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Abstract

Genome wide association studies (GWASs) have revealed multiple genetic variants associ-

ated with leprosy in the Chinese population. The aim of our study was to utilize the genetic

variants to construct a risk prediction model through a weighted genetic risk score (GRS) in

a Chinese set and to further assess the performance of the model in identifying higher-risk

contact individuals in an independent set. The highest prediction accuracy, with an area

under the curve (AUC) of 0.743 (95% confidence interval (CI): 0.729–0.757), was achieved

with a GRS encompassing 25 GWAS variants in a discovery set that included 2,144 people

affected by leprosy and 2,671 controls. Individuals in the high-risk group, based on genetic

factors (GRS > 28.06), have a 24.65 higher odds ratio (OR) for developing leprosy relative

to those in the low-risk group (GRS�18.17). The model was then applied to a validation set

consisting of 1,385 people affected by leprosy and 7,541 individuals in contact with leprosy,

which yielded a discriminatory ability with an AUC of 0.707 (95% CI: 0.691–0.723). When a

GRS cut-off value of 22.38 was selected with the optimal sensitivity and specificity, it was

found that 39.31% of high risk contact individuals should be screened in order to detect lep-

rosy in 64.9% of those people affected by leprosy. In summary, we developed and validated

a risk model for the prediction of leprosy that showed good discrimination capabilities, which

may help physicians in the identification of patients coming into contact with leprosy and are

at a higher-risk of developing this condition.

Author summary

Despite elimination efforts, the reported number of new leprosy patients has been rela-

tively stable during the past decade throughout the world. Solid evidence exists that
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individuals living in close proximity to patients are at an increased risk of developing lep-

rosy, thus identifying the contact individuals who are at a higher risk of developing leprosy

is an important aspect of disease control. In the last decade, genome-wide association

studies (GWASs) have identified multiple genetic variants associated with leprosy in the

Chinese population, however, the combined impact of these variants for leprosy risk pre-

diction remains unclear. The goal of our study was to utilize the genetic variants to con-

struct a risk prediction model in a Chinese set, and further assess the performance of the

model in identifying higher-risk contact subjects in an independent set. We developed

risk prediction models for leprosy based on GRS encompassing 25 GWAS-derived vari-

ants with good discriminatory capability (AUC = 0.743). When compared to the individu-

als in the high-risk group (GRS > 28.06) and low-risk group (GRS�18.17), the former

had a 24.65 times higher risk for developing leprosy than the latter, which demonstrated a

considerable value for risk stratification in leprosy. Our results may assist physicians to

identify higher-risk leprosy contact subjects for disease interventions.

Introduction

Leprosy is a chronic granulomatous disease caused by Mycobacterium leprae that mainly

affects the skin and peripheral nerves, potentially leading to irreversible disabilities and defor-

mities. As a result of implementing multi-drug therapy, the prevalence of leprosy has declined

dramatically. Nevertheless, the reported number of new leprosy patients (more than 200,000

new patients annually) has been relatively stable during the past decade globally [1, 2].

Endemic pockets remain in various parts of the world, especially in developing countries.

The development of leprosy in a non-leprous individual is highly dependent on the inten-

sity of contact with a leprous patients [3, 4]. For decades, therefore, contact surveillance has

always been a priority for disease control. In some endemic regions, post-exposure prophylaxis

has been administered to prevent leprosy contacts (unaffected individuals coming into contact

with leprosy) from contracting the disease. This has partially interrupted the transmission of

the disease and reduced the incidence of leprosy [5–8]. However, it is noteworthy that most

individuals exposed to this bacterium (95%) are not susceptible to leprosy, and amongst those

5% infected by M. leprae, only 1% go on to develop this condition [9]. Thus, the cost-effective-

ness of chemoprophylaxis remains questionable and has not yet been widely approved. Use of

a reliable risk prediction model that could inform clinicians of leprosy contact individuals at a

higher risk of developing leprosy would allow the implementation of a more efficient strategy

for disease interventions.

The discovery of susceptibility variants for human complex traits through genome-wide

association studies (GWASs) has facilitated the potential application of genetic risk models,

which could guide clinical professionals in their decision making by estimating an individual’s

probability of having a special disease [10–13]. For leprosy, it has become increasingly appar-

ent that, besides exposure to M. leprae, the host’s genetic predisposition plays a critical role in

the pathogenesis of the disease. There are currently 32 independent variants associated with

leprosy that have been identified through GWAS and candidate-gene studies in the Chinese

population [14–20]. Taking advantage of these findings, we utilized these published genetic

risk variants to construct a risk prediction model using weighted genetic risk score (GRS) in a

Chinese set. We then evaluated the risk model with respect to its discriminatory ability and

found that it could achieve a substantial separation between people affected by leprosy and

control individuals. To further assess the performance of the optimal risk model, we applied it
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to another independent set consisting of people affected by leprosy and leprosy contact indi-

viduals and demonstrated the effect of the model in identifying higher-risk contact

individuals.

Materials and methods

Ethics statement

The study was approved by the institutional review board committee of the Shandong Provin-

cial Institute of Dermatology and Venereology, Shandong Academy of Medical Science,

China. We followed the Genetic Risk Prediction Studies guidelines [21] and all adult subjects

provided written informed consent. A parent or guardian provided written informed consent

on behalf of children who participated in the study.

Study subjects

Two independent sets were enrolled in this study. The discovery set included 3,264 people

affected by leprosy and 3,814 control subjects enrolled from 2006 to 2016. Although informa-

tion regarding exposure to M. leprae remains unknown, the control subjects in this set were

healthy individuals who had neither been diagnosed with nor had a family history of leprosy.

The validation set consisted of 2,021 people affected by leprosy and 10,449 contact individuals

recruited in the period from 2014 to 2016. Contact subjects were healthy individuals, who

were categorized according to their genetic and physical distance to the index patient which

included 5,983 relatives (first-, second-, and third- degree family members were 2,694, 2,218,

and 1,071, respectively) and 4,466 genetically unrelated contact individuals (2,726 spouses and

1,740 neighbors). Generally, per index subject affected by leprosy, five individuals with pro-

longed, intimate contact were recruited. All self-reported Han Chinese subjects were from the

Shandong Province in Northern China. The method associated with the diagnosis of leprosy

has been previously described [14].

SNP selection, genotyping and quality control

A total of 30 independent variants with minor allele frequencies > 0.01 at a genome-wide sig-

nificance level were selected from our previous GWASs and one candidate gene study (S1

Table). The genotyping data from 1,572 patients and 2,484 control subjects in the discovery

set was derived from our published GWASs database. The remaining subjects in the discovery

set (1,692 people affected by leprosy and 1,330 controls) and all subjects in the validation set

(2,021 people affected by leprosy and 10,449 contacts) were genotyped according to the manu-

factures’ protocol (dx.doi.org/10.17504/protocols.io.pvbdn2n) using the Quant Studio 12K

Flex platform (Life Technologies, ABI, USA).

Variants went through the following quality control filters: call rate> 97% per variant and

Hardy-Weinberg Equilibrium P> 1.0×10−3 in controls. Five variants with� 3% missing data

were eliminated. Subjects with missing data on one or more genetic variants of interest were

also excluded from the analysis. Ultimately, a total of 25 variants and 13,741 subjects were

included in the analyses.

Statistical analysis

In the discovery set, we tested associations between phenotypes and single-variant genotypes

using PLINK v 1.07 based on a logistic regression model. A two-sample t-test and Pearson χ2

test were conducted to compare the difference in age and gender between people affected by

leprosy and controls, respectively.
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Two risk prediction models were constructed using GRS in the discovery set. Both models

were constructed as the sum of the risk alleles weighted by the β coefficient of each allele from a

multivariate logistic regression of genetic covariates (weighted GRS). Model 1 included all genetic

risk variants with a P value< 0.05, while only the top variants whose P values reached genome-

wide significance (P< 5.0 × 10−8) in the discovery set were used to create GRS in model 2. This

was because model 2 aimed to investigate the effectiveness of the simplified model. The Hosmer-

Lemeshow test was used to evaluate for goodness of fit for the logistic regression models.

Receiver-operating characteristic (ROC) curves were applied to assess the discriminatory

ability of the risk models. The area under the curve (AUC) and the 95% confidence intervals

(CI) were calculated for each model. DeLong’s test from the pROC R package was used to test

for statistically significant differences in AUCs obtained from different models [22].

To further assess the performance of the model, the probability (risk) cut-offs, sensitivity,

specificity, and the number of subject needed for screening to prevent one case of leprosy were

calculated in the discovery set. A positive likelihood ratio (PLR) above 5 was defined as having

moderate evidence for leprosy, whereas a negative likelihood ratio (NLR) below 0.2 was con-

sidered to provide moderate evidence to exclude leprosy [23]. GRS cut-off values were selected

based on the optimal PLR, NLR and the maximum sensitivity and specificity. To evaluate the

risk between individuals in our study, subjects were divided into three risk groups according

to optimal PLR and NLR at corresponding GRS cut-off values. Those with a predicted risk

higher than that given by a cut-off value were defined as high-risk individuals.

Accession numbers

RIPK2: Gene ID: 8767. TNFSF15: Gene ID:9966. LACC1: Gene ID:144811. NOD2: Gene

ID:64127. HLA-DRB1: Gene ID:3123. IL23R: Gene ID: 149233. IL12B: Gene ID:3593.

CCDC122: Gene ID:160857.

Results

Study subjects

After excluding subjects with any missing data, 2,144 people affected by leprosy and 2,671 con-

trols were analyzed in the discovery set, while 1,385 people affected by leprosy and 7,541 con-

tact individuals, which included 4,383 relatives (1,973 first-, 1,621 second-, 789 third-, degree

family members) and 3,158 unrelated contact individuals (2,031 spouse and 1,127 neighbors),

were finally used in the validation set. The baseline characteristics of these subjects are summa-

rized in Table 1. Since no statistically significant differences were observed for age or gender

between the people affected by leprosy and controls in the discovery set (P> 0.05), these two

parameters were not included in further model construction.

Association analysis

A total of 25 variants were successfully genotyped in the discovery and validation sets. All vari-

ants showed an association at P< 0.05 while the genetic risk effects between the current dis-

covery set and previous GWASs were in concordance with one another. Seven of the 25

variants reached genome-wide significance in the discovery set. These included rs42490 at the

RIPK2 locus (P = 2.33 × 10−13), rs6478109 at the TNFSF15 locus (P = 1.73 × 10−11), rs7995004

at the LACC1 locus (P = 7.15 × 10−28), rs9302752 at the NOD2 locus (P = 2.79 × 10−37), rs3762

318 at the IL23R locus (P = 1.90 × 10−16), rs6871626 at the IL12B locus (P = 1.01 × 10−10) and

rs9271100 at the HLA-DRB1 locus (P = 6.32 × 10−52). The characteristics and association

results of 25 variants are displayed in S1 Table.
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Construction and evaluation of the genetic risk model

We constructed two GRS prediction models using either all 25 variants (model 1) or the seven

GWAS-significant variants (model 2) and compared their performance in predicting leprosy.

Both models showed good fit following Hosmer-Lemeshow test evaluation (P > 0.05). The

GRS distribution of leprosy-control status for model 1 and 2 is displayed in Fig 1. The GRS val-

ues in people affected by leprosy and controls showed an approximately normal distribution,

but the people affected by leprosy tended to have a higher weighted risk score than controls.

The median GRS value of model 1 in the people affected by leprosy was 23.94 ± 3.57 and

20.67±3.59 in the controls, which was significantly different in favor of the people affected by

leprosy (P = 1.01× 10−152, odds ratio (OR) = 1.29, 95% CI: 1.27–1.32, Table 1). In model 2, the

median GRS values of the people affected by leprosy and controls were 14.86±3.26 and 12.32

±3.25, respectively (P = 1.66 × 10−122, OR = 1.27, 95% CI: 1.24–1.29). The ability of the two

models to discriminate between the leprosy and control individuals was compared by calculat-

ing the AUC. The AUC of model 1 was 0.743 (95% CI: 0.729–0.757) and 0.709 (95% CI: 0.695–

0.724) for model 2 (Fig 2), and the change between these two models is 0.034 (95% CI: 0.026–

0.042). Model 1 performed significantly better than model 2 in predicting the risk of develop-

ing leprosy (P = 2.12 × 10−15).

We set three GRS cut-off values according to the optimal PLRs and NLRs (PLR = 5.0 and

NLR = 0.2) and the maximum sensitivity and specificity (sensitivity 67.1%, specificity 69.70%,

PLR = 2.21). The corresponding sensitivity, specificity, positive predictive value (PPV), nega-

tive predictive value (NPV) and number of subjects needed to screen to prevent one case of

leprosy of the three cut-off values are listed in Table 2.

To evaluate the risk between subjects included in the discovery set, these individuals were

divided into three groups (high-, intermediate- and low-risk). Two cut-off values (18.17 and

28.06), corresponding to a NLR of 0.2 and PLR of 5.0, were selected as the threshold for low-

(4.94% of people affected by leprosy, 24.19% of controls) and high-risk groups (12.45% of peo-

ple affected by leprosy, 2.47% of controls). Subjects with a GRS between 18.17 and 28.06 were

treated as belonging to the intermediate group (82.60% of people affected by leprosy, 73.34%

of controls). When comparing the high- and low-risk discovery groups to one another, the

odds of developing leprosy was significantly higher in the subjects in the high-risk group than

those individuals in the low risk group (OR = 24.65, 95% CI: 17.57–34.60; Table 3).

Table 1. Characteristics GRS of study participants in discovery and validation sets.

Discovery set Validation set

People affected

by leprosy

(n = 2144)

Controls

(n = 2671)

People affected

by leprosy

(n = 1385)

contacts (n = 7541)

First degree family

members (n = 1973)

Second degree family

members (n = 1621)

Third degree family

members (n = 789)

Non-heredity-related

contacts (n = 3158)

Age in years

(mean ± SE)

66.87±8.42 63.07±9.98 72.52±9.28 55.33±14.6 37.57±19.14 46.23±22.22

58.52±14.29

Male sex (%) 81.2 79.1 78.05 66.85 64.16 71.61 32.71

GRS of 25 variants

(mean ± SE)

23.94 ± 3.57 20.67± 3.59 23.70±3.58 22.03±3.62 21.62±3.59 21.15±3.68 20.92±3.67

OR(95% CI)� NA 1.29

(1.27,1.32)

NA 1.14 (1.11,1.16) 1.18 (1.15,1.20) 1.22 (1.18,1.25) 1.23 (1.21,1.25)

P value� NA 1.01E-152 NA 5.44E-36 1.52E-48 1.47E-45 2.59E-98

GRS, weighted genetic risk score

NA, not applicable

�OR and P values were from the comparison between people affected by leprosy and controls/contact individuals in the discovery and validation sets, respectively

https://doi.org/10.1371/journal.pntd.0006789.t001
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The applicability of the genetic risk model in predicting leprosy

When applied to the validation set, model 1 displayed a discriminatory capability with an

AUC of 0.707 (95% CI: 0.691–0.723) between people affected by leprosy and unrelated contact

individuals. When comparing the median GRS values of people affected by leprosy to unre-

lated contact subjects, a significant difference was observed (P = 2.59 × 10−98, OR = 1.23, 95%

CI: 1.21–1.25). The GRS of genetically related and unrelated contact individuals were

Fig 1. GRS Distribution. Distributions of weighted risk allele score (GRS) by leprosy–control status for model 1 (A) and model 2

(B).

https://doi.org/10.1371/journal.pntd.0006789.g001
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significantly smaller than corresponding values observed in people affected by leprosy. The

GRS value was also found to be inversely proportional to the genetic relationship of the contact

individuals to those affected by leprosy (Table 1).

We further evaluated the effectiveness of the prediction by calculating the number of high-

risk subjects above the cut-off point in the validation set and how much effort would be saved

if the model could be used prior to tracing and performing prophylaxis on contact subjects

(Table 2). With a cut-off of 18.17 and above, 94.51% of people affected by leprosy could be

Fig 2. ROCs of the prediction models. ROC comparing model 1 with model 2.

https://doi.org/10.1371/journal.pntd.0006789.g002

Table 2. Genetic risk profile based on GRS in the model encompassing 25 variants.

GRS

cut-off

Sensitivity Specificity PLR NLR PPV NPV NNT "high risk" individuals number in validation set (rate)

People

affected by

leprosy

(n = 1,385)

All contacts

(n = 7,541)

First degree

family

members

(n = 1,973)

Second degree

family

members

(n = 1,621)

Third degree

family

members

(n = 789)

Non-heredity-

related

contacts

(n = 3,158)

18.17 95.10% 24.20% 1.25 0.20 6.34% 98.92% 21 1,309

(94.51%)

6,078

(80.60%)

1,682

(85.25%)

1,349

(83.22%)

617 (78.20%) 2,430

(76.95%)

22.38& 67.10% 69.70% 2.21 0.47 10.67% 97.52% 29 899 (64.9%) 2,964

(39.31%)

920 (46.6%) 685 (42.3%) 316 (40.1%) 1,043

(33.03%)

28.06 12.50% 97.50% 5.00 0.90 21.25% 95.38% 156 164 (11.84%) 291 (3.86%) 100 (5.07%) 60 (3.70%) 24 (3.04%) 107 (3.39%)

PLR, positive likelihood ratio; NLR, negative likelihood ratio

PPV, positive predictive value; NPV, negative predictive value

NNT, number needed to screen
&cut-off value corresponding to the maximum sensitivity and specificity

https://doi.org/10.1371/journal.pntd.0006789.t002
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successfully identified with a sensitivity of 95.1% and a NPV of 98.92%. At the expense of a low

specificity of 24.20%, 80.6% of the contact individuals would be classified as higher-risk con-

tact subjects for preventive treatment. At a cut-off of 28.06 and above, only 11.84% of people

affected by leprosy could be identified with a very limited sensitivity of 12.5%. At a higher spec-

ificity of 97.50% and a PPV of 21.25%, only 3.86% of contact subjects would be classified as

higher-risk contact individuals for preventive treatment. At a cut-off of 22.38 and above, with

the optimal sensitivity and specificity (67.1% and 69.7%, respectively), 64.9% of people affected

by leprosy could be detected, while 39.31% of contact subjects should be screened.

Discussion

By encompassing 25 variants in this study we developed a risk prediction model with good dis-

criminatory capability for leprosy based on a GRS. The model of prediction performed better

in the discovery set than in the validation set (AUCs = 0.743, and 0.707, respectively). This is

likely due to the fact that some samples in the discovery set were from the original GWAS data-

set, thus overestimating the performance due to over-fitting and the effect of winner’s curve.

When compared to the individuals in the high-risk (GRS> 28.06) and low-risk groups

(GRS� 18.17), the former group had a 24.65 times higher risk for leprosy than the latter. This

demonstrates the considerable value of risk stratification in leprosy. Furthermore, we displayed

the clinical effect of this model in the identification of contacts at a higher risk of developing

leprosy. Our findings highlight the potential of predicting disease risk from genetic variants

associated with leprosy.

Over the past decade, with the ongoing advances in identifying genetic variants for complex

diseases, genetic risk factors alone or in combination with clinical factors, have been widely

implemented to establish the risk prediction models. There are some profound examples, espe-

cially in inflammatory/immune diseases and tumors, which have acquired highly variable lev-

els of success in clinical practice. These include, but are not limited to, models for coeliac

disease, age-related macular degeneration, breast cancer, and coronary heart disease [24–27].

Due to limited genetic findings, only a few risk models are available for the prediction of infec-

tious diseases based on genetic variants and/or clinical factors. The predictive model for pul-

monary tuberculosis, which incorporates six clinical factors along with ten genetic variants in

a small set of 142 cases and 490 controls, has exhibited the highest AUC of 0.80 [28]. In com-

munity-acquired pneumonia and invasive aspergillosis models, AUC values did not reach 0.7

[29, 30]. Generally, a model with an AUC > 0.7 is considered useful in discriminating between

high- and low-risk individuals. When it comes to the prediction of leprosy risk, Zhang et al
(2016) was the first to report the contribution of the GRS derived from seven variants from

our first GWAS dataset with an AUC of 0.701. This previously-reported model showed a simi-

lar discrimination capacity to model 2, as developed in this study, based on the top seven vari-

ants (AUC = 0.709). When combining all 25 identified variants, the predictive capability of

Table 3. Comparison of risk in different groups of individuals in discovery set.

Group OR 95% CI P

High vs. low risk 24.65 17.57–34.60 3.61E-99

High vs. intermediate risk 4.47 3.39–5.90 2.79E-30

Intermediate vs. low risk 5.51 4.44–6.83 2.80E-64

High-risk group: GRS > 28.06

Intermediate risk group: 18.17 < GRS�28.06

Low risk group: GRS� 18.17

https://doi.org/10.1371/journal.pntd.0006789.t003
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our model was improved (AUC = 0.743). Although an increase of even 0.01 for the AUC

might still be suggestive of a meaningful improvement [31], the modest improvement

observed here indicates that variants beyond the seven included here have a limited contribu-

tion to disease risk.

As a millenary disease, interruption in the transmission of leprosy remains an important

concern. Tracing and post-exposure chemoprophylaxis targeted at individuals coming into con-

tact with leprosy has been carried out in some endemic countries with 35%–60% effectiveness

being reported [5]. Nevertheless, given that only a small group of contact subjects (1%) will

develop leprosy, attempts have been made to develop accurate risk profiles to narrow the popu-

lation required for screening. This has included the detection of antibodies to the M. leprae phe-

nolic glycolipid I (PGL-I) antigen among leprosy contact subjects. However, selection based on

PGL-I testing has limited sensitivity (< 40%) and would miss more than half of the potential

patients [32]. In Bangladesh, it was found that there is no association between anti-PGL-I Ab

levels and the onset of disease [33], which further restricts the application of the PGL-I test. In

terms of the potential clinical utility of the risk model constructed in this study, if the GRS cut-

off value of 22.38 with optimal sensitivity and specificity is adopted, one case could theoretically

be prevented by treating 29 contact individuals. In order to detect leprosy in 64.9% of the people

affected by leprosy, 39.31% higher-risk contact subjects should receive preventive treatment,

which appears to be cost-effective and easy to apply. Therefore, to some extent, the risk model

can be used to identify contact individuals at a higher risk of developing leprosy in order to

decrease the size of the population that should receive prophylactic treatment.

We acknowledge that there are several limitations to this study. Firstly, the genetic variants

were all identified in the Chinese population. Only a few of these, such as NOD2, and RIPK2 in

Indian and Brazil, respectively [34, 35], and RIPK2, CCDC122-LACC1, and NOD2 in Vietnam

[36], have been identified in other ethnic populations. Thus, findings from our study may not

be extended to other populations. Secondly, besides the genetic predisposition of the host,

non-genetic factors such as the exposure to M. leprae, overcrowding, poor socioeconomic con-

ditions, and gender have been reported to be important for the development of leprosy [37,

38]. These parameters were, however, not included in the present study due to the following

reasons: 1) information regarding individual’s exposure to the bacterium was missing; 2) all

leprosy and control individuals were matched according to their region, socioeconomic status

and environmental conditions in which they were living; and 3) no statistically significant dif-

ferences was found between the gender groups for either leprosy or control subjects. Finally,

the current study should be treated as a proof of concept to demonstrate that a genetic risk

model could help to identify higher-risk contact individuals. Disease incidence statistics were

not available for the contact subjects. As a result, we were unable to truly examine the discrimi-

natory power of these variants for predicting the incidence of leprosy.

In conclusion, we have constructed a risk prediction model with good discrimination

capacity using genetic variants associated with leprosy. This model may not only be used with

reasonable confidence in identifying higher-risk contact subjects, but may also assist physi-

cians in the control of leprosy by making decision to trace higher-risk contact individuals.

However, the practical application of such risk stratification to clinical utility is yet to be evalu-

ated. Further investigations should be done to determine the accuracy of the predictions in a

prospective study.
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