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Abstract

In radiation treatment planning, the esophagus is an important organ-at-risk that should be spared 

in patients with head and neck cancer or thoracic cancer who undergo intensity-modulated 

radiation therapy. However, automatic segmentation of the esophagus from CT scans is extremely 

challenging because of the structure’s inconsistent intensity, low contrast against the surrounding 

tissues, complex and variable shape and location, and random air bubbles. The goal of this study is 

to develop an online atlas selection approach to choose a subset of optimal atlases for multi-atlas 

segmentation to delineate esophagus automatically. We performed atlas selection in 2 phases. In 

the first phase, we used the correlation coefficient of the image content in a cubic region between 

each atlas and the new image to evaluate their similarity and to rank the atlases in an atlas pool. A 

subset of atlases based on this ranking was selected, and deformable image registration was 

performed to generate deformed contours and deformed images in the new image space. In the 

second phase of atlas selection, we used Kullback-Leibler divergence to measure the similarity of 

local-intensity histograms between the new image and each of the deformed images, and the 

measurements were used to rank the previously selected atlases. Deformed contours were 

overlapped sequentially, from the most to the least similar, and the overlap ratio was examined. We 

further identified a subset of optimal atlases by analyzing the variation of the overlap ratio versus 

the number of atlases. The deformed contours from these optimal atlases were fused together 

using a modified Simultaneous Truth and Performance Level Estimation algorithm to produce the 

final segmentation. The approach was validated with promising results using both internal datasets 

(21 head and neck cancer patients and 15 thoracic cancer patients) and external datasets (30 

thoracic patients).
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1. Introduction

The esophagus is an important organ-at-risk that should be spared in patients with head and 

neck cancer or thoracic cancer who undergo intensity-modulated radiation therapy (IMRT). 

Manual delineation of the esophagus is labor intensive and frequently subject to intra- or 

inter-observer variability (Geets et al., 2005; Collier et al., 2003; Yang et al., 2014). In 

thoracic cancer patients, the contours of the esophagus should be drawn from the inferior 

edge of the cricoid cartilage to the esophagogastric junction, accounting for about 90 slices 

of CT images with 2.5-mm slice spacing. Because of the low contrast of the esophagus 

against the surrounding tissues, especially in the vicinity of the heart, it is very difficult to 

correctly identify the esophageal boundary.

Several attempts have been made to automate the contouring process for the esophagus. 

However, automatic segmentation of the esophagus, unlike most other structures, is 

extremely challenging. The esophagus is a long thin structure with an inconsistent 

appearance and low contrast against surrounding tissues on CT images. It also frequently 

contains random air bubbles. For these reasons, intensity-based segmentation approaches 

may not be appropriate for delineating this structure automatically. In addition, because the 

esophagus is not rigid, its shape and location in the body can vary considerably from day to 

day and person to person, making it difficult to use model-based segmentation approaches. 

Atlas-based segmentation approaches may also be challenging because of substantial inter-

person variability.

A few studies have been devoted to the automatic segmentation of the esophagus and most 

of them used either shape or appearance model to guide the segmentation (Rousson et al., 
2006; Fieselmann et al., 2008a; Feulner et al., 2011; Kurugol et al., 2011; Grosgeorge et al., 
2013; Kurugol et al., 2010; Feulner et al., 2009). However, training the models is difficult, 

and their robustness is unclear. Rousson et al. (Rousson et al., 2006) used a 2D ellipse-

shaped model with a centerline of the esophagus to segment the esophagus on each slice. A 

regularization term was imposed to force a smooth transition between slices. However, 

esophageal centerline detection relied on the neighboring left atrium structure, which limited 

the segmentation to the slices that included the left atrium. Feulner et al. (Feulner et al., 
2011) used a discriminative model of the appearance to detect the esophagus in a 2D slice 

and a hidden Markov model to smooth slice-to-slice transitions. Their approach required a 

large amount of training data to handle the variable appearance of the esophagus as a result 

of the presence of air pockets or contrast agent. Kurugol et al. (Kurugol et al., 2010) 

proposed to initialize a model-based 3D level set esophagus segmentation method with a 

principal curve-tracing algorithm to detect the esophagus centerline. A shape model was 

then incorporated into the 3D level set algorithm to locate the esophageal wall. This 

approach also required a large amount of training datasets to address appearance variations 

and complicated shape representation.
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To the best of our knowledge, no atlas-based segmentation approach has been used for 

esophagus segmentation, possibly because of the substantial inter-subject variability. 

However, recently, multi-atlas segmentation has been shown to minimize the effects of 

variability and improve segmentation accuracy, especially for low-contrast anatomy such as 

the brachial plexus (Chen et al., 2012; Klein et al., 2008; Yang et al., 2013; Sjoberg et al., 
2013; Kirisli et al., 2010; Isgum et al., 2009). Multi-atlas segmentation exploits contoured 

atlas data for the auto-segmentation of new patient images. Deformable image registration is 

a key to mapping contours from the atlases to new patients. The individual deformed 

contours from multiple atlases are then effectively combined to produce the best 

approximation of the true segmentation through various fusion approaches (Warfield et al., 
2004; Langerak et al., 2010; Sabuncu et al., 2010; Ramus and Malandain, 2010).

Although multi-atlas segmentation can reduce inter-subject variability, a few bad atlases may 

still greatly adversely affect segmentation accuracy. In general, a fixed set of atlases might 

not be able to achieve optimal segmentation results. To improve segmentation accuracy, it is 

necessary to identify a subset of optimal atlas candidates that are most similar to the new 

image for multi-atlas segmentation. Unlike other atlas selection approaches (Aljabar et al., 
2009; Shen et al., 2011; Wu et al., 2007; Rohlfing et al., 2004; Yang et al., 2010; Langerak et 
al., 2011), our selection process is completed on the fly when a new image is given. Online 

atlas selection has not been widely studied. Some offline atlas selection strategies require 

deformable registration (Rohlfing et al., 2004; Wu et al., 2007; Shen et al., 2011). This is 

impractical for online selection from a large database because of the time required for 

deformable registration. In addition, offline selection strategy may not render optimal atlases 

for a given new image.

In this study, we developed a 2-phase online atlas selection approach to rank and select a 

subset of optimal atlas candidates, in terms of local anatomical similarity, for multi-atlas 

segmentation of the esophagus on CT scans. In the first phase of atlas selection, the 

correlation coefficient of the image content in a local region between the atlas and the new 

image was used to evaluate their similarities and to rank the atlases. A subset of atlases 

based on this ranking was selected, and deformable image registration was performed to 

generate deformed contours and deformed images in the new image space. In the second 

phase of atlas selection, we used the Kullback-Leibler divergence to measure the similarity 

of local-intensity histograms between the new image and each deformed image; the 

measurements were used to rank the previously selected atlases. Deformed contours from 

the most to the least similar were added sequentially, and the overlap ratio was examined. 

We further identified a subset of optimal atlas candidates by analyzing the variation of the 

overlap ratio with the number of atlases. The deformed contours from these optimal atlases 

were fused to produce the final segmentation. This approach was applied to esophagus 

segmentation for treatment planning in both head and neck and thoracic cancer patients 

undergoing radiation treatment.

Yang et al. Page 3

Phys Med Biol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Methods

2.1. Patient data

This study was approved by the institutional review board of The University of Texas MD 

Anderson Cancer Center. Two sets of patient data were retrospectively selected from our 

institution for this study. The first set included 21 patients with stage IV head and neck 

squamous cell carcinoma who had been treated with IMRT. The planning CT images of 

these patients had been acquired and the cervical esophagus had been contoured from the 

inferior edge of the cricoid cartilage down to the level of the manubrium by an experienced 

head and neck radiation oncologist. The second set included 15 stage II-IIIB non-small cell 

lung cancer patients who had been treated with definitive concurrent chemoradiation. These 

patients had undergone 4DCT for radiation treatment planning; end-of-exhalation phase CT 

images were used in this study. The esophageal contour had been drawn from the inferior 

edge of the cricoid cartilage to the esophagogastric junction by an experienced thoracic 

radiation oncologist. All CT images used in this study had an in-slice resolution of 1.0 mm 

and a slice spacing of 2.5 mm.

In addition, 30 sets of 3D CT images used in an esophagus segmentation challenge provided 

by Varian Medical Systems were used in this study for further validation. These images 

represent horizontal slices (relative to a standing person) at varying inter-slice spacing 

through the esophageal region of the human body. Of the 30 datasets, spacing between slices 

ranges from 0.7 mm to 3 mm and the number of image slices ranges from 103 to 559. In-

slice resolution for all of the images is within 1 mm (range: 0.57 mm - 0.96 mm). These 

images include both feet-first supine and head-first supine scans. Some images were taken 

using contrast agents but some were not. Experts drew the esophageal contours on all of the 

30 datasets.

2.2. Online atlas selection for multi-atlas segmentation

An overall framework of our online atlas selection approach for esophagus segmentation is 

illustrated in Figure 1. In brief, we first performed rigid alignment between all atlas images 

and the test image to define a small local region; a first-phase of atlas selection was 

performed on the basis of the similarity measurement in the local region. In the first phase of 

atlas selection, we chose 12 or fewer atlases and performed deformable image registration 

between the atlases and the test image to generate deformed contours and images. A second 

phase of atlas selection was performed by measuring the similarity of the deformed image 

and the test image in a region of interest (ROI), as defined by the deformed contours. The 

deformed contours of selected optimal atlases were then fused together to produce the final 

segmentation. A detailed description of our approach follows.

2.2.1. First phase of atlas selection—The first phase of atlas selection filters out bad 

atlases and limits the number of atlases for subsequent deformable image registration. This 

prescreening step avoids wasting time on the deformable registration of bad atlases and 

reduces the adverse impact of bad atlases on contour fusion. Rigid alignment is a 

prerequisite for this step. We performed rigid alignment between each atlas and the test 

image by minimizing the mean square errors of two 2D images generated from the 3D CT 
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images, which were projected in sagittal and coronal views to obtain two 2D images. The 

rigid alignments were performed separately on these two 2D images using a gradient decent 

optimizer, and then further optimized with golden section search and parabolic interpolation 

(Forsythe et al., 1976) to find the optimal translations in all three directions that gave the 

minimal mean square error of the two registered 2D images. On the other hand, a landmark 

point was predefined in each atlas to record the relative shift between two atlases. In head 

and neck cancer patients, the landmark point was chosen in the cord of the superior end of 

C2 vertebrate; while in thoracic cancer patients, it was chosen in the cord of the slice where 

the bottom of the aortic arch is located, as shown in Figure 2. In the automated rigid 

alignment, the rigid shift between the test image and the atlas of minimal mean square errors 

was recorded. The rigid shift of the test image and each of other atlases was derived from the 

recorded rigid shift and the relative shift between atlases.

The similarity of 2 images was measured in a small cubic region using the correlation 

coefficient of the image-intensity values in the region. This cubic region is determined as 

follows: after rigid alignment, all atlas contours were transformed to the test image space. 

The bounding box of all transformed contours was determined and formed a cubic region, 

which was transformed back to each atlas space to obtain the local region for each atlas. The 

correlation coefficient between the test image and the atlas image in the corresponding cubic 

regions was calculated for each atlas. Twelve atlases of the largest correlation coefficient 

values were selected. Our previous study (Zhou et al., 2017) found that the contour fusion 

might not benefit from more than 12 atlases; therefore, we chose no more than 12 atlases for 

the next step to perform deformable registration. We removed those with a correlation 

coefficient less than 0.2 if the total number of atlases was not less than 6.

2.2.2. Deformable image registration—We used an intensity-based approach for the 

CT-to-CT deformable registration because Hounsfield units of CT images are calibrated to 

the attenuation coefficient of water so that the intensity value is consistent among images. 

Specifically, we used a dual-force Demons algorithm (Wang et al., 2005) for the deformable 

registration between the test and atlas images. Before performing the deformable 

registration, we performed histogram equalization to match the contrast of the 2 images. The 

histogram equalization was performed locally by separating the images into small blocks. A 

multiresolution scheme was used to accelerate the registration and improve the robustness of 

the registration. The parameter settings for the deformable registration are specified in Table 

1. Refer to Wang et al. (Wang et al., 2005) for details about this deformable registration 

algorithm.

The deformable registration produced a deformation vector field (DVF) pointing from the 

atlas image to the test image. This DVF was used to deform the atlas image, generating a 

deformed image in the test image space that was used for the second phase of atlas selection. 

The DVF was also used to deform the atlas contours to the test image space. To achieve 

accurate contour deformation, the 2D slice stacks of atlas contours were first converted to a 

closed triangular mesh (Yang et al., 2010). The DVF was interpolated to obtain a 

deformation vector at each vertex of the triangular mesh and the vertex was moved along the 

deformation vector to the new location to complete the deformation. After the deformation, 

the triangular mesh was converted back to a group of slice stacks of contours by cutting 
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through the mesh using an axial plane, slice by slice, resulting to the deformed contours in 

the test image space. This process is similar to the work presented in (Lu et al., 2006).

2.2.3. Second phase of atlas selection—The second phase of atlas selection was 

performed on the basis of the aforementioned deformed images and contours. First, the 

union of the deformed contours was expanded by 1 mm using morphological dilation to 

define an irregular local region. A local-intensity histogram was created on the basis of the 

voxels in the local region for the test image and deformed image, respectively, as shown in 

Figure 3. This intensity histogram was created with 64 bins. We used the symmetric 

Kullback-Leibler (KL) divergence to evaluate the similarity between the 2 histograms. 

Letting P(i) denote the intensity histogram of the deformed image, where i = 1, 2, …, 64 
indices the histogram bins, and letting Q(i) denote the intensity histogram of the test image, 

the symmetric KL divergence can be calculated as:

DKL(P, Q) = 1
2 ∑

i
p(i)ln P(i)

Q(i) + ∑
i

Q(i)ln Q(i)
P(i) . (1)

The KL divergence was measured for each atlas selected in phase one and the measured KL 

divergence values were used to rank the atlases from the most similar to the least.

After ranking the atlases, we examined the overlap ratio of the deformed contours by 

sequentially overlapping atlases from the most to the least similar. The Jaccard coefficient 

was used to compute the overlap ratio. Letting Ai denote the volume of the ith deformed 

contour for i = 1, 2,…, N, with N being the number of atlases selected in phase one, the 

Jaccard coefficient for a number of n overlapped deformed contours is defined as:

Jaccard(n) =
∩i = 1

n Ai

∪i = 1
n Ai

, n = 2, 3, …, N . (2)

The values of the overlap ratio were plotted versus the number of atlases, as shown in Figure 

4. We analyzed the overlap ratio curve to further determine a subset of optimal atlases. The 

fundamental assumption of atlas selection in this step is that the deformed contours from 

different atlases should be consistent for the later contour fusion. If a less similar atlas 

produces a deformed contour that is largely off from the contours produced by more similar 

atlases, this deformed contour should not be used for contour fusion. On the basis of this 

principle, we developed the following atlas selection rules:

1) If Jaccard(n0)≥0.5, select at least a number of n0 top-ranked atlases.

2) If Jaccard(n)<0.2 for any n > n1, discard all atlases ranked beyond n1.

3) Detect continuous steep slopes of the overlap ratio curve. If 

a)atan[Jaccard(n2-1)-Jaccard(n2)]>30° , b) atan[Jaccard(n2)-Jaccard(n2+1)]>30°, 

and c)Jaccard(n2+1)<0.3, discard all atlases ranked beyond n2
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4) Keep at least 5 atlases for contour fusion. This rule overrides the above rules.

Using these rules, a subset of optimal atlases was further identified from the atlases selected 

in phase one. In the example shown in Figure 4, our analysis selected 5 optimal atlases for 

contour fusion. The small overlap ratio values beyond the rank of 5 imply that those atlases 

are not consistent with the most similar atlas. This inconsistency can possibly deteriorate the 

contour fusion process.

2.2.4. Contour fusion—The deformed contours of the selected optimal atlases were 

fused to produce the final segmentation. The contour fusion process took advantage of the 

Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm (Warfield et al., 
2004). The STAPLE algorithm is based on the maximum likelihood estimates of the true 

positive and false negative of individual segmentations. It estimated the best agreement 

among individual segmentations and produced a fusion contour that was the expected truth 

of the segmentation. The fusion process potentially allows us to minimize variations among 

segmentations obtained from different atlases and random errors in deformable image 

registration. However, the STAPLE algorithm does not take into account the intensity 

information of the tissue to be segmented. Its performance solely depends on the individual 

segmentation performance. To address this issue, we created a tissue appearance model 

(TAM) and integrated it into the STAPLE fusion process. Specifically, the STAPLE 

algorithm requires providing the prior probability of true segmentation Ti for each voxel i 
when initializing the algorithm. In our implementation, the prior probability was initialized 

as

f (T i = 1) = (1 − w)R(i) + wS(i), (3)

where Ti = 1 means voxel i belonging to the structure, R(i) is the probability of voxel i 
belonging to the structure determined by individual segmentations, and S(i) is the 

probability of voxel i belonging to the structure determined by a TAM. The parameter w is 

the weight to balance these 2 terms. The R(i) is defined as

R(i) =
Σ jDij
Σ j1

, (4)

where Dij denotes the jth segmentation at voxel i that does (Dij = 1) or does not belong to the 

structure (Dij = 0). The TAM is a Gaussian model estimated from the test image as

S(i) = 1
Z exp −

(I(i) − μp)2

σp
2 , (5)

where I(i) is the intensity value of voxel i, Z is a normalization factor, and the mean μp and 

variance σp
2 are estimated from voxels in the union region of individual segmentations. In our 

Yang et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



implementation, we set the weight w = 0.8 for thoracic cancer patients to properly exclude 

the wrongly segmented lung tissue or high-contrast aorta tissue. For head and neck cancer 

patients, we set w = 0.5. A threshold of 0.5 was set to produce the final binary segmentation 

from the STAPLE fuzzy segmentation. If the number of atlases for contour fusion was less 

than 6, the fusion approach was switched to majority voting with the TAM. Essentially, the 

binary thresholding was applied directly to the outcome of Eq. (3).

2.3. Evaluation metrics

We compared auto-segmented contours with manual contours using the Dice similarity 

coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) as the 

quantitative evaluation. The DSC between the 2 volumes, R and T, is defined as the ratio of 

the volume of their intersection to their mean volume (Dice, 1945):

DSC(R, T) = 2( ∣ R ∩ T ∣ )
∣ R ∣ + ∣ T ∣ . (6)

The DSC has a value between 0 and 1, with 1 indicating perfect agreement and 0 indicating 

no overlap. The MSD between the 2 contours, R and T, is defined using the Euclidean 

distance mapping method (Danielsson, 1980):

MSD(R, T) =
dRT + dTR

2 withdRT = 1
∣ R ∣ ∑

r ∈ R
min
t ∈ T

d(r, t)anddTR

= 1
∣ T ∣ ∑

t ∈ T
min
r ∈ R

d(t, r) .
(7)

A smaller MSD value means better agreement between the 2 contours. Hausdorff distance 

measures the maximum distance between contours, R and T, as

HD(R, T) = max max
r ∈ R

min
t ∈ T

d(r, t), max
t ∈ T

min
r ∈ R

d(t, r) . (8)

2.4. Esophagus segmentation for head and neck cancer patients

The proposed multi-atlas segmentation with online atlas selection (MAS-AS) approach was 

used to delineate the esophagus contours in 21 head and neck cancer patients. We used a 

leave-one-out approach for validation. Each of the 21 patients was used as the test patient, 

and the remaining 20 patients were put in the atlas pool to delineate the test patient. The 

MAS-AS approach automatically determined a subset of optimal atlases from the 20 atlases 

for auto-segmentation. The auto-segmented contours were compared with the manual 

contours using the DSC and MSD metrics. The means and standard deviations of the values 

were calculated for the 21 tests. In addition, we randomly selected 8 patients as a fixed set of 

atlases and performed multi-atlas segmentation (MAS) for the remaining 13 patients. No 

atlas selection was performed, but we used the same rigid alignment, deformable image 
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registration, and contour fusion described in Section 2.2. The auto-segmentation results of 

these 13 patients were evaluated with DSC and MSD metrics and compared with those using 

the MAS-AS approach. The difference between the MAS-AS approach and the MAS 

approach was tested for statistical significance using a 2-tailed, paired t-test, evaluated at the 

0.05 significance level.

2.5. Esophagus segmentation for thoracic cancer patients

The proposed MAS-AS approach was further validated using 15 thoracic cancer cases. 

Again, we used the leave-one-out approach for validation. Each of the 15 patients was used 

as the test patient, and the remaining 14 patients were put in the atlas pool to delineate the 

test patient. The auto-segmented contours were compared with the manual contours using 

the DSC and MSD metrics. The means and standard deviations of the values were calculated 

for the 15 tests. In addition, we plotted a histogram to show the distribution of the 21 head-

and-neck tests and the 15 thoracic tests for the DSC and MSD values, respectively.

2.6 Validation using external data

The proposed MAS-AS algorithm was validated using the 30 CT datasets for the esophagus 

segmentation challenge. The 30 CT images were reformatted to have the same in-slice 

resolution of 0.78mm and slice spacing of 2.5mm for all 30 datasets. The orientation was 

forced to be feet-first supine for all images. The expert-drawn contours were also 

reformatted to be shown on each slice of the reformatted images. The auto-segmentation 

were performed on the reformatted data. When evaluating the segmentation results, we 

reformatted the auto-segmented contours back to the original data resolution for quantitative 

comparison. We performed leave-one-out tests by using one dataset as test image and the 

other 29 datasets as atlases. The auto-segmented contours were compared with the manual 

contours using the DSC and MSD metrics. The means and standard deviations of the values 

were calculated for the 30 tests.

3. Results

3.1. Atlas ranking and selection

One leave-one-out test for the head and neck cancer patients was used to illustrate the 

efficiency of atlas ranking and selection. The test patient had a large air pocket inside the 

esophagus, which made it appear different from most atlases. The first phase of atlas 

selection identified 12 atlases, and their contours were deformed to the test patient, 

compared with the manual contour, as shown in Figure 5. In the second phase of atlas 

selection, the symmetric KL divergence of local-intensity histograms ranked atlases 12, 8, 

and 10 as the first, second, and third best atlases, which was consistent with our observation, 

as shown in Figure 5. The overlap ratio analysis for the 12 atlases is shown in Figure 4. In 

this analysis, a subset of 5 optimal atlases was further identified for contour fusion on the 

basis of the atlas selection rules. By comparing the auto-segmented contour generated from 

the 5 optimal atlases with the manual contour, we found a DSC of 0.67 and a MSD of 2.3 

mm; the segmentation generated from the 12 atlases, without performing a second phase of 

atlas selection, had values of 0.31 and 4.0 mm, respectively. A subjective comparison is 

illustrated in Figure 6. It shows much better agreement between the auto-segmented contour 
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and the manual contour for the approach using atlas selection than for the approach without 

atlas selection.

3.2. Esophagus segmentation for head and neck cancer patients

Table 2 shows the results of the leave-one-out tests of the proposed MAS-AS approach 

compared with the MAS approach, as applied to 21 head and neck cancer patients. The 

MAS-AS approach resulted in a mean DSC of 0.70 ± 0.07 and a mean MSD of 1.9 mm 

± 0.7 mm. For the MAS approach, patients 14–21 were used as a fixed set of atlases to 

delineate the esophagus for the first 13 patients. In these 13 tests, the MAS approach 

achieved a mean DSC of 0.55 ± 0.15 and a mean MSD of 2.5 mm ± 0.9 mm. The results for 

the first 13 patients were tested to determine whether a statistically significant difference 

existed between the MAS-AS and MAS approaches. Significantly different DSCs and MSDs 

were found for these 2 approaches (p-value of 0.005 for DSC and 0.022 for MSD). The 

mean DSC and mean MSD for the MAS-AS approach applied to the first 13 patients were 

0.69 ± 0.08 and 2.0 mm ± 0.7 mm, respectively. These results were better than those of 

MAS approach. The DSCs and MSDs for patients 2, 6, 9, 10, and 11 showed significant 

improvement with the MAS-AS approach. However, we observed that the MAS-AS 

approach was slightly inferior to the MAS approach in some patients in terms of the DSC 

and MSD evaluation. In addition, we reported in Table 2 the best overlap value from a single 

atlas in order to validate the deformable registration algorithm used in the proposed MAS-

AS approach. The overlap values were measured between the deformed contour from each 

atlas and the best result were reported. These results showed reasonable agreements between 

the manual contour and the deformed contour thus justifying the use of the deformable 

registration algorithm.

3.3. Esophagus segmentation for thoracic cancer patients

Table 3 shows the results of the 15 leave-one-out tests of the proposed MAS-AS approach 

applied to 15 thoracic cancer patients. The results showed that the MAS-AS approach 

achieved a mean DSC of 0.73 ± 0.07, a mean MSD of 2.2 mm ± 0.8 mm and a mean HD of 

16.9 mm ± 8.9 mm. Figure 7 illustrates the comparison of the auto-segmented contours with 

the manual contour for one patient in several slices. Good agreement was observed, even for 

slices with a large air pocket. Figure 8 shows the distribution of the DSC and MSD values in 

the 36 tests for both head and neck and thoracic cancer patients. Most tests had a DSC value 

between 0.6 and 0.8 and an MSD value between 1.0 mm and 2.0 mm. The cumulative 

histogram shows that 53% of the tests had a DSC value greater than or equal to 0.7 and that 

86% of the tests had an MSD value smaller than or equal to 3.0 mm.

3.4 Validation using external data

Of the 30 leave-one-out tests using the external data, the DSC values range from 0.585 to 

0.817 with the median of 0.744 and an average of 0.728 ± 0.057; the MSD values range 

from 1.4 mm to 2.8 mm with the median of 1.9 mm and an average of 2.0 mm ± 0.4 mm; the 

HD values range from 7.9 mm to 27.1 mm with the median of 13.9 mm and an average of 

14.5 mm ± 4.1 mm. Figure 9 shows the comparison between the auto-segmented contours 

and the expert-drawn contours for one of the test cases. Good agreement was observed. It is 

worth mentioning that the 30 external datasets are heterogeneous in terms of the scanning 
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protocol, with both contrasted and noncontrasted scans and varied scanning extent, field of 

view, and slice spacing. They represents a good set of data to evaluate our proposed MAS-

AS approach.

We further compared our approach with other state-of-the-art methods in literature for 

esophagus segmentation. In particular, we compared with the level-set methods (Kurugol et 
al., 2010; Kurugol et al., 2011) and the probabilistic model based methods (Feulner et al., 
2009; Feulner et al., 2011). The validation datasets and the evaluation results were listed in 

Table 4. The performance of these methods was comparable. Our proposed approach was 

slightly better than the level-set method (Kurugol et al., 2011) while slight inferior to the 

probabilistic model based method (Feulner et al., 2011). However, our proposed approach 

showed much smaller standard deviation than the probabilistic model based method; it was 

partially due to a smaller number of test cases, but our proposed approach potentially was 

more robust in handling extreme cases.

4. Discussion

In this study, we developed an atlas ranking and selection approach to be used together with 

multi-atlas segmentation for the automatic delineation of the esophagus on CT scans. This 

approach selects a subset of optimal atlas candidates from an atlas pool for multi-atlas 

segmentation on the basis of local anatomy, thus potentially reducing the adverse impact of 

inter-subject variability on multi-atlas segmentation and improving the segmentation 

accuracy. This approach was evaluated on esophagus segmentation for both head and neck 

and thoracic cancer patients with promising results. Our findings may have a positive impact 

on contouring for radiation treatment planning by saving clinicians’ time and improving 

contouring efficiency and consistency (Yang et al., 2012; Chao et al., 2007; Reed et al., 
2009).

In our implementation, the segmentation was run on a Windows 7-based PC with an 8-core 

Intel Core i7 3.4-GHz CPU and 8 GB of memory. The deformable registration was 

performed independently on a Windows server with an 8-core 3-GHz Intel Xeon CPU and 8 

GB of memory. Multithread computing was enabled in the deformable registration 

algorithm, and 2 registration tasks were allowed to be run simultaneously on the server. Each 

segmentation task required around 5 minutes to complete in a thoracic cancer patient and 

around 3 minutes in a head and neck cancer patient, with about half the time spent on 

deformable registration.

Our study showed that online atlas selection improved overall multi-atlas segmentation. The 

improvement in several poor cases was significant. For example, the MAS-AS results for 

patients 2, 6, 9, 10, and 11 showed significant improvement over the MAS results, as shown 

in Table 2. However, using online atlas selection did not result in improvement in every case. 

For example, the MAS-AS results for patients 4, and 8 were slightly inferior to the MAS 

results (Table 2). Nevertheless, online atlas selection improved the robustness of multi-atlas 

segmentation by preventing a worst-case scenario.
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The cases showing inferior results for MAS-AS indicate that the atlas selection was not 

perfect. This was mostly due to the imperfect similarity metrics used to rank the atlases. For 

example, the cross-correlation coefficient used in the first phase of atlas selection is shift and 

rotation variant and is thus sensitive to misalignment. In addition, in our rigid alignment, we 

did not correct the rotation. The rotation variance may play down those atlases having 

similar local anatomy but different scanning positions, such as different neck flexion in the 

scanning set-up for head and neck cancer patients. This may explain why the overall 

evaluation in head and neck cancer patients (DSC = 0.70 ± 0.07) was slightly inferior to that 

in thoracic cancer patients (DSC = 0.73 ± 0.07).

In the second phase of atlas selection, the registration error may be a major obstacle for atlas 

selection. We used the histogram-based KL divergence metric to reduce the impact from the 

imperfect deformable registration. The histogram was created from a local region for 

calculating the KL divergence. Choosing the proper size of this region is critical to obtaining 

a correct atlas ranking. A larger region may better counteract the registration error but 

reduce atlas selection efficacy because unrelated anatomy may be included. In our study, we 

found that the local region, as defined by the union of the deformed contours, expanded by 1 

mm, gave the best results in most cases, but we acknowledge that using a different size for 

the local region might result in better atlas selection in different cases.

Our study also found that the presence of air bubbles is one of the major obstacles in atlas-

based segmentation of the esophagus. Several poor head and neck cancer cases, such as 

patients 5 and 10, were caused by the present of air bubbles. One potential solution to this 

issue is to detect air bubbles inside the esophagus (Fieselmann et al., 2008b). Once the air 

bubbles are detected, they can be replaced with similar intensity values of esophagus in the 

CT image; the modified CT image will be used for multi-atlas segmentation. On the other 

hand, we noticed that an air bubble can significantly change the similarity between the atlas 

and the test image in the atlas selection process. Performing atlas selection in local segments 

of the esophagus may resolve the air bubble issue. In addition, a similarity comparison using 

the entire long winding esophagus was not locally accurate in selecting the atlas. Therefore, 

optimal atlas selection within local segments of the esophagus is a subject of our future 

study.

In thoracic cancer patients, delineating the esophagus segment near the heart is most 

challenging for atlas-based segmentation. Neighboring structures such as the heart, lungs, 

and aorta may push or pull the esophagus, resulting in different shapes and locations from 

day to day and from patient to patient. In addition, the low contrast between the esophagus 

and the surrounding tissues makes it difficult to perform auto-segmentation. To assist 

esophagus segmentation near the heart, one can use a nearby structure as a constraint for 

segmentation (Yang et al., 2004; Gao et al., 2012).

The way of drawing manual contours might offset the evaluation of segmentation results. 

The manual contours were drawn in axial 2D slices, which created sharp edges at the top 

and bottom slices of the esophagus when it was viewed in 3D. However, the contour 

deformation was processed using a 3D mesh, which necessarily processed the 2 ends of 

esophagus to make it smooth. This may have created a discrepancy between auto-segmented 
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and manual contours. We found disagreement in most slices at the two ends. In addition, in 

head and neck cancer patients, the manual contours of the inferior stopping slice may not 

have been consistent in different patients if the patients were positioned with different neck 

flexion. This potentially reduced the segmentation accuracy when these contours were used 

for evaluation.

5. Conclusions

Selecting a subset of optimal atlas candidates using local anatomy similarity improves multi-

atlas segmentation. The proposed online atlas selection approach improved the robustness of 

multi-atlas segmentation of the esophagus from CT scans. In our future studies, we will 

explore more sophisticated image features for atlas ranking and selection, particularly the 

image texture and shape features that are commonly used for content-based image retrieval 

(Newsam and Kamath, 2005; Howarth and Rüger, 2004; Manjunath and Ma, 1996; Yang et 
al., 2008). Similarity evaluations based on intensity values may suffer from issues such as 

the shift and rotation variance and being sensitive to the local region selection. We expect 

that these issues will be mitigated when examining the similarity of image features extracted 

from the image contents.
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Figure 1. 
Overall framework of the proposed online atlas selection approach for esophagus 

segmentation.
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Figure 2. 
Illustration of landmark points in the atlases. Panel (I): For head and neck cancer patients, 

the landmark point is in the cord of the superior end of C2 vertebrate. Panel (II): For thoracic 

cancer patients, the landmark point is in the cord of the slice where the bottom of the aortic 

arch is located.

Yang et al. Page 17

Phys Med Biol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Illustration of using the Kullback-Leibler (KL) divergence to evaluate the similarity of the 

deformed image and the test image to rank the atlas in the second phase of atlas selection.
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Figure 4. 
The Jaccard coefficient was used as the overlap ratio, which is defined as the intersection 

divided by the union of all contours. The overlap ratio was plotted as a function of the 

number of atlases. This example shows that using more than 5 atlases may not benefit multi-

atlas segmentation because the overlap ratio reaches a small value.
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Figure 5. 
Esophagus contours of 12 atlases were deformed to the test image. The red and green colors 

indicate deformed and manual contours, respectively. In the second phase of atlas selection, 

atlases 12, 8, and 10 were chosen as the first, second, and third best atlases, which is 

consistent with the observation: they have a better agreement between the manual contour 

and the deform contour than other atlases do.
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Figure 6. 
Comparison of auto-segmentation using 5 selected optimal atlases (red contour) versus that 

using 12 atlases without the second phase of atlas selection (yellow contour). Green 

colorwash indicates the manual contour. (a) Axial view; (b) sagittal view.
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Figure 7. 
Illustration of auto-segmented contours (red) compared with manual contours (green) for 

one thoracic patient in several slices. Good agreement was observed in most of the slices.
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Figure 8. 
Histogram of (a) Dice similarity coefficient (DSC) and (b) mean surface distance (MSD) 

values of 36 tests in head and neck and thoracic cancer patients. The curve shows the 

cumulative histogram: for the DSC, the percentage of tests greater than or equal to a specific 

DSC value, and for MSD, the percentage of tests smaller than or equal to a specific MSD 

value.
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Figure 9. 
Illustration of auto-segmented contours (red) compared with manual contours (yellow) on 

several slices for one test case in the external validation data.
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Table 1.

Parameter settings for the dual-force Demons deformable image registration

Parameter Value

Number of bins for histogram equalization 256

Block size for histogram equalization 20

Multi-resolution levels 6

Number of iterations 200

Upper bound of step size 1.25

Gaussian variance for regularization 1.5
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Table 2.

Segmentation results of the proposed multi-atlas segmentation with the online atlas selection (MAS-AS) 

approach compared with the multi-atlas segmentation with a fixed set of atlases (MAS) approach in 21 head 

and neck cancer patients. The column of “Single Atlas” reported the best result from a single atlas-based 

segmentation, which serves for the validation of deformable registration algorithm used in MAS-AS. The 

MAS approach used patients 14-21 as atlases to delineate the esophagus for the first 13 patients. SD = 

standard deviation.

Patient
no.

Dice similarity coefficient Mean surface distance (mm)

MAS-AS MAS Single Atlas MAS-AS MAS Single Atlas

1 0.61 0.56 0.61 2.1 2.7 2.1

2 0.67 0.41 0.70 2.4 3.2 2.1

3 0.65 0.56 0.61 2.1 2.2 2.0

4 0.77 0.78 0.69 1.6 1.5 3.0

5 0.56 0.40 0.63 3.7 3.9 3.1

6 0.78 0.49 0.71 1.1 1.5 1.5

7 0.74 0.74 0.71 2.1 2.1 2.2

8 0.61 0.63 0.60 2.9 2.6 2.0

9 0.76 0.54 0.68 1.4 2.2 2.1

10 0.67 0.22 0.72 2.3 4.5 1.9

11 0.72 0.60 0.74 1.5 2.1 1.4

12 0.59 0.53 0.64 1.9 2.3 1.5

13 0.77 0.73 0.91 1.3 1.4 0.6

14 0.81 - 0.74 1.3 - 1.8

15 0.72 - 0.73 1.6 - 1.7

16 0.65 - 0.56 2.6 - 3.4

17 0.70 - 0.67 1.7 - 1.7

18 0.79 - 0.78 1.6 - 1.3

19 0.69 - 0.44 1.8 - 3.5

20 0.78 - 0.70 1.1 - 1.7

21 0.65 - 0.57 2.7 - 3.3

Median 0.70 0.56 0.69 1.8 2.2 2.0

Mean 0.70 0.55 0.67 1.9 2.5 2.1

SD 0.07 0.15 0.09 0.7 0.9 0.8
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Table 3.

Segmentation results of the proposed multi-atlas segmentation with the online atlas selection approach in 15 

thoracic cancer patients. SD = standard deviation.

Patient no. Dice similarity
coefficient

Mean surface
distance (mm)

Hausdorff
distance (mm)

1 0.79 1.8 13.3

2 0.66 3.1 26.8

3 0.82 1.3 6.4

4 0.78 1.7 9.5

5 0.67 2.8 23.3

6 0.63 3.5 30.2

7 0.77 1.6 10.1

8 0.73 2.0 12.7

9 0.58 3.8 31.6

10 0.79 1.5 8.1

11 0.68 3.0 30.8

12 0.81 1.6 12.7

13 0.83 1.3 9.2

14 0.77 1.5 9.3

15 0.67 2.7 19.1

Median 0.77 1.8 12.7

Mean 0.73 2.2 16.9

SD 0.07 0.8 8.9
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Table 4.

Comparison of our proposed multi-atlas segmentation with the online atlas selection (MAS-AS) method with 

other state-of-the-art methods in literature for esophagus segmentation. DSC = Dice similarity coefficient; 

MSD = mean surface distance; HD = Hausdorff distance.

Method Fully
automatic

Validation data Metrics

No.
datasets

Resolution
(mm)

Slice thickness
(mm)

DSC MSD
(mm)

HD (mm)

Proposed MAS-AS Yes 30 0.57 – 0.96 0.7 – 3.0 0.73 ± 0.06 2.0 ± 0.4 14.5 ± 4.1

(Kurugol et al., 2010) No 8 0.98 3.75 unknown 2.6 ± 2.1 unknown

(Kurugol et al., 2011) No 8 0.98 3.75 unknown 2.1 ± 1.9 unknown

(Feulner et al., 2009) Yes 117 0.72 5.0 unknown 2.3 ± 1.6 14.5

(Feulner et al., 2011) Yes 144 0.7–0.8 5.0 0.74 ± 0.14 1.8 ± 1.2 12.6 ± 7.0
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