to 16 and 32 mg/

ml NAC (i.e. 1 × MIC and 2 × MIC concentrations for the selected strains) over 24 h. Viable

cell counts were determined by plating method after 3, 6 and 24 h of incubation (detection

limit 25 CFU/ml). Data were obtained from at least two independent experiments, with two

replicates per condition per experiment.

In vitro antibiofilm activity of NAC

Biofilm susceptibility testing was performed using the Nunc-TSP lid system (Thermo Fisher

Scientific, Waltham, MA, USA), as described previously [31]. Briefly, 2-day-old biofilms were

challenged with daily refreshed NAC-containing medium (i.e., 8, 16, and 32 mg/ml) at 35˚C

under static conditions, and the effect of NAC was evaluated after 1 and 3 days of exposure.

After the exposure time, biofilms were washed twice with 200 μl of phosphate-buffered saline

(PBS) (Sigma Aldrich, Milan, Italy) to remove loosely adherent bacteria, and sessile cells were

Antibiofilm activity of NAC against S. maltophilia and B. cepacia complex

PLOS ONE | https://doi.org/10.1371/journal.pone.0203941 October 1, 2018 4 / 12

https://pubmlst.org/
https://cge.cbs.dtu.dk/services/KmerFinder/
https://doi.org/10.1371/journal.pone.0203941


removed from pegs by sonication for 30 min (Elma Transsonic T 460, Singen, Germany) in

200 μl of tryptic soy broth (TSB) (Oxoid, Milan, Italy) supplemented with 0.1% Tween 20

(Sigma Aldrich) (i.e., the recovery medium). Mean viable cell count per peg (log CFU/peg)

was then determined by plating 10 μl of appropriate dilutions of the recovery medium onto

tryptic soy agar (TSA) (Oxoid) and incubating for 48 h at 35˚C (detection limit, 1.3 log CFU/

peg). Data were obtained from at least two independent experiments, with at least four repli-

cates per condition per experiment.

The capability of NAC to affect biofilm formation was evaluated with biofilms grown for 72

hours in CAMHB in the presence of 0, 4, 8 and 16 mg/ml NAC concentrations in daily

refreshed medium (at 35˚C, static condition). After the incubation times, viable cells were

counted as in eradication experiments (see above).

Statistical analysis

Statistical analysis was performed using GraphPad Prism version 6.0 (San Diego, CA, USA).

D’Agostino-Pearson, Shapiro-Wilk and Kolmogorov-Smirnov normality tests were used to

test for Gaussian distribution. Concerning biofilm experiments, for each time point multiple

comparison tests were applied to assess differences of biofilms exposed to diverse NAC con-

centrations compared to controls. One-Way ANOVA with Dunnett’s correction and Kruskal-

Wallis test with Dunn’s correction were performed in case of Gaussian or not Gaussian distri-

bution, respectively. Unpaired t-test with Welch’s correction was used for growth curves

analysis.

Results and discussion

In vitro activity of NAC against S. maltophilia and Bcc grown in planktonic

phase

MICs of NAC for the tested S. maltophilia and Bcc strains were 16 or 32 mg/ml, whereas

MBCs were 32 mg/ml for four strains (S. maltophilia, n = 2; Bcc, n = 2), and>32 mg/ml for

the remaining ones (Table 1).

Sub-MIC NAC concentrations (i.e., 0.25 × MICs) were able to slow down the growth kinet-

ics of most of the strains tested, with S. maltophilia being the most affected species (especially

after 20 h of incubation) (Fig 1).

In time-kill assays performed with planktonic cultures, NAC at 1 × MIC did not exert bac-

terial killing against the strains tested, except for S. maltophilia Z120 (i.e., 1.3 log CFU/ml

reduction after 24 h) and B. stabilis Z148 (i.e., 2.1 log CFU/ml reduction after 24 h) (Fig 2).

At 2 × MIC concentrations, NAC was bactericidal (i.e., reduction of�3 log of the initial bacte-

rial inoculum) for these two strains (i.e., 4.2 and 3.2 log CFU/ml reduction for S. maltophilia
Z120 and B. stabilis Z148, respectively), and reduced of at least 1 log CFU/ml the viable cell

counts for four additional S. maltophilia and two Bcc strains (range, 1.1–2.5 log CFU/ml)

(Fig 2).

In vitro activity of NAC against S. maltophilia and Bcc grown in biofilms

Time-kill assays performed with 2-day-old biofilms (average, 7.16 ± 0.63 and 5.98 ± 1.04 log

CFU/peg for S. maltophilia and Bcc, respectively) revealed a dose- and time-dependent anti-

biofilm activity of NAC against most of the S. maltophilia and Bcc strains tested (except for B.

multivorans Z136 and B. cenocepacia LMG 16656) (Fig 3). Interestingly, with six strains,

including three S. maltophilia and three Bcc, a sizable antibiofilm activity was already observed

at 0.5 × MIC and 1 × MIC NAC concentrations, which were found to determine a reduction

Antibiofilm activity of NAC against S. maltophilia and B. cepacia complex
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of viable cells of�1 log CFU/peg and�2 log CFU/peg after a 3-days exposure, respectively

(Fig 3). Considering the substantial lack of killing activity of 1 × MIC NAC concentrations

against planktonic cultures of the same strains (Fig 2), these data would point towards a spe-

cific antibiofilm activity of NAC against these pathogens. Furthermore, at the highest concen-

tration tested (i.e., 32 mg/ml), NAC exerted a bactericidal effect (i.e., reduction of�3 log

CFU/peg) against half of the strains grown in biofilms (Fig 3).

Finally, NAC at 0.5 × MIC or 1 × MIC concentrations was also shown to significantly affect

biofilm formation of the great majority of tested strains (i.e., all except B. multivorans Z136

and B. cenocepacia Z142) (Fig 4). Results were overall consistent with those obtained in biofilm

eradication experiments, except for B. cenocepacia Z142, for which NAC had a relevant anti-

biofilm effect on preformed biofilms, while no effect in inhibiting biofilm formation was

observed (Figs 3 and 4).

The diverse response to NAC exposure observed in biofilm experiments among strains of

the same species, exhibiting similar NAC MIC, suggests a strain-dependent antibiofilm activity

of NAC against these pathogens. The reasons accounting for this phenomenon are difficult to

hypothesize, since mechanisms underlying the antibiofilm activity of NAC remain still largely

unknown. In addition, the different results obtained with B. cenocepacia Z142 in biofilm pre-

vention and eradication experiments further suggest a complex and multifactorial antibiofilm

activity of NAC.

Fig 1. Boxplot representation of the effect of sub-MIC NAC concentrations on the growth kinetics of 19 S.

maltophilia and 19 Bcc clinical isolates. Data from two independent experiments. Boxes indicate from the 25th to the

75th percentiles, and whiskers indicate the minimum and maximum values.

https://doi.org/10.1371/journal.pone.0203941.g001
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Fig 2. Time-kill assays of NAC for S. maltophilia and Bcc planktonic cultures. Data from at least two independent

experiments, with two replicates per condition per experiment. Mean values with standard deviation are plotted. The x
axis is set at the limit of detection (i.e., 25 CFU/ml).

https://doi.org/10.1371/journal.pone.0203941.g002
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Conclusions

The results of this study demonstrated for the first time that high NAC concentrations, achiev-

able by topical administration (inhalation or direct instillation), may exert a relevant antimi-

crobial and antibiofilm activity against S. maltophilia and Bcc, including CF isolates with

acquired resistance traits. These difficult-to-treat pathogens have been increasingly recognized

as relevant pathogens in hospitalized, immunocompromised and CF patients, being associated

with a worse outcome in CF patients [14–21]. Interestingly, the antibiofilm activity appeared

to be only partially related to the antimicrobial activity, suggesting that NAC might act by

inducing biofilm disgregation or be more active against biofilm-associated cells than plank-

tonic cells. Further studies are needed to understand the mechanisms of such a phenomenon,

Fig 3. Time-kill curves of NAC for 2-day-old biofilms of S. maltophilia and Bcc. Data from at least two independent experiments, with at least four replicates

per condition per experiment. Median values with standard deviation are plotted. The x axis is set at the limit of detection (i.e., 1.3 log CFU/peg).

https://doi.org/10.1371/journal.pone.0203941.g003
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considering that the antibiofilm properties of NAC have been hypothesized to be multifactorial

(e.g. perturbation of cell physiology, direct interaction with crucial components of the matrix)

[2], and have not been fully elucidated so far.

Although the low number of strains tested did not allow to speculate on potential associa-

tions between Bcc species and NAC susceptibility, the differences observed with the two B. cen-
ocepacia strains (B. cenocepacia Z142 and LMG 16656) would rather suggest a strain-specific

susceptibility. Based on the present findings, further studies aimed at expanding the number

of strains and Bcc species tested and addressing the potential antibiofilm synergism of NAC

plus conventional antibiotics are strongly encouraged.
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