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This article describes the basic principles of ultrasound thermography (UST) and its real-

time implementation using GPU-enabled software architecture. In medicine, the term 

thermography is mostly associated with heat-sensing infrared cameras for recording surface 

temperature changes. In this article, we use this term to describe the qualitative noninvasive 

imaging of tissue temperature change using any imaging modality. Examples of these 

modalities include microwave radiometry, magnetic resonance imaging (MRI), ultrasound 

imaging and photoacoustic tomography (PAT). Of these imaging methods, ultrasound and 

MR are the most widely investigated. Table I lists some ultrasound and MR based methods 

for tissue thermography reported in recent literature.

The methods listed in Table I have been validated experimentally in various media, 

including in vivo [1], [3], [5]. As indicated in the table, all these methods exhibit some level 

of tissue dependence. In order to measure quantitative thermometry data, the changes in the 

measured temperature-sensitive parameter need to be adjusted for tissue type such as 

muscle, fat, liver, etc. This can be challenging in some tissues such as cirrhotic liver or 

breast.

Image guidance offers the promise of revolutionizing surgery in the 21st century. For 

example, focused ultrasound (FUS) has been shown to produce localized thermal therapy in 

deep tissue targets without the need for resection. However, while the principle of this 

surgery was well demonstrated in the early 1950s, it never gained clinical acceptance until 

after the successful demonstration of MR-guided FUS (MRgFUS) surgery. In particular, the 

implementation of MR thermometry [1] was the key enabling image guidance technology 

for MRgFUS to gain clinical approval from the US Food and Drug Administration (FDA). 

Given ultrasound’s high accessibility, cost effectiveness and clinical utility in initial 

diagnosis, robust implementation of UST on real-time scanners could significantly impact 

the use of image-guided FUS (IgFUS) worldwide, with or without MRI.

Noninvasive thermometry remains a sought after goal in medical imaging with numerous 

applications. In the context of image guidance, quantitative thermometry will provide the 

tools for delivering and evaluating the treatment as a prescription in addition to the 
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monitoring and guidance provided by real-time UST (rtUST). More significantly, 

noninvasive thermometry will open the door for applications such as imaging inflammation 

and metabolic rate. These applications require high sensitivity and specificity due to the 

need to detect very small changes in temperature at the inflammation site, possibly in the 

presence of large tissue motion and deformation.

The feasibility of 2D temperature imaging using diagnostic pulse-echo ultrasound was 

demonstrated almost two decades ago [2]. The approach that received the most attention is 

based on the detection and estimation of minute temperature-induced echo shifts, which 

could be processed to generate the desired 2D maps of temperature change. The principle of 

measurement has been confirmed by a number of groups in tissue-mimicking phantoms, ex 
vivo models and recently in vivo small animal models [3]. Furthermore, GPU-enabled rtUST 

systems have been developed and demonstrated in pre-clinical settings.

The advent of rtUST, together with validation studies by numerous groups worldwide, has 

improved the odds of its clinical acceptance, but important challenges remain. One challenge 

is the reliable echo shift estimation in the presence of large tissue deformations in organs 

such as the liver and the heart. Tissue deformations result in echo decorrelation, which 

increases the variance of the estimation error. This is partially mitigated by the development 

of rtUST software architectures capable of supporting hundreds of frames per second thus 

minimizing frame-to-frame echo decorrelations. Another challenge is the distortion of the 

ultrasound imaging beams as they traverse regions undergoing temperature change. This 

introduces errors in the echo shift estimation distal to the heated region, i.e. spatially 

correlated estimation errors. All of these remaining challenges are in the realm of signal 

processing, requiring solutions ranging from spatio-temporal model-based filters to iterative 

reconstructive imaging. Once overcome, rtUST could lead to quantitative thermometry with 

high sensitivity and specificity with potential applications in noninvasive, nonionizing 

imaging inflammation, a grand challenge in medical imaging.

Ultrasound Temperature Sensitivity

The temperature dependence of the speed of sound is well known and has been extensively 

studied for decades. More recently, based on a careful examination of the literature, Miller et 
al [4] proposed a model for the speed of sound in tissue given by

1
c(θ) = 1

cw(θ) + 1
c f (θ) + 1

cr(θ) , (1)

where θ is the temperature, c is the speed of sound and the subscripts w, f, & r refer to water, 

fat and residual tissue (protein, etc), respectively. Empirical formulas for the three 

components were also given

cw(θ) = ∑
i = 0

5
kw

i θk, c f (θ) = k f
0 − k f

1θ, cr(θ) = kr
0 − kr

1θ . (2)
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Based on (1) and specific values of parameters in (2), in most aqueous tissues, the 

temperature dependence can be described as an inverted quadratic curve, which peaks in the 

45 - 55°C range.

In addition to the speed of sound, the change in backscatter energy (CBE) was also proposed 

as a method for the estimation of temperature change using pulse-echo ultrasound [5]. The 

backscatter coefficient from a random distribution of sub-wavelength scatterers is given by:

η(θ) =
ρmcm θ − ρscs θ 2

ρscs θ 2 + 1
3

3ρs − 3ρm
2ρs + ρm

2
, (3)

where ρm, ρm (ρs, cs) are the density and the speed of sound for the medium (scatterer), 

respectively. For a plane wave propagating in the z direction, the backscatter energy is given 

by

E(θ) = η(θ)
α(θ) 1 − e−2α(θ)z , (4)

where α(θ) is the attenuation coefficient of the medium. In [5], a temperature imaging 

relation was proposed based on the ratio E(θ)/E(θ0) for some reference temperature, θ0. The 

basis for this approach is the empirical result showing that the ratio in dB is increases or 

decreases monotonically in the 37 - 45°C range [5] for fat and aqueous tissues.

The Echo-Shift Model and Imaging Equations

A survey of the literature reveals that the echo-shift model is the most widely used in the 

medical ultrasound imaging community. Temperature change in tissue induces changes in 

the speed of sound as well as thermal expansion of the affected tissue. The former produces 

apparent echo shifts due to the change in the acoustical path length. The latter produces 

physical shifts due to the actual change in the location of the scattering elements within the 

heated volume. The details of the derivation can be found in [2] for what is now called the 

infinitesimal echo-strain filter δ-ESF. More recently, [3] introduced a modified version that 

resulted in a recursive echo-strain filter (RESF), which includes the δ-ESF as a special case.

To derive the RESF, assume a simple model of pulse-echo response from a single point 

scatterer at a distance z from the transducer face. Assume further that the medium is 

homogeneous at a constant baseline temperature, θ0. An emitted pulse, p(t), will reach the 

scatterer after a delay of z/c0 and the scattered echo will be detected by the transducer after 

an additional delay of z/c0 for a total delay of 2z/c0. For the inhomogeneous case, c(z, θ) and 

assuming infinitesimal temperature change, θ(z) = θ0 + δθ(z), |δθ| ≪ θ0, we can express the 

echo shift from two transmissions at T0 and T1:
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δτ(z) = τ(z) − τ0(z)

≈ 2∫
0

z(θ)(1 − αδθ) 1 + α(ξ)δθ(ξ)
c(ξ, θ(ξ)) − 1

c(ξ, θ0) dξ,

(5)

where α is the linear coefficient of thermal expansion. The second term in the integrand 

accounts for the propagation delay at time T0.

The Recursive Echo Strain Filter

Since |δθ| ≪ θ0, one may assume c(z; θ(z)) = c0(z)[1 + β(z)δθ(z)], which is justifiable near 

normal physiological temperatures. Substituting and differentiating (5) with respect to z, we 

get:

−αz∂δθ
∂z + (α − β)δθ = c(z, θ)

2
∂δτ(z)

∂z . (6)

This is a differential equation with spatially-varying coefficients, which can be solved 

numerically using a variety of methods. However, we seek a filtering approach for real-time 

implementation on a variety of platforms, including FPGAs. A considerable insight can be 

obtained by treating the coefficients as space invariant, including the coefficient of ∂δθ
∂z . 

Setting z = zm and assuming α, β, & c are constants, we transform (6) into a constant-

coefficient differential equation. Using τ = 2z/c ⟹ ∂τ = 2∂z/c allows us to discretize the 

equation on the uniform RF sampling grid τi = iTs i = 1
Ns  to arrive at the recursive equation 

[3]:

δθ(τi) = a ⋅ δθ(τi − 1) + b ⋅ (δτ(τi) − δτ(τi − 1)), (7)

with the filter coefficients given by:

a =
ατm

ατm − Ts(α − β) , and b = − 1
ατm − Ts(α − β)

where τm = 2zm/c0. The higher the value of zm the narrower the bandwidth of the lowpass 

filter defined by the recursive term. The recursive term determines the extent of spatial 

memory, which is controlled by zm.

It should be noted that (6) is an approximation of an integro-differential equation with higher 

order spatial derivatives of δθ and even nonlinear terms. The low order approximation is 

shown here due to the insight provided by the coefficients a&b in Equation 7. These 
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coefficients produce well calibrated temperature estimates in terms of the computed echo 

strain differentials, (δτ(τi) − δτ(τi−1)).

The Infinitesimal Echo Strain Filter

Setting zm = 0 reduces (7) to the discrete-space differentiator originally proposed in [2] or 

the δ-ESF. The echo strain equation described in [4] was derived under the same 

assumptions used to derive the δ-ESF while ignoring the thermal expansion term. Several 

other authors have used this model, including [6], [7], to demonstrate temperature imaging 

(thermography) in tissue-mimicking phantoms and tissue media. It was shown to be valid 

when the range of δθ is such that θ0+δθ < 50°C when appropriate values of α, β, & c are 

used.

Parameter Sensitivity

Based on the δ-ESF model, it is easy to see that Δδτi = δτ(τi − δτ(τi−1) = Ts(β − α)δθ(τi). 

In muscle tissue, for example, β ~ 6.5 × 10−4 and α ~ 1.23 × 10−4 in the normal 

physiological body temperature range. Therefore, the infinitesimal echo strain is ~ 5 × 

10−4/°C or 0.05%/°C.

Signal Processing Considerations

Speckle Tracking for Echo-shift Estimation

The coherent nature of pulse-echo ultrasound gives rise to speckle phenomenon which gives 

B-mode images their grainy appearance. In imaging, speckle reduces the soft-tissue contrast 

and is normally considered a undesirable. For tissue displacement estimation, however, 

speckle signal components provide an opportunity to estimate tissue motion and deformation 

with very high resolution [8]. The displacement estimation is typically achieved by 

performing localized cross correlation of RF echo signals from consecutive frames, s(x, z, 
T), s(x, z, Ti+1). The echo shift is simply obtained by determining the peak of the cross 

correlation.

The temperature imaging filters operate on the echo shifts induced by temperature change as 

well as other tissue motions and deformations. Depending on the frame rate, the frame-to-

frame temperature-induced echo shifts are in the range nanoseconds to low microseconds. 

These shifts represent minute to small fractions of the sample times for a typical diagnostic 

ultrasound system (RF echo sampling in the range of 20 - 40 MHz.) Robust estimation of 

echo-shift profiles is the key to the success of ultrasound thermography and thermometry.

Several implementations of cross-correlation techniques for time delay estimation have been 

described in the literature. In [2], [3], [7], a complex cross correlation with zero-phase 

projection was used. This has the advantage of determining the true peak of the cross 

correlation with sub-sample accuracy without the need for interpolation. This is due to the 

fact that, in the absence of pulse distortion, the phase of the cross correlation is linear and 

makes a zero crossing at the true peak of the cross correlation function (See [9] and 

references thereof for the 2D case.)
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Model Limitations, Imaging Artifacts and Mitigations

The echo shift models and the corresponding temperature imaging equations ignored tissue 

inhomogeneities and assumed linear dependence of the speed of sound on temperature. For 

example, 2D temperature estimates obtained based on the δ-ESF model exhibited thermal 
lensing artifacts [2] due to the distortion of the imaging beam as traversed the heated region. 

Briefly, since the speed of sound changes with temperature, the heated region behaves like a 

lens, which distorts the imaging beam. The distortion can be especially severe where the 

imaging beam traverses regions with sharp temperature gradients. This distortion produces 

axial and lateral oscillations in the echo shifts distal to the heated region, which are 

accentuated by the axial gradient ∂δτ/δz in (6). In [6], spatial compounding was shown to be 

effective in reducing thermal lensing artifacts.

Another source of artifacts is tissue heterogeneity (e.g. variation in fat content), which leads 

to variation in the values of α, β, & c as well as their temperature dependencies. These 

artifacts are inherent to pulse-echo ultrasound imaging, where beamforming is performed 

assuming a constant speed of sound, i.e. ignoring tissue inhomogeneity. However, modern 

scanners provide research mode with access to raw channel data. These software defined 
ultrasound systems allow users to investigate reconstructive imaging accounting for tissue 

inhomogeneity. If successful, reconstructive imaging could provide a basis for quantitative 

UST or ultrasound thermometry. In addition, the effects of temperature dependencies could 

be addressed by iterative reconstructive imaging solutions to the temperature estimation 

problem. At a minimum, one could implement a post-processing algorithm that enforces 

some of the known constrains about temperature fields:

1. Non negativity; for example, in a heating experiment, the temperature field 

cannot have values below the steady state baseline temperature.

2. Spatiotemporal evolution; temperature fields in tissue media is governed by the 

bioheat-transfer equation (BHTE), which is a modified version of the parabolic 

heat conduction equation. The Green’s function of the BHTE is a time-varying 

spatial Gaussian kernel [9].

3. Boundary conditions; skin temperature or core temperature away from the heated 

region.

These constraints can be combined to regularize the 2D temperature field using projection 

onto convex sets (POCS) algorithm described by Youla in [10]:

θk + 1(x, z, T i) = 𝒢(T i)𝒫(T i)ℬ(T i)θk(x, z, T i), (8)

where Ti is the ith frame (wall clock) time, 𝒢(T i), 𝒫(T i), and ℬ(T i) are (convex) projection 

operators corresponding to the Gaussian spatial bandwidth, positivity and boundary 

condition constraints.
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From Thermography to Thermometry

UST as described above is more like echography due to the assumption of homogeneous 

medium in deriving the imaging equations. Nonetheless, UST has been shown to be useful 

in guiding therapy [2] and even quantitative tissue property measurements based on 

temperature transients [7]. The ultimate goal is to perform thermometry by developing 

quantitative measurements based on truly localized analysis of echo data. For this purpose, 

spectral analysis of the echo data could provide the answer [11]. Amini et al compared the 

infinitesimal echo shift model with a frequency shift model given by:

δ f m ≈ f m(θ0) β(θ0) − α(θ0) δθ, (9)

where fm is the mth harmonic of the resonance frequency associated with mean scatterer 

spacing in the region of interest and α, β, & θ are as in the RESF model above. The 

frequency shift leads to a more localized temperature change measurement. To improve the 

spatial resolution of this measurement, high resolution spectral estimation methods were 

employed (See [11] and references thereof.) We note that Equation (9) gives a sensitivity 

factor of ~0.05%/° (percent shift in resonance.)

Real-time Implementation of Ultrasound Thermography

The rtUST algorithm implementation is illustrated with the help of Figure 1, which shows a 

GPU/CUDA-enabled multi-stream architecture (a). This system is representative of the 

state-of-the-art in rtUST in that it supports parallel tasks on sequences of RF frames to meet 

the real-time constraints. For example, in each stream processor there are three threads that 

handle inter-process messaging and data processing, respectively. A stream processor can be 

assigned to any GPU in the system and is fully reconfigurable on the fly using shared 

memory. Any application which supports calling C functions (e.g. MATLAB, Octave or 

NumPy) can interact with the pipeline and act as an external engine.

Figure 1b shows the tracking pipeline which operates on the RF echo data (from an imaging 

scanner or the External Engine). The RF data is optionally pre-filtered before speckle 

tracking is performed, followed by 2D separable FIR filtering to generate thermography 

imaging frames (Temperature Data). The tracking pipeline optionally connects to a real-time 

closed-loop temperature control at relatively high frame rates. The current system supports 

1000 frames per second (fps). The benefits of high frame rates are twofold: 1) minimize 

frame-to-frame echo decorrelation and maintain the quality of the echo shift estimates, and 

2) capture the tissue motion and deformation components together with the temperature-

induced component at high rate to allow signal separation algorithms.

Experimental Validation in Tissue Media

Tissue-mimicking Phantom Results

Numerous reports on ultrasound thermography and temperature imaging used tissue 

mimicking phantoms to provide initial validation of the algorithms used [2]–[7]. Tissue-
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mimicking phantoms can be made homogeneous to provide validation of the imaging 

equations in a controlled, well characterized environment. They can also be made with 

different levels of contrast for certain acoustic and thermal parameters to answer basic 

questions regarding robustness of the estimation algorithms. In [2], [4], carefully planned 

and executed experiments using tissue-mimicking phantoms provided clear validation for the 

δ-ESF approach for small temperature changes and identified its limitations. Similar 

validation results from the RESF were shown in [3].

UST in Inhomogeneous Tissue Media

While ultrasound is currently the leading image guidance modality of RFA, it is primarily 

used to provide echographic B-mode images for visualization purposes. Several groups have 

proposed the use of UST and other semi-quantitative methods such as elastography. 

Example results from controlled RF heating experiments are presented here to illustrate the 

promise of rsUST in this important medical application. They also illustrate the current 

challenges facing UST when the target tissue is inhomogeneous and the size of the heated 

region is relatively large.

Figure 2 illustrates the basic setup (left) with a helical coil used as a heating source. The 

active segment of the coil is colored in red while the blue is insulated. The beamformed RF 

frames were acquired from a plane orthogonal to the coil axis approximately at the center of 

the active segment. A thermocouple was used to provide temperature feedback for closed 

loop control at the center of the target volume. The controlled heating procedure was as 

follows:

• Data collection was started at 0s acquiring 1 frame every 2s, i.e. 0.5 fps. Each 

frame was composed of NL = 128 image lines (38 mm laterally) with Ns = 1900 

samples of echo data from (3.85 - 76.96 mm axially).

• Heating began at 20s; just after Frame 10. Baseline temperature was 18.7°C.

• Closed loop control engaged at 80s with a set point of 40°C.

• Heating was completed at 320s; just after Frame 160.

• Ultrasound data collection stopped at 400s; just after Frame 200.

• RF frames were saved in MATLAB format for off-line processing

Frame-to-frame displacements were computed using the GPU-enabled speckle tracking 

algorithms described in [7]. A GTX770 (NVIDIA) was used to process the 1900 × 128 × 

201 data set to produce a displacement data set of size 1900 × 128 × 200, i.e. a displacement 

field sampled at the same level as the RF data. MATLAB served as the External Engine 

calling the Speckle Tracking Engine in Figure 1a to produce the displacement fields with 

average execution time of 0.8684s or ≈ 230 fps. The RESF was applied to the data in 

MATLAB followed by 5 iterations of the POCS algorithm (8) for each frame (typically 

converged in 3 iterations). Two-dimensional temperature profiles at time Tj were computed 

as θ(x,z,Ti) = θ(x,z,Ti−1) + δθ(x, z, Ti) and overlayed on the grayscale B-mode image 

(acquired at Ti). Example B-mode image and corresponding 2D temperature map are shown 

in Figure 2 (middle two panels). The “+” marker just above a visible segment of the helical 
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coil in B-mode. The estimated temporal temperature profile at marker location is shown in 

the top right panel. It reflects the dynamics of the controlled heating experiment, i.e. start of 

heating, start of control and cessation of heating. Furthermore, the estimated δT at the set 

point was close to the true ΔT for this experiment.

The lower right panel of Figure 2 illustrates the echo shift phenomenon that was utilized in 

estimating the temperature change. It shows a 2-mm segment of the echo data centered 

axially at the “+” marker in the B-mode image. At this location, the echo gradually shifts 

towards the transducer by approximately 250 μm in about 114 seconds. The frame-to-frame 

correlation between the echo segments at this location remained high throughout the 

experiment despite the relatively low frame rate. In general, however, the echo locations as 

well as the echogenicity change significantly over the course of the experiment.

Figure 3 illustrates the advantages and limitations of the UST algorithm described above. 

Each panel shows a montage of 10 frames of estimated 2D temperature before, during, and 

after the controlled RF heating. The top panel shows the 2D temperature estimates obtained 

using the RESF without any additional post processing. The temperature profiles show the 

heating was maximum in crescent-shaped region, which correspond to a segment of the 

helix closest to the imaging slice. This pattern is nonexistent at time T = 0, faint at T = 40s, 

almost constant for 160s < T < 320s and shows some decay at T = 360s. These are consistent 

with the dynamics of the heating protocol. On the other hand, the temperature patterns 

exhibit spatial discontinuities inconsistent with the smooth nature of heat conduction in 

tissue media. Furthermore, the patterns exhibit artifacts at numerous locations distal to the 

heated region, e.g. pixel-size hot spots distal to the heated region in increasing numbers with 

time.

The lower panel in Figure 3 shows the same set of frames obtained using RESF followed by 

5 iterations of the POCS algorithm (8). The temperature profiles are considerably smoother 

and are free from pixel-size hot spots seen in the RESF-only case. This is achieved without 

excessive smoothing. For example, the crescent-shaped heating region can still be seen and 

is consistent with the temporal dynamics of the heating experiment and the appearance of 

the coil segment in B-mode. In fact, the crescent appears to be more pronounced in the post-

processed frames compared to the RESF-only temperature estimates.

While it produced significant improvements, POCS did not remove all artifacts, including 

tail-like patterns on both sides of the heated region. These are reminiscent of the 

thermoacoustic lens artifact reported in [2], [6]. In addition to the thermoacoustic lens effect, 

one can also see regions of localize apparent heating below the heated region. Some of these 

artifacts are due to reverberations in the RF echo data, especially in regions where the SNR 

is low.

In summary, the results demonstrate the high sensitivity of UST in detecting and spatially 

mapping temperature change from minute frame-to-frame echo shifts in heterogeneous 

tissue medium. In numerous similar experiments and other settings described in the 

literature, rtUST was shown to capture the dynamics of temperature change accurately. 

However, the specificity of UST is compromised due to echo-shift estimation errors 
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resulting from imaging beam distortion due to thermal lensing and echo reverberations in 

low SNR regions.

Concluding Remarks and Future Outlook

We now have a wealth of data supporting the models for temperature imaging using pulse-

echo ultrasound. These models need to be refined and validated in the context of quantitative 

estimation of temperature change. One possible approach is the use of extended Kalman 

filtering based on the spatio-temporal integro-differential equation derived in [3]. The 

Kalman filter approach was used to regularize the temperature fields in MR thermometry 

[12].

Spatio-temporal Kalman filtering and similar statistical signal processing tools are also 

necessary for the estimation and separation of large tissue deformation effects in organs like 

the heart and liver. The range of motion and deformation in these organs provides significant 

challenge, but the advent of high frame rate ultrasound technology (2D and 3D) could be the 

key to addressing this challenge. The multistream architecture described above supports 

speckle tracking at frame rates up to of 1000 fps, which helps to capture the tissue 

deformation more accurately by minimizing signal decorrelation effects [8]. The design of 

the KF as well as the required statistics could be informed by rtUST.

In addition to the illustrative results shown in this article, rtUST has been demonstrated in 
vivo [3] in the presence of tissue motion and deformation. Adaptive spatial filtering was 

successfully used for motion compensation albeit in a small animal model. These results 

provide further validation of the applicability of the models, especially the RESF, to realistic 

in vivo conditions. However, important challenges remain and the answers to these are 

firmly in the realm of advanced real-time signal processing. The most significant challenge 

to UST is the lack of specificity due to the thermal lensing effect, especially when the extent 

of the heated region is large. Advanced dereverberation methods could be used as part of the 

prefiltering block shown in Figure 1 (b). More importantly, pre-and post-beamforming 

methods to compensate for the distortion in the imaging beam by thermal lensing are 

needed. This may require tomographic reconstruction from pulse-echo data, which may or 

may not materialize. A statistical framework for the errors in echo shift estimation could 

improve the performance of post-processing algorithms such as POCS.

In this article, we emphasized the echo-shift methods because they led to imaging equations 

well suited for rtUST using FPGA and GPU platforms. However, it was also shown that 

temperature change can be measured through frequency shift estimation [11] based on (9) or 

the CBE [5]. A direct comparison between the echo and frequency shift methods revealed 

that the two models produce different artifacts, which resulted in improved temperature 

estimation by compounding. Multi-parameter estimation methods would be needed to 

improve the robustness of temperature estimation. The multi-stream architecture shown in 

Figure 1 was designed with this in mind.

Addressing the large tissue deformation challenge and removing or reducing displacement 

estimation errors will increase the value of UST in the guidance and monitoring of thermal 
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therapy procedures. This opens the door to challenging, high impact applications such as the 

monitoring of the metabolic rate and imaging inflammation using thermometry. These are 

grand challenges in medical imaging.
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Real-time Thermography in Medicine

The best known example of thermography in medicine is infrared imaging of the breast. 

This method was proposed in the 1950s and gained FDA approval in 1982. However, it 

has not been accepted either as a screening tool in the detection of breast cancer or as an 

adjunctive diagnostic tool. While this method reliably measures surface temperature, 

reconstructing the internal 3D temperature fields remains a major challenge. Microwave 

radiometry is another method that has a great appeal due to the fundamental nature of 

thermal noise, but has not gained acceptance in clinical applications due to poor spatial 

and temporal resolutions. Modern diagnostic imaging modalities such as MR and 

ultrasound offer the promise of thermographic solutions with higher specificity than 

infrared imaging and microwave radiometry. Today, MR thermography (MRT) and 

ultrasound thermography (UST) are the most widely investigated modalities. Even within 

each modality, several methods have been proposed, each exploiting the temperature 

sensitivity of one or more imaging parameters. For example, in MRI, the proton 

resonance frequency (PRF) is a temperature-sensitive parameter due to the temperature 

dependence of the shielding constant σ(θ). Furthermore, σ(θ) ∞ θ, which produces a 

linear temperature imaging equation Δθ = (Φ (θ) − Φ (θref))/(kp·fref·TE), where the PRF 

shift (f (θ) − fref) is interpreted as a phase shift. The values of σ for fat and water are ~ 

1.3 × 10−6 and ~ 4.5 × 10−6, respectively. The temperature dependence of the water 

proton resonance is ~ 0.01 ppm/°C while the PRFs of lipid hydrogens are largely 

independent of temperature. Therefore, tissues with significant fat content present a 

challenge for this method. In the absence of fat, this parameter is largely tissue 

independent with the small dependency related to ion concentration. The spatial and 

temporal resolutions reported in the table for the PRF method were obtained with a 

standard deviation of < 1°C in immobile tissues. For all the other methods in the table, 

the temperature imaging equations are nonlinear and exhibit higher levels of tissue 

dependence.

MRT vs UST

The PRF method stands out being largely tissue independent, which is a key advantage. 

Furthermore, as with most MR parameters, the dependence is related to the molecular 

composition, which could lead to higher specificity. On the other hand, all ultrasound-

based methods exhibit high tissue dependence, which limits their range to temperatures 

below 50°C. Fortunately, this still covers the majority of envisioned medical applications, 

including imaging inflammation. The spatial resolution is comparable for both methods 

with UST holding a slight advantage. UST holds a clear advantage in terms temporal 

resolution, especially with the advent of high frame rate ultrasound. Finally, MR 

continues to be expensive and requires MR compatibility (e.g. when using MRT for 

monitoring interventions). These provide clear advantages for UST, which is inexpensive 

and can be easily integrated with other medical devices.
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Fig. 1. 
A state-of-the-art GPU-enabled software architecture for rtUST: (a) Multi-stream 

architecture with asynchronous beamforming, imaging and tracking pipelines running in 

parallel. The architecture allows for seamless interface with External Engines (e.g. 

MATLAB, Octave, etc.) through shared registry and a high performance IPC Queue. (b) 

Real-time Thermometry as currently implemented using the Tracking Pipeline, which 

supports a Control Pipeline for closed-loop control based on rtUST temperature feedback.
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Fig. 2. 
UST Monitoring of RF Heating in Bovine Muscle Ex Vivo. Left: Experiment setup showing 

the helical heating device and the position of the ultrasound imaging plane. Middle Left: A 

B-mode image of the target showing the inhomogeneous nature of the tissue. The “+” 

marker indicates the center of the heated region. Middle Right: The estimated 2D 

temperature profile overlaid on the B-mode image. Right: A temporal profile of the 

temperature change (top) at the “+” marker and a spatio-temporal representation of the 

echoes from 200 frames at the “+” marker.
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Fig. 3. 
Montage of temperature profiles at selected frames before, during and after controlled RF 

heating using helical coil. Top: Resulting from RESF without post processing. Bottom: 

RESF and three iterations of POCS (8).
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