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Abstract

It has become clear that early life (including in utero exposures), is a key window of vulnerability 

where environmental exposures can alter developmental trajectories and initiate allergic disease 

development. However, recent evidence suggests that there may be additional windows of 

vulnerability to environmental exposures in the parental generation before conception, or even in 

previous generations. There is evidence suggesting that information of prior exposures can be 

transferred across generations, and experimental animal models suggest that such transmission 

may be conveyed through epigenetic mechanisms. While the molecular mechanisms of inter- and 

trans-generation epigenetic transmission have yet to be determined, the realisation that 

environment before conception may alter risks of allergic diseases, has profound implications for 

the development of public health interventions to prevent disease. Future research in both 

experimental models and in multigenerational human cohorts is needed to better understand the 

role of inter- and trans-generational effects in asthma and allergic disease. This will provide the 

knowledge basis for a new approach to efficient intervention strategies aimed at reducing the 

major public health challenge of these conditions.
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INTRODUCTION

Asthma and allergies have increased exponentially over recent decades of industrialization 

and urbanization. The impact and severity of these multifactorial diseases are still rising in 

many low and lower-middle income countries, particularly among younger age groups (1–

4), causing a substantial burden of disease from early childhood years. Despite major 

initiatives for prevention, no strategies have so far succeeded in substantially decreasing 

morbidity. Asthma and allergy now constitute major common chronic inflammatory diseases 

worldwide, and are recognized as a global public health concern (5).

Extensive literature has addressed a large number of factors shown to be associated with 

asthma and allergic disease (6, 7). The more traditional risk factors include environmental 

toxicants (810), indoor mould and dampness (11), outdoor air pollution (12, 13), occupation 

(14, 15), and dietary factors (16–18). Women’s hormonal/metabolic status (19, 20), climate 

factors (21, 22), tuberculosis (23), parasitic worms (24), and overall loss of protective factors 

such as reduced exposure to infectious agents and symbiotic microorganisms (25) are also of 

interest. Epidemiological research has increasingly acknowledged the importance of 

developmental origins, with early environmental exposures, being key determinants for later 

onset of allergic diseases (26–28). In particular, early life biodiversity (29–31) is believed to 

play a role in the causality of allergies. This focus on early life development has driven a 

search for new approaches starting during pregnancy and early childhood to prevent 

allergies. However, to date, no intervention has proved effective to substantially reduce or 

prevent asthma and allergies.

An emerging understanding of the pathophysiological mechanisms involved in development 

and persistence of allergic diseases, reveals complex gene-environment interactions, with 

many genes have been identified in which genetic variants are associated with allergic 

phenotype (32–35), and interact with multiple environmental factors. However it is clear that 

the inherited sequence variation associated with allergic disease across the genome identified 

to date only explains a part of the heritability of allergic disease (36).

The epigenome refers to the information in the genome, that lies “above” the DNA 

sequence, controls the expression of genes by mechnisms such as DNA methylation and 

histone modifications. Importantly, the epigenome is in part heritable through cell division 

(mitosis) and is fundamental to control tissue differentiation and cellular responsiveness. 

The epigenome of a cell or tissue is determined by both DNA sequence and cellular or 

organismal environmental exposures, as well as by stochasticity. Partially stable in the 

course of mitosis, epigenetic information establishes a memory (or signature) of past 

exposures particularly in developmental transitions. Thus, the epigenome integrates 

influences of the genome, development and environmental exposures, and is increasingly 

being recognised to play a key role in the pathophysiology of disease (37).
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Epigenetics has been defined by Ptashne in 2007 by three criteria: (I) a change in the activity 

of a gene that does not involve a mutation, (II) that is initiated by a signal, and (III) that can 

result in altered disease risk in the absence of the signal that initiated its change (38). 

Classically, four epigenetic mechanisms have been identified: (a) DNA methylation, (b) 

histone modification, (c) chromatin remodeling, and (d) small (21- to 26-nt) non-coding 

RNAs. There is ample evidence that DNA methylation (DNAm) fulfills all three criteria 

required to be considered as an epigenetic mechanism (39–41). Histone modifications fulfill 

the criteria as they have the potential to result from exogenous signals such as cigarette 

smoke, alter gene activity, and are maintained through mitosis (42–44). However, meiotic 

inheritance of histone modification has only been demonstrated in C. elegans (45). DNAm 

usually works hand in hand with histone modifications to activate or silence genes by 

influencing chromatin structure and it’s accessibility by transcription factors (46). 

MicroRNAs (miRNAs) are also controlled by exogenous factors and alter gene activity by 

either inhibiting translation or degrading messenger RNAs (mRNA) (47, 48). For instance, 

in humans, miRNAs have been demonstrated to be differentially expressed in current and 

never smokers, and to be related to particulate matter exposure (42, 49). Currently there is 

little evidence that environmentally induced miRNAs expression patterns can be inherited 

(50). However, since miRNAs are part of the genetic code, it is possible that DNAm may 

affect the activity of miRNAs and thus facilitate inheritance.

The role of epigenetic regulation in the aetiology of asthma and allergy is becoming 

increasingly evident (51–56). Further, elucidating the epigenetic mechanisms involved in 

inflammation and the immune response to allergens will provide better understanding of the 

pathophysiology of allergic disease and a mechanistic understanding of how genes and 

environment interact to determine disease susceptibility. While the majority of studies of the 

epigenetics of allergic disease have focused on identifying epigenetic marks that are present 

before disease development (e.g. in cord blood) or in individuals with disease, this approach 

cannot explain the missing heritability (the problem where single genetic variations are 

unable to explain for much of the heritability in diseases) in allergic disease described above. 

However, the recognition that epigenetic information may be transmitted across generations 

(i.e. through meiosis) provides a mechanism whereby epigenetics could contribute to 

heritability of disease, and explain observations of trans-generational effects of 

environmental exposure on risk of allergic disease (57). This review aims to summarize the 

evidence for trans- and inter-generational inheritance of allergic disease, and the role of 

epimutations and epigenetic inheritance in allergic disease.

Transgenerational versus intergenerational inheritance

It is important to note that while early-life, including in utero, exposure to environmental 

factors has been shown to represent a key susceptibility window for allergic disease (58), 

however, this does not represent true transgenerational inheritance where epigenetic 

information is passed between generations. As discussed by Arshad at al. (57), there are a 

number of ways in which cross-generational effects may be transmitted and result in 

apparent transmission of disease risk between generations. Genetic inheritance across 

generations can explain familial resemblance in phenotypes, but cannot account for 

alterations in disease risk as a result of environmental exposures of prior generations in the 
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absence of continued exposure. Shared familial environment or other cultural effects can 

also result in similarity of disease phenotypes between generations. In addition, there is the 

possibility of epigenetically mediated effects to explain transmission of disease or the effect 

of environmental factors across generations. With regard to epigenetic effects it is important 

to distinguish between intergenerational and transgenerational inheritance (Figure 1). 

Intergenerational effects occur when maternal environmental exposures (F0) have direct 

effects on the germ cells, or developing fetus (including the germ line of the fetus, leading to 

altered phenotype of the child (F1) and possibly grandchild (F2). On the paternal line 

environmental exposures of the father can have direct effects on the germ cells that will form 

child (F1). A true transgenerational effect, where epigenetic information is transmitted 

across generations, can only be proven if the effect of exposure is transmitted to the F2 (on 

the paternal line, or in a maternal line where exposure occurred only prior to conception), or 

F3 (on the maternal line when exposure occurs during pregnancy), and possibly future 

generations, in the absence of further environmental exposure or germline mutations (Figure 

1).

Others have suggested that transgenerational similarity in DNAm is attributable to genetic 

effects by methylation quantitative trait loci (methQTL) (59–61), i.e., single nucleotide 

polymorphisms (SNPs) that increase the susceptibility for the methylation of specific CpGs, 

such as those observed at the 17q21 asthma susceptibilty locus where there is strong 

association between SNPs and CpG sites related to gene expression, illustrating the complex 

relationship between sequence variation, CpG methylation and gene expression (62, 63). 

Another mechanism whereby genetic effects can cause transgenerational similarity in the 

epigenome is Metastable epialleles. These are alleles that are variably expressed in 

genetically identical individuals due to epigenetic modifications established during early 

development and are thought to be particularly vulnerable to environmental influences (64), 

such as the Agouti locus in mice (65). A genetic contribution is also supported by findings 

that methylation and gene expression differences were smaller in monozygotic compared to 

dizygotic twins (66, 67). Investigation of monozygotic twins have been considered to offer a 

human analog of inbred animal studies (68).

Evidence for inter- and trans-generational inheritance

A number of studies have shown that environmental exposures can lead to transgenerational 

inheritance of phenotypes in animal models. For example, in Drosophila, maternal high 

sugar caloric intake has been found to affect body composition and metabolism of at least 

two generations (69). In another study, exposures of mothers in early life (the larval period) 

to a transient high caloric diet was found to result in significant difference in offspring 

development and metabolism, and this also extended to the next generation (70). In C. 
elegans, it has been found that the manipulation of H3K4me3 chromatin modifiers can 

induce an epigenetic memory of longevity in subsequent generations (45) and the effect of 

starvation-induced developmental arrest can inherited through at least three generations (71).

Evidence for transgenerational effects of environmental exposures have also been found in 

vertebrate models. For example, exposure of zebrafish embryos to the environmental toxin 

benzo[a]pyrene has been found leading to neurobehavioral and physiological deficits in the 
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F2 generation (72). In mammals, it has been demonstrated that early life traumatic stress in 

the paternal line resulted in altered microRNA (miRNA) expression, and behavioural and 

metabolic responses in the progeny (73).

Exploring potential trans- and intergenerational epigenetic inheritance in multi-generational 

human studies is difficult due to the long life-cycle of humans, lack of data accuracy (often 

using participant recall of their own and previous generations’ exposures and outcomes), 

difficulty in controlling for confounding factors, and ethical issues (74). None-the-less, 

observational studies have suggested that transgenerational effects may exist that cannot 

easily be attributed to cultural and/or genetic inheritance (75). For example, a study of the 

Överkalix population in northern Sweden suggested paternal transgenerational effects in 

humans. In these studies, longevity and specific causes of death were linked to detailed 

historical records of harvests and food supply experienced by previous generations in early 

life (76, 77). Studies of the Dutch famine of 194445 have also revealed that offspring born 

during the famine were smaller compared to those born the year before the famine, and that 

they had increased risk of metabolic and cardiovascular disease in adulthood. Although 

differences in DNA methylation have been found in adult female offspring exposed to the 

famine in utero, and that these offspring effects persist for two generations, it is not 

established that these differences are present in germ cells and are truly reflecting an 

epigenetic transgenerational inheritance (78).

Molecular mechanisms of inter- and trans-generational inheritance

The germ cells undergo extensive epigenetic reprogramming, from their earliest presence in 

the embryo until the mature reproductive cells, and the best described reprogramming 

phases occur in early embryonic development and in the pre-puberty period (79). The germ 

cells are believed to be more susceptible to environmental influences during these 

reprogramming phases. However the precise molecular mechanisms underlying 

transgenerational inheritance still remain unclear. It is hypothesized that transmission of 

information occurs through epigenetic variation in sperm, oocytes, or both sets of gametes. 

There are several mechanisms, such as DNAm, histone modification, or changes in non-

coding RNA (ncRNA) that could play an important role in transmitting epigenetic 

information from one generation to the next (79–81). Due to it’s stability in stored DNA 

samples and comparative ease of measurement, DNA methylation has been the most studied 

epigenetic mechanism in human studies of inter- and 225 transgenerational effects. 

However, DNAm undergoes two rounds of erasure, in the formation of gametes and shortly 

after fertilisation, and it is unclear whether, or how, memory of CpG site methylation is 

maintained through meiosis. None-the-less, it has been found that the sperm epigenome may 

be altered by chemical compounds, such as the endocrine disruptor vinclozolin, and result in 

transgenerational inheritance via DNAm of induced adult-onset disease to the F3 generation 

(82). In Agouti mice, methyl donor supplementation during pregnancy altered the trajectory 

of obesity across generations due to altered expression of the agouti gene resulting from 

changes in DNAm in the offspring (83). Histone modification is another potential route for 

transgenerational inheritance. C. elegans, though they do not exhibit DNAm like mammals, 

can impart heritable epigenetic changes, generated from histone modification, to subsequent 

generations (45). Another possible mechanism for conveying epigenetic information 
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between generations is ncRNAs, such as microRNA (miRNA), small interfering RNA 

(siRNA), and piwi-interacting RNA (piRNA), which can potentially act as mediators of 

environmentally induced transgenerational inheritance. These ncRNAs show enhancer-like 

function and can control chromatin structure. Gapp et al. demonstrated that traumatic stress 

in early life altered mouse miRNA expression, and behavioural and metabolic responses in 

the progeny. The phenotype of the progeny could be recapitulated by injection of sperm 

miRNAs into fertilised oocytes (73).

Epigenetic transmission across generations in allergic disease

Evidence for transmission across generations in allergic disease in animal models

Several intergenerational murine models provide evidence that preconception allergen 

sensitization impacts on the development of antigen-specific (T and B cell) immune 

responses in offspring, predisposing to development of asthma and atopy (84–86). 

Mechanisms involved in regulation of allergic response have been associated with epigenetic 

changes of the IL-4 gene promoter (86) as well as altered DNAm in dendritic cells (87).

A number of studies have demonstrated adverse effects of maternal smoking and nicotine 

exposure on offspring pulmonary function. In utero smoking has been demonstrated to affect 

lung growth and maturation (88), causing alveolarization defects and decreased expression 

of retinoic acid signalling pathway elements (89), as well as induced airway remodelling and 

lung structure changes in mice offspring (90). Prenatal nicotine exposure has been shown to 

decrease forced expiratory flow rates mediated through α7 nicotinic acetylcholine receptors 

(nAChRs) (91), and to affect global lung methylation levels and down-regulate PPARy 

expression in the progeny (92).

Maternal particle exposure has also been linked to adverse effects on offspring’s lung health. 

Murine models have found associations between diesel exhaust particles (DEP), and 

increased asthma susceptibility in F1 pups, with distinct methylation changes located to 

promoter regions of genes related to lung development, interleukin (IL)-4 and interferon 

(IFN)-y signaling (93–95), as well as an activation of aryl hydrocarbon receptor (AhR) and 

oxidative stress-regulated genes (96). Maternal exposure to specific phthalates (mono-n-

butyl phthalate, a metabolite of butyl benzyl phthalate (BBP)), has been shown to increase 

the risk for persistent airway inflammation in offspring and to induce aberrant DNAm in 

genes involved in Th2 differentiation (97).

Murine models have demonstrated that maternal exposure to microbial components and 

supplementation of probiotic bacteria can modulate the immune response in the offspring by 

suppressing allergic sensitization and airway inflammation in the F1 generation (98–100). It 

has also been shown that maternal glucocorticoid-induced stress during pregnancy can 

increase airway inflammation and susceptibility to allergy in the offspring (101).

Multigenerational murine models are emerging, and effects of phthalate exposures through 

enhanced eosinophilic airway inflammation have been reported to persist in the F2 

generation (97). It has been shown that exposure to fungi of the F0 generation was associated 

with decreased immunoglobulin E and airway eosinophilia as well as altered methylation in 
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genes regulating T helper cells in third-generation (F2) mice (102). In a recent study by 

Gregory et al., elevated asthma risk following intrauterine exposure to particulate air 

pollution was identified up to the F3 generation (93). This model suggests a 

transgenerational effect on asthma susceptibility from exposure to environmental particles. 

The transgenerational murine model developed by Rehan et al. shows that nicotine exposure 

of pregnant rats is associated with increased airway resistance in F3 offspring when 

challenged with metacholine (103).

Evidence for transmission across generations in allergic disease in humans

The long life-cycle of humans makes investigating epigenetic transmission across 

generations in human a challenge. However, recently several studies with various solutions 

as to obtaining multi-generation data have been published (Table 1). In different cohorts, 

higher asthma risk in persons whose maternal grandmother smoked has been found, even if 

the mother did not smoke (104–109). In the North European RHINE study, higher asthma 

risk was found in persons whose paternal grandmother smoked (110). Further, this study 

found that father’s smoking before age 15 years was associated with particularly high 

asthma risk in future offspring. This finding was replicated in an analysis of two generations 

in the RHINESSA cohort, using advanced statistical modelling and also accounting for 

unmeasured confounders. Ongoing analyses of RHINESSA give supportive evidence for a 

role of father’s early puberty exposure in offspring health; showing lower lung function in 

offspring whose father smoked before age 15 (111), differential DNAm related to father’s 

smoking (112), and higher asthma risk in offspring of fathers that became overweight before 

voice break (113). In an analysis of the ECRHS (European Community Respiratory Health 

Survey) cohort, in which asthmatic/allergic disease status was measured in the parent 

generation at three time points over twenty years and offspring allergies reported by the 

parents at the third study wave, the authors found stronger associations of offspring allergies 

with parental asthmatic and allergic disease activity as measured before conception as 

compared to parental status after birth (114). This indicates that disease activity might 

induce changes that are transmissible to the next generation, rather than a role of shared 

environment, this has been termed “induced epigenetic transmission” (57). Finally, a study 

of helminths and allergies in two generations in Norway found that fathers’ Toxocara 

exposure was associated with daughters’ allergies, and mother’s Toxocara with sons’ 

allergies (24). While parental exposure was not measured preconception, the sex-specific 

pattern might indicate a role for epigenetic transmission given parent of origin effects are 

seen for both genetic variation and epigenetic variation (115, 116), and risk of asthma in 

offspring from parental asthma has also been shown to be related to the sex of the affected 

parent (117).

While maternal diet is increasingly recognised as a risk factor for offspring asthma and 

atopy (118), there is no current evidence to suggest that inter- or transgenerational effects 

occur in allergic disease. However maternal dietary factors such as Vitamin D and Fatty 

Acids that have been associated with asthma risk have also been shown to be associated with 

DNA Methylation changes at birth in offspring (119, 120). Further research is needed to 

understand whether these methylation changes lie on the casual pathway between maternal 

diet and offspring allergic phenotype.
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Methodology for studying epigenetic transmission across generations in allergic disease

Several approaches have been undertaken to explore transgenerational epigenetic inheritance 

in multi-generational human studies, including recruiting the offspring of birth cohort 

participants who are now reaching reproductive age, recruiting offspring / grandoffspring of 

adult cohorts, and use of offspring recall and/or registry data to determine phenotype and/or 

exposures in parental generations. As mentioned before, all these approaches come with 

advantages and disadvantages, with compromises between prospective data collection and 

ease / length of cohort recruitment required. However there are a number of 

multigenerational cohorts available that are already beginning to allow the assessment of 

inter- and transgenerational effects in allergic disease (57). While most studies have used 

regression models to assess the effects of prior exposure on outcome, other approaches such 

as logistic regression analyses with generalized estimating equations and multilevel 

mediation models within a hierarchical framework (104) are being ustilised to account for 

familial clustering.

Several statistical approaches have been used to evaluate epigenetic inheritance of 

methylation in multigenerational cohorts. Correlation is one of the most used methods (121, 

122). Strong positive correlation between parent-offspring pairs indicate a higher level of 

similarity of DNAm between generations. Some studies choose weighted correlation instead 

of Pearson correlation to minimize the variance of the correlation estimate (123). However, 

observed similarity of DNAm could also be due to the fact that parent-offspring share the 

same environmental factors. To distinguish environmental factors from inheritance, narrow 

sense heritability is defined as h2 = var A
var P , where Var(A) is the variance due to the average 

effects of inheritance and Var(P) is the total variance. Two major approaches, path analysis 

model (PAM) and variance of component model (VOM), are generally used to estimate 

heritability (124). The component of variance can be obtained by ANOVA or fitting linear 

mixed models (123, 125). The linear mixed model is more flexible in adjusting for 

covariates, accounting different types of study designs, and explicity addressing 

environmental variation (123, 126). In addition to studying epigenetic inheritance at level of 

individual CpGs, transgenerational inheritance can also be evaluated for groups of CpGs that 

share similar pattern of DNAm transmission (127). This approach, which incorporates 

unsupervised cluster into beta regression, was recently developed by Han et al. (127), and 

was able to identify sets of CpGs that have same/different inheritance patterns between 

mother-offspring and father-offspring.

Conclusions

In conclusion, there is inceasing evidence from both invertebrate and vertebrate expirmental 

models that transmission of epigenetic information across generations occurs. Furthermore, 

experimental animal models also suggest this can lead to altered lung and immune 

development in response to environmental exposures in previous generations. In humans, 

studies based on historical data suggest a role for transgenerational inheritance in general, 

and analyses of human multi-generation data suggest intergenerational environmental effects 

in asthma and allergies. Unmeasured confounding is a matter of concern in non-

experimental studies in which the exposure is not randomized (128). The only human study 
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addressing unmeasured confounding in this context found that this error was very small 

(104), still human studies will need to be informed and complemented by careful studies in 

experimental models where duration of exposures can be tightly controlled to determine 

precise windows of vulnerability and randomised to avoid confounding.

Careful study design will be needed to show that the changes to the epigenome induced by 

environmental effects actually are passed across generations in humans, and the underlying 

epigenetic mechanisms determined. Multi-generational cohort studies based on national and 

international collaboration should be established to prospectively and with a clear time order 

address the question on whether inter- and transgenerational inheritance are contributing to 

the risk of allergic diseases, and maximium use should be made of registry data, which can 

provide retrospective validated information for some generations, shortening the time frame 

necessary to study effects over multiple decades.

Another important area for future research is the issue of tissue specificity of DNA 

methylation. In epigenetic studies, unlike studies of DNA sequence variation, the cellular 

source of DNA samples is an essential consideration in study design given the extent of 

tissue specific methylation (129). The majority of studies of the epigenetics of allergic 

disease have utilized peripheral blood leukocytes due to ease of sampling and availability of 

stored samples from historical cohorts, though both nasal brushings (130, 131) and saliva 

(132) have also been used. Recently a comparison of blood, buccal, nasal and bronchial 

epithelial tissue methylation profiles has demonstrated that nasal epithelium represents the 

best proxy for bronchial epithelial cells (133). However, with respect to inter- and 

transgenerational effects, it is likely that the effects on the epigenome of exposures to the 

developing embryo, or transmitted through meiosis, may manifest in multiple tissues, though 

remains to be established.

If it is firmly established that inter- and transgenerational effects are of importance in asthma 

and allergic disease, the potential practical consequences for public health policies are 

considerable. What are the time windows in which health promotion would be most 

efficient? A perspective on asthma and allergies might provide the knowledge basis for a 

new approach to efficient intervention strategies aimed at reducing the major public health 

challenge of asthma and allergies.

Acknowledgments:

The authors want to thank the members of the Isle of Wight, ALEC and RHINESSA research teams who have 
contributed to the study of multigenerational responses in allergy and asthma. JWH and CS are members of inVIVO 
Planetary Health, a Group of the Worldwide Universities Network (WUN)

W. Karmaus receives grant support from the University of Memphis and NIH. J. W. Holloway receives grant 
support from the MRC UK, NIH, and European Union. C. Svanes receives grant support from the Western Norway 
Health Authorities and European Union.

Funding: This study was supported by the National Institutes of Health, grants R01AI091905 and R01HL132321 
(PI: Karmaus), and R01AI121226 (MPI: Zhang and Holloway), the Western Norway Health Authorities grant 
912011 and the European Union (Horizon 2020, GA-633212) Ageing Lungs in European Cohorts study.

Knudsen et al. Page 9

J Allergy Clin Immunol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abbreviations:
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miRNA (microRNA)

siRNA (small interfering RNA)
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Figure 1: 
Principles of inter- and transgenerational epigenetic inheritance. (A) If a pregnant woman 

(F0) is exposed to an environmental stressor, her son/daughter (F1, green) and his/her germ 

cells that will form F2 (yellow) are also directly exposed and this may result in 

intergenerational effects. The third generation (F3, blue) is the 1st generation that could 

represent transgenerational epigenetic inheritance. (B) If a man or a woman (F0) and their 
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germ cells to F1 (yellow) is directly exposed to an enironmental stressor, the F2 offspring 

(blue) is the 1st generation that could represent transgenerational epigenetic inheritance.
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