Skip to main content
. Author manuscript; available in PMC: 2018 Oct 1.
Published in final edited form as: Inf Sci (N Y). 2017 Aug 9;418-419:652–667. doi: 10.1016/j.ins.2017.08.036

Algorithm 1.

implementation of OLB-CMI.

Input : Full feature set X = {X1, X2, X3, …, XD}, class label C, the number of features to be selected d and threshold α
index set of the selected features: S = {}
index set of the unselected features: = {1, 2, 3, …, D}
for i = 1 to D do
 fea_lab_mi[i] = I(Xi, C)
 fea_entropy[i] = H(Xi)
end for
k=argmax1iD(fea_lab_mi[i])
S[1] = k*
= /k*
for i = 2 to d do
for k = 1: Di + 1 do
  fea_lab_mi [i −1] [ [k)] = I(XS[i − 1], C; X[k])
   t=argmax1mi-1(fea_lab_mi[m][S¯[k]])
  if (I(XS[t],C;XS¯[k])fea_entropy[S¯[k]]α) then
  max_fea_lab_cmi[[k]] = I(XS[t], C; X[k])I(XS[t]; X[k])
  else
   max_fea_lab_cmi [[k]] = 0
  end if
 end for
k=argmax1kD-1(max_fea_lab_cmi[S¯[k]])
S[i] = [k*]
= /[k*]
end for
output: index set of the selected features S