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Abstract

A unified framework is proposed to select features by optimizing computationally feasible 

approximations of high-dimensional conditional mutual information (CMI) between features and 

their associated class label under different assumptions. Under this unified framework, state-of-

the-art information theory based feature selection algorithms are rederived, and a new algorithm is 

proposed to select features by optimizing a lower bound of the CMI with a weaker assumption 

than those adopted by existing methods. The new feature selection method integrates a plug-in 

component to distinguish redundant features from irrelevant ones for improving the feature 

selection robustness. Furthermore, a novel metric is proposed to evaluate feature selection methods 

based on simulated data. The proposed method has been compared with state-of-the-art feature 

selection methods based on the new evaluation metric and classification performance of classifiers 

built upon the selected features. The experiment results have demonstrated that the proposed 

method could achieve promising performance in a variety of feature selection problems.
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1. Introduction

Feature selection has been an important component in machine learning, especially in 

studies with high-dimensional data. Since the high-dimensional data typically contain 

irrelevant or redundant features, selecting a compact, informative subset of features not only 

reduces the computational cost for data analysis, but also potentially improves the pattern 

recognition performance [1,6,24,25]. Feature selection is also able to enhance the 

interpretability of intrinsic characteristics of the high-dimensional data [5,8,22].
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In general, feature selection methods can be categorized into 3 groups: filter methods 

[4,13,27,31,44], wrapper methods [23,26,35], and embedded methods [7,11,46,49,50]. The 

filter methods rank features according to their relevancy to the problem under study, gauged 

by proxy measures that are independent of pattern recognition models to be used in the data 

analysis. The wrapper methods select features to optimize a pattern recognition model’s 

performance, and they typically have higher computational cost than the filter methods. The 

embedded methods typically integrate the feature selection with the pattern recognition 

model learning, and can achieve good performance with moderate computational cost. 

Particularly, sparsity regularization based algorithms are representative embedded methods 

and have attracted much attention in recent years [11,34,37–41,50]. Recent advances in 

feature selection not only improve pattern recognition performance but also expand 

applications including multi-label classification, innovation management, and microarray 

and omics data analysis [1,6,13,19,24,25,29,31,33,52]. In this study, we focus on the filter 

methods that measure the relevancy of features to a pattern recognition problem under study 

based on information theoretical criteria.

In the past two decades, many information theoretical criteria have been proposed for feature 

selection [2,8,47]. Mutual information (MI) based feature selection methods, referred to as 

Mutual Information Maximization (MIM), have been widely adopted in feature selection 

studies [8,9,30]. MIM adopts mutual information to measure each feature’s relevancy to the 

class label, which does not consider redundancy and complementariness among features. An 

improved method, referred to as Mutual Information Feature Selection (MIFS), is able to 

reduce the redundancy of the selected features [3], and many variants of MIFS have been 

developed [28,45,48]. Particularly, Min-Redundancy Max-Relevance (mRMR) selects 

features with a trade-off between relevancy and redundancy of the selected features [42]. 

Moreover, several feature selection methods have been proposed to take relevance, 

redundancy, and joint effects of multiple features together into consideration 

[14,18,20,32,36,51]. For example, Joint Mutual Information (JMI) has been adopted to 

measure joint redundant and complementary effect of features in feature selection methods 

[36,51], and Conditional Mutual Information Maximization (CMIM) utilizes a min-max 

principle to exploit the joint effects of features in feature selection [14,18]. The feature 

selection methods based on information theoretical criteria have been successfully applied to 

many problems. However, most of them are manually-designed heuristics, aiming to 

simultaneously maximize the relevance of features and minimize redundancy among 

features [8].

In this study, we first present a theoretical framework for information theory based feature 

selection using Bayesian error rate and Fano’s Inequality [17,43]. Under this framework, 

most of the existing information theory based feature selection methods can be interpreted as 

maximizing a lower-order approximation of conditional mutual information between 

features to be selected and the class label, given features that have been selected under 

different assumptions. An improved method is then proposed to select features by 

Optimizing a Lower Bound of Conditional Mutual Information (OLB-CMI) with a weaker 

assumption, motivated by the principle of Occam’s Razor that the assumption is weaker, the 

method would have better generalization performance. The OLB-CMI method also 

integrates a plug-in component to distinguish redundant features from irrelevant ones, which 
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improves the feature selection robustness when most of the features to be selected are 

irrelevant. To evaluate the performance of feature selection, a novel metric is proposed to 

directly measure feature selection precision of feature selection methods based on data with 

ground truth. This evaluation metric has been adopted to evaluate the proposed feature 

selection method, 3 information theoretical methods including MIM, JMI and mRMR, 2 

classical filter methods including Fisher Score (FS) [4] and ReliefF [27], and 2 sparsity 

regularization based feature selection methods including Least Absolute Shrinkage and 

Selection Operator (LASSO) [46] and Discriminative Least Squares Regression for Feature 

Selection (DLSR-FS) [37,50]. We also evaluated the proposed method based on 

classification performance of classifiers built on the selected features on 12 publicly 

available datasets, and compared it with the aforementioned 7 feature selection algorithms.

The remainder of the paper is organized as follows. In Section 2, background knowledge of 

mutual information is presented; then a unified theoretical framework for information 

theoretical methods is proposed in Section 3 ; OLB-CMI is presented in Section 4 ; a new 

metric to gauge the performance of feature selection is proposed in Section 5 ; the 

experimental results for evaluating feature selection methods is presented in Section 6 ; and 

finally in Section 7 this paper is concluded with discussions.

2. Background

In this paper, upper case alphabets, such as A, B, and X, denote random variables; lower 

case alphabets, such as a, b and x, denote samples of random variables denoted by their 

corresponding upper case alphabets; p (·) denotes a probability distribution function, and p (· 

| ·) denotes a conditional probability distribution function; H (·) denotes entropy, I (· ; ·) 
denotes MI between two variables, and I (· ; · | ·) denotes CMI. All the random variables can 

be multi-dimensional.

Definition 1—For random variables A, B, and C, with domains , ℬ and , respectively, 

the conditional mutual information between A and B given C is defined as:

I(A; B ∣ C) − ∑
a ∈ 𝒜

∑
b ∈ ℬ

∑
c ∈ 𝒞

p(a, b, c)log p(a, b ∣ c)
p(a ∣ b)p(b ∣ c) .

When A and B are conditionally independent given C, i.e., p(a, b| c) = p(a | c) p(b| c), or p(b| 

a, c) = p(b| c), I(A ; B | C) = 0.

Lemma 1—If random variable A is independent of joint random variables (B, C), the 
conditional mutual information I (A ; B | C) is equal to zero:

I(A; B ∣ C) = 0

Proof—Since p(a, b, c) = p(a) p(b, c), Σb∈ℬ p(a, b, c) = Σb∈ℬ p(a) p(b, c). Therefore, p(a, c) 

= p(a) p(c). Then, we have p(a | c) = p(a) and 

p(a, b ∣ c) = p(a, b, c)
p(c) = p(a)p(b, c)

p(c) = p(a)p(b ∣ c) = p(a ∣ c)p(b ∣ c).
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Lemma 2—If random variable A is a deterministic function of random variable C, the 
conditional mutual information I (A ; B | C) is equal to zero:

I(A; B ∣ C) = 0.

Proof—Since A = f (C), p(b| a, c) = p(b| c). Therefore, we have I(A ; B | C) = 0.

Note that these conclusions are valid when A, B, C are multi-dimensional random variables.

3. An unified framework for information theoretic criteria based feature 

selection

Given a pattern classification problem with a training dataset {(xi, ci), i = 1, …, N}, where xi 

is a D-dimensional training data point and ci is its associated class label. xi and ci are 

considered as independent identically distributed (i.i.d.) samples of their corresponding 

random variables X = {Xj, j = 1, … D} and C, respectively. Each element Xj of X is referred 

t o as a feature.

Bayesian error rate of a given classification problem has a lower bound measured by the 

mutual information between features and the class label, as defined by Fano’s inequality 

[17,43] :

P(C ≠ C) = P(E) ≥ H(C) − I(X∼; C) − 1
log(ℂ) , (1)

where Ĉ is the predicted classification label obtained based on given features 

X∼, E = 1 i f C ≠ C

0 i f C = C
 is a random variable of Bayesian error, P (E) is the Bayesian error rate, 

and ℂ is the number of classes.

Fano’s inequality theoretically indicates that if the mutual information between the selected 

features and class label is larger, the low bound of Bayesian error rate will be smaller. Thus, 

the feature selection can be directly modeled as an optimization problem to find X*, a subset 

of X, so that it’s mutual information with the class label C is maximized.

X∗ = argmax
XS ∈ X

(I(XS; C)), (2)

where XS = XSd = {Xs(1), Xs(2), …, Xs(d)} is a subset with d features. We denote the set of 

unselected features by XS̄ = {Xs̄(1), Xs̄(2), …, Xs̄(D–d)}, denote XS without Xi by XS/i (Xi ∈ 
XS), and denote an unselected feature by Xkd or Xk.

Since it is a NP-hard problem to search all possible subsets [44], a suboptimal greedy 

forward searching strategy is typically adopted to select features. Given an optimal subset of 
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features, XSd, that has been selected, then the (d + 1)th feature, X*, to be selected should be 

able to maximize

X∗ = argmax
Xk ∈ XS

(I(X
Sd, Xk; C)) . (3)

Since I(XSd;C) is known, the optimization problem of Eq. (3) is equivalent to maximizing 

the incremental mutual information:

X∗ = argmax
Xk ∈ XS

(I(X
Sd, Xk; C) − I(X

Sd; C)) . (4)

Maximizing the incremental mutual information can be formulated as the maximization of 

CMI

X∗ = argmax
Xk ∈ XS

(I(Xk; C ∣ X
Sd)) . (5)

For the forward searching based feature selection, we present another relationship between 

Bayesian error rate and CMI (or increment mutual information) between the features and 

class label for forward feature selection formulated in Eq. (4), as stated in Theorem 1.

Theorem 1

With more features being selected, incremental Bayesian error rate is less or equal to zero. If 

and only if conditional mutual information between the features to be selected and the class 

label given the selected features is equal to zero, the equality holds.

Proof

Given an arbitrary feature X1, Bayesian error rate with X1 can be derived as:

P(E1) = ∫ P(e1, x1)dx1 = ∫ P(e1 ∣ x1)p(x1)dx1, (6)

where P (e1 | x1) = min [1 − P (c1 | x1), 1 − P (c2 | x1), P (c3 | x1) …] and [c1, c2, c3, …] is 

the sample space of the class label C.

Then, adding a feature X2, Eq. (6) can be reformulated as

P(E1) = ∬ P(e1, x1, x2)dx1dx2 = ∬ P(e1 ∣ x1, x2)p(x1, x2)dx1dx2 . (7)
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Similarly, Bayesian error rate with X1 and X2 is

P(E2) = ∬ P(e2, x1, x2)dx1dx2 = ∬ P(e2 ∣ x1, x2)p(x1, x2)dx1dx2, (8)

where P (e2 | x1, x2) = min [1 − P (c1 | x1, x2), 1 − P (c2 | x1, x2), 1 − P (c3 | x1, x2) …] and 

[c1, c2, c3, …] is the sample space of the class label C.

Combining Eq. (7) and Eq. (8), we have

P(e2 ∣ x1, x2) ≤ P(e1 ∣ x1, x2) . (9)

Thus, the incremental Bayesian error rate is less than or equal to zero, i.e., P (E2) – P (E1) ≤ 

0. If and only if p(c | x1, x2) = p(c| x1), the equality holds. Actually, when p(c | x1, x2) = p(c| 

x1), incremental mutual information or conditional mutual information between X2 and C 
given X1 is also equal to zero: I(X1, X2 ;C) – I(X1, ;C) = I(X2 ;C| X1) = 0. Then, we can 

obtain the conclusion.

Remark 1

Theorem 1 theoretically justifies the intuitive fact that irrelevant features and redundant 

features are non-informative or useless to lower Bayesian error rate. If a feature to be 

selected, Xk, is an irrelevant feature, i.e., Xk is jointly independent of the selected features 

and the class label (XSd, C), according to Lemma 1 the conditional mutual information 

I(Xk ;C| XSd) = 0, indicating that the increment Bayesian error is equal to zero. If Xk is 

redundant, i.e., Xk = f (XSd), according to Lemma 2 the conditional mutual information 

I(Xk ;C | XSd) = 0, indicating that the increment Bayesian error is also equal to zero.

Although the forward strategy can address the NP-hard problem, the computational cost of 

high-dimensional CMI is prohibitive with the increasingly selected features because of curse 

of dimensionality. In practice, most of the existing information theoretical feature selection 

methods approximate the CMI with no more than 3 variables, and use heuristics to 

simultaneously maximize the relevance of features and minimize redundancy among the 

selected features [8]. In following, we will illustrate that most of the heuristic strategies are 

essentially low-dimensional approximations of the high-dimensional CMI modeled by Eq. 

(2) or Eq. (5) with different assumptions. Particularly, we choose 3 representative methods, 

including MIM, JMI, and mRMR. The MIM method is the basic form of the information 

theory based feature selection methods, while JMI and mRMR have better performance for 

feature selection among existing information based methods [8]. According to the principle 

of Occam’s Razor, the weaker assumptions adopted in a method, the better generalization 

performance the method will have. Therefore, this framework can enable us to theoretically 

evaluate and compare these algorithms.
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3.1. Mutual Information Maximization (MIM)

MIM selects features based on the mutual information between each feature and the class 

label without taking joint effects of features into consideration [9,30], i.e.,

X∗ = argmax
Xk ∈ X

(I(Xk; C)), (10)

which can be derived from Eq. (2) based on Assumption 1 and Assumption 2.

Assumption 1—All features are mutually independent, i.e.,

p(xs) = ∏
xk ∈ xs

p(xk) . (11)

Assumption 2—All features are mutually conditionally independent given the class label, 

i.e.,

p(xs ∣ c) = ∏
xk ∈ xs

p(xk ∣ c) . (12)

Proposition 1—The optimization problem of MIM and Eq. (2) have the same solution if 
Assumption 1 and Assumption 2 are satisfied.

Proof. is presented in Appendix. A.

MIM is a simple and intuitive information theory based feature selection method. However, 

Assumption 1 and 2 are so strong that they cannot be satisfied in most real applications. 

Therefore, the performance of MIM is often limited.

3.2. Joint Mutual Information (JMI)

JMI was first proposed by Yang and John [51], and was further developed by Meyer et al. 

[36]. JMI can be modeled as [51] :

X∗ = argmax
Xk ∈ XS

∑
Xi ∈ XS

I(Xi, Xk; C) . (13)

This method can be derived from Eq. (5) if Assumptions 3 and 4 are satisfied.
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Assumption 3—Any one of the unselected features is conditionally independent of union 

of the selected features after removing a feature given the removed feature itself, i.e.,

p(xk; xs/i ∣ xi) = p(xk ∣ xi)p(xs/i ∣ xi) . (14)

Assumption 4—Any one of the unselected features is conditionally independent of union 

of the selected features after removing any feature given the class label and the removed 

feature itself, i.e.,

p(xk; xs/i ∣ , xi, c) = p(xk ∣ xi, c)p(xs/i ∣ xi, c) . (15)

Proposition 2—The optimization problem of JMI and Eq. (5) have the same solution if 
Assumption 3 and Assumption 4 are satisfied.

Proof. is provided in Appendix. B.

Assumption 3 is weaker than Assumption 1. If Assumption 1 is satisfied, Xk is independent 

of joint random variable (XS/i, Xi), and the proof of Lemma 1 indicates that p(xk; xs/i|xi) = 

p(xk|xi) p(xs/i|xi). Thus, Assumption 3 is satisfied, but not vice versa. Assumption 4 is also 

weaker than Assumption 2. If Assumption 2 is satisfied, Xk is conditionally independent of 

XS and Xi given C, indicating that p(xk|xs/i, xi, c) = p(xk|c) = p(xk|xi, c). Thus, Assumption 4 

is satisfied, but not vice versa. Therefore, JMI would have better feature selection 

performance than MIM.

3.3. Minimum Redundancy and Maximum Relevance (mRMR)

mRMR criterion is a combination of relevance and redundancy terms [15,42]. The feature 

selection based on mRMR is to find features that have the best trade-off between relevance 

and redundancy of the selected features, i.e.,

X∗ = argmax
Xk ∈ XS

I(Xk; C) − 1
d ∑

Xi ∈ XS

I(Xi; Xk) , (16)

where d is the cardinality of XS, I(Xk; C) is the relevance term, and 1
d ∑Xi ∈ XS

I(Xi; Xk) is the 

redundancy term. mRMR can be derived from Eq. (5) if Assumption 3 and Assumption 5 are 

satisfied.

Assumption 5

Any one of the unselected features is conditionally independent of union of the selected 

features given the class label, i.e.,
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p(xk; xs ∣ c) = p(xk ∣ c)p(xs ∣ c) . (17)

Proposition 3

The optimization problem of mRMR and Eq. (5) have the same solution if Assumption 3 

and Assumption 5 are satisfied.

Proof. is provided in Appendix. C.

Assumption 5 is weaker than Assumption 2. If Assumption 2 is satisfied, Xk is conditionally 

independent of XS given C. Thus, Assumption 5 is satisfied, but not vice versa. Therefore, 

mRMR would have better feature selection performance than MIM.

4. Feature selection by optimizing a lower bound of CMI

Most of the existing information theory based feature selection algorithms adopt feature 

selection criteria that are low-order approximation of the high-dimensional CMI modeled by 

Eq. (5) with different assumptions. Motivated by the principle of Occam’s Razor, we 

propose a novel feature selection algorithm, referred to as optimizing a lower bound of CMI 

(OLB-CMI), by adopting a relatively weaker assumption. Instead of directly optimizing 

CMI, we propose to optimize its lower bound, i.e.,

X∗ = argmax
Xk ∈ XS

max
Xi ∈ XS

I(Xi, C; Xk) − I(Xi ∗; Xk) , (18)

where Xi ∗ = argmax
Xi ∈ XS

(I(Xi, C; Xk)).

Proposition 4

The optimal value of OLB-CMI is a tight lower bound of the optimal value of Eq. (5) if 
Assumption 3 is satisfied.

Proof. is provided in Appendix.D.

According to Fano’s Inequality, maximizing original high-dimensional CMI in Eq. (5) is not 

related to the exact Bayesian error rate, but is associated with the low bound of Bayesian 

error rate. In fact, suggested by Proposition 4, OLB-CMI also tends to lower Bayesian error 

rate. Furthermore, OLB-CMI reserves the property of the exact high-dimensional CMI 

model in Eq. (5), i.e., the objective function value of the optimization model in Eq. (18) will 

be zero if the feature to be selected, Xk, is conditionally independent of the class label C 
given the selected feature Xi (p(xk, c|xi) = p(xk|xi) p(c|xi)). Therefore, OLB-CMI will not 

select such features that are fully irrelevant or redundant as suggested by Remark 1. 
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However, this property is not preserved in MIM, JMI and mRMR, and they may select fully 

irrelevant or redundant features.

The optimization problem of Eq. (18) can be solved by following two steps:

S1 For any Xk, find Xki ∗ = argmax
Xi ∈ XS

(I(Xi, C; Xk))

S2 X∗ = argmax
Xk ∈ XS and

I(Xki ∗, C; Xk)
H(Xk) > α

(I(Xki ∗, C; Xk) − I(Xki ∗; Xk)),

where α is a parameter.

In particular, S2 has an optional condition, 
I(Xki ∗, C; Xk)

H(Xk) > α, which could be used as a plug-

in component for rejecting irrelevant features. In the present study, a feature Xk is deemed as 

an irrelevant one if 
I(Xki ∗, C; Xk)

H(Xk) ≤ α, where H (Xk) is a normalization term and α (0 ≤α ≤1) 

is a parameter that can be determined using cross-validation. When α = 0, the plug-in 

component does not play its role in the feature selection. The reason why we set threshold 

parameter α is following.

Supposing most informative features have been selected, the remaining features are 

irrelevant or redundant to the problem under study. It is worth noting that fully irrelevant and 

redundant features are useless (i.e., adding 0 to the approximation of CMI). If features with 

small values for the approximation of CMI in Eq. (5) are selected, they provide useful 

information for the classification. Under this circumstance, one may prefer to select the 

redundant features rather than select those irrelevant ones if the forward feature selection 

keeps running because irrelevant features may deteriorate the performance of classification 

models in practice, especially when the number of data samples is small. However, such an 

issue has not been taken into consideration in the existing information theory based feature 

selection methods, and they are not equipped to distinguish irrelevant features from 

redundant features.

For a given feature Xk, if it is an irrelevant feature that is most likely independent of any of 

the selected features, Xi, and the class label C, max (I (Xi, C; Xk)) will be small. However, if 

it is a redundant feature that is somewhat dependent on the selected features, max (I (Xi, C; 
Xk)) will be relatively large. Thus, the proposed OLB-CMI adopts a parameter α for 
I(Xki ∗, C; Xk)

H(Xk)  to distinguish redundant features from irrelevant features.

The implementation of OLB-CMI is summarized in Algorithm 1. To simplify the 

implementation, we estimate probability distributions of random variables using histogram 

estimators with bins of fixed width. If the number of bins is B and the number of data points 

is N, the computational cost of mutual information with three variables are O (N + B3). If 

the number of total features is D and the number of features to be selected is d, according to 

Algorithm 1, the time complexity of OLB-CMI is O(dD(N + B3)) and the space complexity 
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of OLB-CMI is O (dD). Therefore, OLB-CMI has a similar computational complexity as 

JMI and mRMR.

Algorithm 1

implementation of OLB-CMI.

Input : Full feature set X = {X1, X2, X3, …, XD}, class label C, the number of features to be selected d and threshold α

index set of the selected features: S = {}

index set of the unselected features: S̄ = {1, 2, 3, …, D}

for i = 1 to D do

 fea_lab_mi[i] = I(Xi, C)

 fea_entropy[i] = H(Xi)

end for

k∗ = argmax
1 ≤ i ≤ D

(fea_lab_mi[i])

S[1] = k*

S̄ = S̄/k*

for i = 2 to d do

 for k = 1: D − i + 1 do

  fea_lab_mi [i −1] [ S̄ [k)] = I(XS[i − 1], C; XS̄[k])

   t = argmax
1 ≤ m ≤ i − 1

(fea_lab_mi [m][S[k]])

  if 
I(XS[t], C; XS[k])

fea_entropy[S[k]] ≥ α  then

  max_fea_lab_cmi[S̄[k]] = I(XS[t], C; XS̄[k]) − I(XS[t]; XS̄[k])

  else

   max_fea_lab_cmi [S̄[k]] = 0

  end if

 end for

  k∗ = argmax
1 ≤ k ≤ D − 1

(max_fea_lab_cmi [S[k]])

 S[i] = S̄[k*]

 S̄ = S̄/S̄[k*]

end for

output: index set of the selected features S

5. Feature selection precision

A new metric is proposed to directly gauge the precision of feature selection methods based 

on known information of valid (relevant) and irrelevant/redundant features given a dataset, 

similar to the area under the receiver operating characteristic curve (ROC) for evaluating the 

classification performance [16]. For a given feature selection result, we can compute two 

ratios, one for the number of selected features to the total number of features (SF2TF) and 
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the other for the number of selected valid features to the total number of valid features 

(SVF2TVF).

As illustrated by Fig. 1, based on the aforementioned two ratios, a curve similar to the ROC 

curve can be obtained, and the area under the curve ranging from 0.5 to 1, referred to as 

Feature Selection Precision (FSP), can be used to evaluate the feature selection precision. 

For a random feature selection algorithm, a curve indicated by B in Fig. 1 will be obtained 

with FSP = 0.5, while an algorithm better than chance will yield a curve similar to A. A 

higher FSP indicates a more precise feature selection, since the valid features dominates the 

selected features, while a lower FSP indicates a worse feature selection performance since 

more irrelevant features are selected. Rather than resorting to proxy measures, such as 

classification accuracy, this metric can directly evaluate the performance of feature selection 

models.

6. Experiments

We carried out experiments based on both synthetic data and real-world data to evaluate the 

performance OLB-CMI and compared it with state-of-the-art information theory based 

feature selection algorithms, including MIM, JMI and mRMR. We also compared our 

method with 2 classical filter methods including Fisher Score (FS) [4] and ReliefF [27], and 

2 sparsity regularization based feature selection methods including Least Absolute 

Shrinkage and Selection Operator (LASSO) [46] and Discriminative Least Squares 

Regression for Feature Selection (DLSR-FS) [37,50].

Based on a simulated dataset, we examined the impact of parameter α in the plug-in 

component on the performance of OLB-CMI, measured FSP values of different methods. 

Based on real-world datasets, we compared the classification performance of OLB-CMI 

with the state-of-the-art feature selection methods.

6.1. Experiments based on a simulated dataset

A synthetic dataset was generated by a similar procedure as used in [21]. Firstly, 30 binary 

data points with 10-bit were randomly generated ai = [αi,1, αi,2, …, αi,j, …αi,10] (1 ≤ i ≤ 30, 
αi,j = {−1, 1}) and randomly divided into 2 classes. Based on the 30 data points, ni = 100 

i.i.d. examples for each ai were generated based on a Gaussian distribution  (ai, I), 
yielding a data set with n = 3000 examples and du = 10 features. Secondly, dr = 10 redundant 

features were added to the dataset. They were obtained by point-wise multiplying the useful 

features by a random n × du matrix B with uniformly distributed random numbers between 

[0.9, 1.1]. Thirdly, elements of dn = 180 irrelevant features were generated with a Gaussian 

distribution  (0, 1). Fourthly, all the elements of features were corrupted by adding 

Gaussian noise  (0, 0. 2). Finally, 2% of class labels of the data points were randomly 

exchanged.

Based on the synthetic dataset, we compared classification accuracy of classifiers built on 

features selected by OLB-CMI with and without the plug-in component. Gaussian-kernel 

support vector machines (SVMs) were adopted to build classifiers [12]. The dataset was 

randomly split into training and testing subsets with ratio 6:4, and total 50 random trials 
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were implemented. And an optimal α and hype-parameters of the SVM classifiers were 

optimized by 10-fold cross validation. The classification results are shown in Fig. 2 and 

Table 1.

As shown in Fig. 1 and Table 1, the features selected by OLB-CMI with and without the 

plug-in component had similar classification accuracy for the top 8 selected features. 

However, with more features were selected by OLB-CMI without the plug-in component, 

their associated classification accuracy decreased consistently, while the features selected by 

OLB-CMI with the plug-in component could further improve the classification accuracy. 

These results indicated that an appropriate α in OLB-CMI with the plug-in component could 

improve the feature selection performance. This is simply because redundant features 

contain useful information, complementary to the selected features. In contrast, if all the 

less-informative features are selected without preference, irrelevant features might be 

selected, resulting in deteriorated classification performance. Therefore, selecting redundant 

features rather than irrelevant features can help improve the feature selection performance.

Based on the synthetic dataset, we utilized the FSP value to evaluate feature selection 

performance of different methods under comparison. Specifically, the relevant features were 

10 useful features or their duplicates. A relevant feature and its corresponding duplicate 

were mutual exclusive. If one of them had been selected, the other would not be treated as a 

relevant feature any more. As shown in Fig. 3 and Table 2, the experimental results indicated 

that OLB-CMI could select relevant features more precisely, and FSP of OLB-CMI was 

close to the theoretically optimal value (0.9750), i.e., the top ten features selected by OLB-

CMI are all valid features in all 50 trials. The results also demonstrated that JMI, ReliefF, 

LASSO, and DLSR-FS had better FSP values than others.

6.2. Experiments based on real-world datasets

—The feature selection algorithms were also evaluated based on 12 real-world data sets with 

respect to classification accuracy of classifiers built upon selected features. The 12 datasets 

are detailed in Table 3.

SEMEION and ISOLET: They were obtained from UCI. 1 SEMEION contains 1593 

handwritten digits images from ~80 persons, stretched in a rectangular box of 16 × 16 with a 

gray scale of 256. ISOLET is a speech recognition data set with 7797 samples in 26 classes, 

and each sample has 617 features.

ARCENE and GISETTE: They were obtained from NIPS feature selection challenge.2 

Both of them are two-class classification datasets with 10,000 and 5000 features, 

respectively. ARCENE contains data from cancer patients and normal controls, and 

GISETTE contains 2 handwritten digits: 4 and 9.

1Available at https://archive.ics.uci.edu/ml/index.html.
2Available at http://www.clopinet.com/isabelle/Projects/NIPS2003/.
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WebKB-WT and WebKB-WC3: These datasets comprise about 1200 web pages grouped 

into 7 classes from computer science departments of two universities: Washington and 

Wisconsin.

LUNG and TOX-171: These datasets comprise bioinformatics measures. LUNG has 3312 

genes with standard deviations larger than 50 expression units [10]. TOX-171 was obtained 

from feature selection @ ASU,4 comprising 171 samples with 5748 features.

UMIST5: It includes 575 face images of 56 × 46 from 20 different people, yielding a feature 

dimension of 2576.

AR6: It includes face images of 50 × 40 from 120 different individuals, yielding a feature 

dimension of 2000. For each individual, 14 images were acquired with different facial 

expression and illuminations.

ORL7: It includes 400 face images of 92 × 112 from 40 different individuals, yielding a 

feature dimension of 10,304. For each individual, the images were taken by varying lighting, 

facial expressions and facial details (glasses/no glasses).

CMU_PIE8: We selected the frontal pose dataset (09). It contains 64 persons and each 

person has 24 face images of 64 × 64 taken with different illuminations. The number of 

features is 4096.

To build classifiers based on selected features, linear-SVM was adopted in the present study 

[12]. A cross-validation strategy was used to optimize the regularization parameter C for the 

linear-SVM classification by searching a parameter set [10−3, 10−2, 10 −1, 1, 101, 102, 103] 

based on a training dataset for all the feature selection algorithms. For DLSR-FS, we also 

selected an appropriate λ from the candidate set [10−3, 10−2, 10−1, 1, 101, 102, 103] using 

cross-validation, resulting in a parameter space { C, λ} with 49 elements. For OLB-CMI, α 
was also tuned by cross-validation and the candidate set was [0, 0.05, 0.1, 0.15, 0.2, 0.25, 

0.3], resulting in a parameter space { C, α} with 49 elements.

In the experiments, each dataset was randomly spilt into training and testing subsets. The 

ratio between the numbers of training and testing samples was 6:4. And a total of 10 trials 

were run for generating different sets of training and testing samples and the final 

classification accuracy was the average value of 10 trials. A 3-fold cross-validation was used 

for datasets with less than 200 training samples, and an 8-fold cross-validation was used for 

datasets with more than 200 samples.

The classification results are shown in 2 different figures by clustering the 8 feature selection 

methods into 2 groups. Fig. 4 shows comparison results among our method, MIM, JMI, and 

3Available at http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/.
4Available at http://featureselection.asu.edu/datasets.php.
5Available at http://www.sheffield.ac.uk/eee/research/iel/research/face.
6Available at http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html.
7Available at http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
8Available at http://vasc.ri.cmu.edu/idb/html/face/.
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mRMR, and Fig. 5 shows comparison results among our method, FS, ReliefF, LASSO and 

DLSR-FS. The average classification accuracy and the standard deviation on the top selected 

40 and 80 features for each dataset are summarized in Table 4, Table 5, Table 6 and Table 7, 

respectively.

As shown in Fig. 4, OLB-CMI achieved overall better classification accuracy on almost all 

the datasets with different numbers of the selected features, except for LUNG and TOX-171 

that have relatively smaller number of data samples. For the classifiers built upon the top 40 

and 80 selected features, as shown in Table 4 and Table 5, the performance of our method 

was overall better than other mutual information based methods. Particularly, on SEMION, 

ISOLET, GISETTE, ARCENE and CMU-PIE, OLB-CMI achieved much better 

performance than alternative methods.

As shown in Fig. 5, OLB-CMI had better performance than FS and ReliefF with a large 

margin. Our method had slightly lower accuracy than ReliefF on WebKB-WT. The results 

shown in Table 6 and Table 7 demonstrated that the classification accuracy of our method 

was better than FS and ReliefF on most of the datasets. The results shown in Fig. 5 as well 

as in Tables 6 and 7 also demonstrated that OLB-CMI had better performance than LASSO 

and DLSR-FS on most datasets with different numbers of the selected features. However, 

DLSR-FS had better performance than our method on GISETTE. Overall, our method 

achieved competitive classification accuracy.

In summary, on the 12 datasets, these classification results clearly demonstrated that OLB-

CMI had an overall better performance than other 7 feature selection methods, including 3 

mutual information based feature selection methods, 2 filter methods, and 2 sparsity 

regularization based feature selection methods.

In addition, as shown in Fig. 4, Table 4 and Table 5, OLB-CMI had overall better 

performance than JMI and mRMR that performed better than MIM. The performance 

ranking of these methods was consistent with the order of strength of the assumptions 

adopted in these methods. Interestingly, JMI and mRMR were built on assumptions with 

similar strength, and they had similar performance too. These results also provided evidence 

to support the principle of Occam’s Razor that the weaker assumptions adopted in a method, 

the better performance the method will have.

6.3. Running time comparison on real-world datasets

Since LASSO was implemented in C, and other algorithms were implemented in Matlab. 

Therefore we did not compare LASSO with other methods with respect to their 

computational costs. In the experiments, the stop conditions of all the feature selection 

algorithms were following. MIM, JMI, mRMR, and OLB-CMI (α = 0) run until top 100 

features were selected; FS and ReliefF run until all features were ranked; DLSR-FS run until 

the change of its objective function value was less than 10−4 between 2 successive iteration 

steps or the iterative counter was more than 1000 with the regularized parameter μ = 1. We 

run all the methods on a desktop PC with an Intel i7-3770 3.4 GHz CPU and 8 G RAM.
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Running time taken by different methods on the 12 widely-used datasets is summarized in 

Table 8. As shown in Table 8, MIM had the lowest computational cost among all the 

methods under comparison, FS and MIM had similar computational costs, and ReliefF had 

moderate computational cost. However, OLB-CMI was computationally expensive 

compared with other mutual information based feature selection methods. It is worth noting 

that the time taken by DLSR-FS fluctuated dramatically on different datasets. Since DLSR-

FS needs to solve a least-square minimization problem whose computational complexity is 

O (N2D) at each iteration step, DLSR-FS is more suitable for datasets with a small number 

of samples.

7. Discussion and conclusions

Information theory based feature selection methods have achieved promising performance 

for high-dimensional classification problems for its computational efficiency. However, the 

mechanism behind their success is not well understood. In the present study, a new 

relationship between Bayesian error rate and the mutual information between features and 

their class label is discovered, and a unified framework is proposed to bring together 

information theory based feature selection methods. Under this unified framework, several 

successful algorithms, including MIM, JMI and mRMR, can be derived as special cases that 

optimize computationally feasible approximations of high-dimensional conditional mutual 

information between selected features and their associated label under different assumptions.

A new feature selected method, referred to as OLB-CMI, was developed within the unified 

framework based on a relatively weaker assumption to estimate conditional mutual 

information. OLB-CMI could integrate a plug-in component to distinguish redundant from 

irrelevant features, which makes the feature selection more robust. A new metric, Feature 

Selection Precision, was developed to directly access the precision of feature selection. The 

evaluation result demonstrated that OLB-CMI performed better than alternative feature 

selection methods with respect to Feature Selection Precision. Moreover, OLB-CMI 

achieved overall better classification performance than alterative information theory based 

feature selection algorithms on 12 benchmark datasets. Additionally, OLB-CMI achieved 

similar classification performance as LASSO and DLSR.

Our method could be further improved by developing a method to adaptively set threshold 

parameter α in the plug-in component that has to be tuned empirically in the present study.

Acknowledgments

This work was partically supported by National Key Basic Research and Development Program of China 
(2015CB856404), National Natural Science Foundation of China (61473296 and 81271514), and National Institutes 
of Health grants (EB022573, CA189523, MH107703, DA039215, and DA039002).

References

1. Antonelli M, Ducange P, Marcelloni F, Segatori A. On the influence of feature selection in fuzzy 
rule-based regression model generation. Inf Sci. 2016; 329:649–669.

2. Balagani KS, Phoha VV. On the Feature Selection Criterion Based on an Approximation of 
Multidimensional Mutual Information. IEEE Trans Pattern Anal. 2010; 32:1342–1343.

Peng and Fan Page 16

Inf Sci (Ny). Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Battiti R. Using Mutual Information for Selecting Features in Supervised Neural-Net Learning. 
IEEE Trans Neural Network. 1994; 5:537–550.

4. Bishop CM. Neural Networks for Pattern Recognition. Oxford Univ. Press; U.K: 1995. 

5. Bolon-Canedo V, Sanchez-Marono N, Alonso-Betanzos A. A review of feature selection methods on 
synthetic data. Knowl Inf Syst. 2013; 34:483–519.

6. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A, Benítez JM, Herrera F. A review of 
microarray datasets and applied feature selection methods. Inf Sci. 2014; 282:111–135.

7. Bradley P, Mangasarian O. Feature selection via concave minimization and support vector machines. 
International Conference on Machine Learning; 1998; 82–90. 

8. Brown G, Pocock A, Zhao MJ, Lujan M. Conditional likelihood maximisation: a unifying 
framework for information theoretic feature selection. J Mach Lear Res. 2012; 13:27–66.

9. Manning CD, Raghavan P, Schutze H. Introduction to Information Retrieval. Cambridge Univ. 
Press; Cambridge, U.K: 2009. 

10. Cai ZP, Goebel R, Salavatipour MR, Shi Y, Xu LZ, Lin G. Selecting genes with dissimilar 
discrimination strength for sample class prediction. Ser Adv Bioinform. 2007; 5:81–90.

11. Cawley GC, Talbot NLC, Girolami M. Sparse multinomial ogistic regression via Bayesian l1 
regularisation. Adv Neural Inf Process Syst. 2006:209–216.

12. Chang CC, Lin CJ. LIBSVM: A Library for Support Vector Machines. ACM Trans Intel Syst Tech. 
2011; 2Peng H, Fan Y. Information Sciences. 2017; 418–419:652–667. 667.

13. Che J, Yang Y, Li L, Bai X, Zhang S, Deng C. Maximum relevance minimum common redundancy 
feature selection for nonlinear data. Inf Sci. 2017; 409:68–86.

14. Cheng HR, Qin ZG, Feng CS, Wang Y, Li FG. Conditional Mutual Information-Based Feature 
Selection Analyzing for Synergy and Redundancy. Etri J. 2011; 33:210–218.

15. Ding C, Peng H. Minimum Redundancy Feature Selection for Microarray Gene Expression Data. J 
Bioinf Comput Biol. 2005; 03:185–205.

16. Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006; 27:861–874.

17. Feder M, Merhav N. Relations between Entropy and Error-Probability. IEEE Trans Inform Theory. 
1994; 40:259–266.

18. Fleuret F. Fast binary feature selection with conditional mutual information. J Mach Lear Res. 
2004; 5:1531–1555.

19. García-Torres M, Gómez-Vela F, Melián-Batista B, Moreno-Vega JM. High-dimensional feature 
selection via feature grouping: A Variable Neighborhood Search approach. Inf Sci. 2016; 326:102–
118.

20. Guo BF, Nixon MS. Gait feature subset selection by mutual information. IEEE Trans Syst Man Cy 
A. 2009; 39:36–46.

21. Guyon I. Design of experiments for the NIPS 2003 variable selection benchmark. NIPS. 2003; 
2013:1–30.

22. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003; 
3:1157–1182.

23. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support 
vector machines. Mach Learn. 2002; 46:389–422.

24. He S, Chen H, Zhu Z, Ward DG, Cooper HJ, Viant MR, Heath JK, Yao X. Robust twin boosting 
for feature selection from high-dimensional omics data with label noise. Inf Sci. 2015; 291:1–18.

25. Hernández-Pereira E, Bolón-Canedo V, Sánchez-Maroño N, Álvarez-Estévez D, Moret-Bonillo V, 
Alonso-Betanzos A. A comparison of performance of K-complex classification methods using 
feature selection. Inf Sci. 2016; 328:1–14.

26. Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, Vapnik V. Feature selection for SVMs. 
Adv Neural Inf Process Syst. 2000

27. Kira K, Rendell LA. A Practical Approach to Feature-Selection. Mach Learn. 1992:249–256.

28. Kwak N, Choi CH. Input feature selection for classification problems. IEEE Trans Neural 
Network. 2002; 13:143–159.

29. Lee J, Kim DW. Memetic feature selection algorithm for multi-label classification. Inf Sci. 2015; 
293:80–96.

Peng and Fan Page 17

Inf Sci (Ny). Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Lewis DD. Feature-Selection and Feature-Extraction for Text Categorization. Speech Natural 
Lang. 1992:212–217.

31. Li F, Zhang Z, Jin C. Feature selection with partition differentiation entropy for large-scale data 
sets. Inf Sci. 2016; 329:690–700.

32. Lin DH, Tang X. Conditional infomax learning: An integrated framework for feature extraction and 
fusion. Lecture Notes Comput Sci. 2006; 3951:68–82.

33. Lin Y, Hu Q, Zhang J, Wu X. Multi-label feature selection with streaming labels. Inf Sci. 2016; 
372:256–275.

34. Liu J, Ji S, Ye J. Multi-Task Feature Learning Via Efficient L2,1-Norm Minimization. Uncertainty 
Artif Intell. 2009:339–348.

35. Maldonado S, Weber R, Famili F. Feature selection for high-dimensional class-imbalanced data 
sets using Support Vector Machines. Inf Sci. 2014; 286:228–246.

36. Meyer PE, Schretter C, Bontempi G. Information-Theoretic Feature Selection in Microarray Data 
Using Variable Complementarity. IEEE J Stsp. 2008; 2:261–274.

37. Nie F, Huang H, Cai X, Ding C. Efficient and Robust Feature Selection via Joint L2,1-Norms 
Minimization. Adv Neural Inf Process Syst. 2010:1813–1821.

38. Obozinski G, Taskar B, Jordan M. Technical report. Department of Statistics, University of 
California; Berkeley: 2006. Multi-task feature selection. 

39. Peng H, Fan Y. Direct l_(2, p)-Norm Learning for Feature Selection, CoRR, abs/1504.00430. 2015

40. Peng H, Fan Y. Direct Sparsity Optimization Based Feature Selection for Multi-Class 
Classification. International Joint Conference on Artificial Intelligence; 2016; 1918–1924. 

41. Peng H, Fan Y. A general framework for sparsity regularized feature selection via iteratively 
reweighted least square minimization. AAAI Conference on Artificial Intelligence; 2017; 2471–
2477. 

42. Peng HC, Long FH, Ding C. Feature selection based on mutual information: Criteria of max-
dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal. 2005; 27:1226–1238.

43. Fano R. Transmission of information: a statistical theory of communications. Ire Trans Hum Fact 
Elect. 1961; 29:793–794.

44. Song L, Smola A, Gretton A, Bedo J, Brogward K. Feature Selection via Dependence 
Maximization. J Mach Learn Res. 2012; 13:1393–1434.

45. Tesmer M, Estevez PA. AMIFS: Adaptive feature selection by using mutual information. IEEE 
Ijcnn. 2004:303–308.

46. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc B Met. 1996; 58:267–
288.

47. Vergara JR, Estevez PA. A review of feature selection methods based on mutual information. 
Neural Comput Appl. 2014; 24:175–186.

48. Vidal-Naquet M, Ullman S. Object recognition with informative features and linear classification. 
Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on; 2003; 281–288. 

49. Wang L, Zhu J, Zou H. Hybrid huberized support vector machines for microarray classification and 
gene selection. Bioinformatics. 2008; 24:412–419. [PubMed: 18175770] 

50. Xiang SM, Nie FP, Meng GF, Pan CH, Zhang CS. Discriminative least squares regression for 
multiclass classification and feature selection. IEEE Trans Neur Net Learn. 2012; 23:1738–1754.

51. Yang HH, Moody J. Data visualization and feature selection: New algorithms for nongaussian data. 
Adv Neur In. 2000; 12:687–693.

52. Yilmaz Eroglu D, Kilic K. A novel Hybrid Genetic Local Search Algorithm for feature selection 
and weighting with an application in strategic decision making in innovation management. Inf Sci. 
2017; 405:18–32.

Peng and Fan Page 18

Inf Sci (Ny). Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix

A. Proof of Proposition 1

Proof

If Assumption 1 and Assumption 2 are satisfied, we have

I(XS; C) = ∫ p(xs, c)log
p(xs, c)

p(xs)p(c)dxsdc

= ∫ p(xs, c)log
∏xk ∈ xs

p(xk ∣ c)
∏xk ∈ xs

p(xk) dxsdc

= ∫ p(xs, c)∑ log
p(xk ∣ c)

p(xk) dxsdc

= ∫ p(xs, c)∑ log
p(xk, c)

p(xk)p(c)dxsdc

= ∑ I(Xk; C) .

(A.1)

So, MI between the selected features and their label is equal to the sum of MI between each 

individual feature and the class label. Therefore, selecting features according to their ranks 

of individual MI is equivalent to maximizing MI between the selected features and the class 

label.

B. Proof of Proposition 2

Proof

The optimization problem of maximization of CMI Eq. (5) can be equivalently formulated 

as

X∗ = argmax
Xk ∈ XS

(I(Xk; c) + I(X
Sd; Xk ∣ C) − I(X

Sd; Xk)) . (A.2)

For any feature Xi in the selected feature set XS, we have

I(XS; Xk) − I(Xi; Xk) = I(XS/i; Xk ∣ Xi) ≥ 0. (A.3)

If Assumption 3 is satisfied, the equality will hold, i.e.,
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I XS/i; Xk ∣ Xi = 0. (A.4)

Then, we obtain

I(Xi; Xk) = I(XS; Xk) . (A.5)

And, it indicates

1
d ∑

Xi ∈ XS

I(Xi; Xk) = I(XS; Xk) . (A.6)

Meanwhile, if Assumption 4 is satisfied, we have

I(XS; Xk ∣ C) − I(Xi, Xk ∣ C) = I(Xi, Xk ∣ XS/i, C) = 0. (A.7)

JMI is also equivalent to

X∗ = argmax
Xk ∈ XS

I(Xk; C) + 1
d ∑

Xi ∈ XS

I(Xi, Xk ∣ C) − 1
d ∑

Xi ∈ XS

I(Xi; Xk) . (A.8)

Therefore, if Assumption 3 and Assumption 4 are satisfied, JMI is equivalent to Eq. (A.2) 

and Eq. (5).

C. Proof of Proposition 3

Proof

According to the proof of Proposition 2, if Assumption 3 is satisfied, we have

1
d ∑

Xi ∈ XS

I(Xi; Xk) = I(XS; Xk) . (A.9)

If Assumption 5 is satisfied, then
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I(XS; Xk ∣ C) = 0. (A.10)

Recalling mRMR:

X∗ = argmax
Xk ∈ XS

I(Xk; C) − 1
d ∑

Xi ∈ XS

I(Xi; Xk) . (A.11)

Therefore, if Assumption 3 and Assumption 5 are satisfied, mRMR is equivalent to Eq. (A.

2) and Eq. (5).

D. Proof of Proposition 4

Proof

The optimization problem of Eq. (5) is equivalent to

X∗ = argmax
Xk ∈ XS

(I(X
Sd, C; Xk) − I(X

Sd; Xk)) . (A.12)

If Assumption 3 is satisfied, for any of the selected features Xi and any of the unselected 

features Xk, we have

I(XS; Xk) − I(Xi; Xk) = I(XS/i; Xk ∣ Xi) = 0. (A.13)

Therefore

I(XS; Xk) = I(Xi; Xk) . (A.14)

Since any conditional mutual information is greater or equal to zero,

I(XS, C; Xk) − I(Xi, C; Xk) = I(XS/i; Xk ∣ Xi, C) ≥ 0. (A.15)

Thus,
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I(Xi, C; Xk) ≤ I(XS, C; Xk) . (A.16)

Combining Eq. (A.14) and Eq. (A.16), we have

I(Xi, C; Xk) − I(Xi; Xk) ≤ I(XS, C; Xk) − I(XS; Xk) . (A.17)

Therefore, max
Xi ∈ XS

I(Xi, C; Xk) − I(Xi ∗; Xk) is a tight lower bound of I (Xk; C|XSd).
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Fig. 1. 
Illustration of Feature Selection Precision (FSP). x axis is selected-features-to-total-features 

ratio (SF2 TF) and y axis is selected-valid-features-tototal- valid-features ratio (SVF2TVF). 

The area under the curve is FSP.
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Fig. 2. 
Classification accuracy of SVM classifiers built on features selected by OLB-CMI with and 

without the plug-in component. The plug-in component’s α was optimized by 10-fold cross 

validation based on the training samples.
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Fig. 3. 
FSP Curves for different feature selection algorithms.
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Fig. 4. 
Average classification accuracy of 10 trials of classifiers built on features selected by 

different information theory based feature selection methods: MIM, JMI, mRMR, and OLB-

CMI. The results shown were on (a) SEMEION, (b) ISOLET, (c) ARCENE, (d) GISETTE, 

(e) LUNG, (f) TOX-171, (g) WebKB-WT, (h) WebKB-WC, (i) UMIST, (j) AR, (k) ORL, (l) 

CMU-PIE.
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Fig. 5. 
Average classification accuracy of 10 trials of classifiers built on features selected by 

different feature selection methods: FS, ReliefF, LASSO, DLSR-FS and OLB-CMI. The 

results shown were on (a) SEMEION, (b) ISOLET, (c) ARCENE, (d) GISETTE, (e) LUNG, 

(f) TOX-171, (g) WebKB-WT, (h) WebKB-WC, (i) UMIST, (j) AR, (k) ORL, (l) CMU-PIE.
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Table 3

Dataset information.

Data Sets #Classes #Features #Examples

SEMEION 10 256 1593

ISOLET 26 617 7797

ARCENE 2 10,000 200

GISETTE 2 5000 7000

LUNG 5 3312 203

TOX-171 4 5748 171

WebKB-WT 7 4165 1166

WebKB-WC 7 4189 1210

UMIST 20 2576 575

AR 120 2000 1680

ORL 10 10,304 400

CMU-PIE 64 4096 1636
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Table 4

Mean and standard deviation of the classification rates (%) of classifiers built on the top 40 features selected 

by OLBCMI, MIM, JMI and mRMR.

MIM JMI mRMR OLB-CMI

SEMEION 71.60 ± 1.35 73.50 ± 1.42 75.02 ± 1.11 85.39 ± 1.42

ISOLET 67.99 ± 1.42 79.20 ± 0.66 81.28 ± 1.04 90.31 ± 1.21

ARCENE 69.13 ± 5.47 74.75 ± 4.96 73.38 ± 4.25 78.50 ± 3.25

GISETTE 92.60 ± 0.37 94.58 ± 0.35 95.22 ± 2.18 95.85 ± 3.47

LUNG 91.59 ± 1.39 92.68 ± 1.09 93.66 ± 1.95 94.51 ± 1.57

TOX-171 75.80 ± 6.31 76.67 ± 5.84 77.54 ± 5.91 75.94 ± 5.11

WebKB-WT 89.27 ± 1.48 89.49 ± 1.57 89.08 ± 1.22 91.11 ± 1.17

WebKB-WC 88.78 ± 0.71 88.90 ± 0.85 89.11 ± 0.82 89.79 ± 0.90

UMIST 86.78 ± 4.16 96.65 ± 1.56 96.48 ± 1.39 98.17 ± 0.93

AR 64.60 ± 3.22 84.20 ± 2.27 86.50 ± 2.15 86.44 ± 1.84

ORL 46.75 ± 11.77 86.75 ± 2.51 87.13 ± 2.93 88.44 ± 2.81

CMU-PIE 76.35 ± 2.92 88.71 ± 1.68 88.87 ± 1.32 92.18 ± 0.91
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Table 5

Mean and standard deviation of the classification rates (%) of classifiers built on the top 80 features selected 

by OLBCMI, MIM, JMI and mRMR.

MIM JMI mRMR OLB-CMI

SEMEION 85.08 ± 1.04 85.50 ± 1.14 85.60 ± 1.01 89.59 ± 1.07

ISOLET 84.36 ± 0.78 86.88 ± 0.53 88.02 ± 0.70 94.23 ± 0.37

ARCENE 73.38 ± 4.97 78.63 ± 3.08 73.88 ± 4.95 80.25 ± 4.28

GISETTE 95.52 ± 0.64 96.20 ± 0.52 96.50 ± 0.35 97.14 ± 0.45

LUNG 94.15 ± 1.62 94.39 ± 1.24 93.66 ± 1.79 94.88 ± 2.03

TOX-171 79.42 ± 5.01 80.58 ± 6.80 82.32 ± 4.92 82.75 ± 4.82

WebKB-WT 90.11 ± 0.93 89.72 ± 1.22 89.89 ± 1.23 90.86 ± 0.78

WebKB-WC 88.95 ± 1.28 89.09 ± 1.28 88.88 ± 1.34 90.02 ± 0.83

UMIST 94.30 ± 1.56 97.61 ± 0.90 96.87 ± 1.53 98.52 ± 1.09

AR 81.06 ± 1.80 90.19 ± 1.69 91.37 ± 1.83 93.97 ± 1.82

ORL 63.25 ± 10.08 89.50 ± 2.34 90.69 ± 2.08 92.19 ± 2.74

CMU-PIE 85.11 ± 1.86 90.00 ± 1.20 90.95 ± 1.02 93.25 ± 0.62
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, respectively, the conditional mutual information between A and B given C is defined as:When A and B are conditionally independent given C, i.e., p(a, b| c) = p(a | c) p(b| c), or p(b| a, c) = p(b| c), I(A ; B | C) = 0.Lemma 1—If random variable A is independent of joint random variables (B, C), the conditional mutual information I (A ; B | C) is equal to zero:Proof—Since p(a, b, c) = p(a) p(b, c), Σb∈ℬ p(a, b, c) = Σb∈ℬ p(a) p(b, c). Therefore, p(a, c) = p(a) p(c). Then, we have p(a | c) = p(a) and .Lemma 2—If random variable A is a deterministic function of random variable C, the conditional mutual information I (A ; B | C) is equal to zero:Proof—Since A = f (C), p(b| a, c) = p(b| c). Therefore, we have I(A ; B | C) = 0.Note that these conclusions are valid when A, B, C are multi-dimensional random variables.
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