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Abstract:
Immersive technologies like stereo rendering, virtual reality, or augmented reality (AR) are often used in the
field of molecular visualisation. Modern, comparably lightweight and affordable AR headsets like Microsoft’s
HoloLens open up new possibilities for immersive analytics in molecular visualisation. A crucial factor for a
comprehensive analysis of molecular data in AR is the rendering speed. HoloLens, however, has limited hard-
ware capabilities due to requirements like battery life, fanless cooling and weight. Consequently, insights from
best practises for powerful desktop hardware may not be transferable. Therefore, we evaluate the capabilities of
the HoloLens hardware for modern, GPU-enabled, high-quality rendering methods for the space-filling model
commonly used in molecular visualisation. We also assess the scalability for large molecular data sets. Based on
the results, we discuss ideas and possibilities for immersive molecular analytics. Besides more obvious benefits
like the stereoscopic rendering offered by the device, this specifically includes natural user interfaces that use
physical navigation instead of the traditional virtual one. Furthermore, we consider different scenarios for such
an immersive system, ranging from educational use to collaborative scenarios.
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1 Introduction

The software tools developed in bioinformatics to support the understanding of data, for instance, in structural
biology or computational chemistry traditionally make use of scientific visualisation to analyse data, for exam-
ple simulated protein interactions. Popular desktop tools for molecular visualisation like VMD [1] or PyMOL [2]
often support stereoscopic rendering, for example using head-mounted virtual reality (VR) displays like Oculus
Rift1, or powerwalls [3] and CAVE-like systems [4]. This rendering mode helps to convey the complex spatial
structure of molecular data. Augmented reality (AR) has so far not been used extensively, which is probably
due to the lack of convenient and affordable hardware. Microsoft’s HoloLens2 is a head-mounted see-through
AR display which offers much functionality out of the box, especially the registration of the environment, which
considerably reduces the effort required by developers for implementing AR software, making it thus feasible
to quickly create various augmented experiences. Furthermore, the availability of such affordable commodity
hardware broadens the potential audience. However, technical restrictions of the hardware prevent direct reuse
of desktop software, which usually requires much processing power like the massively parallel architecture of
modern high-performance GPUs. HoloLens features an Intel Atom x5-Z8100P CPU (1.04 GHz), 2 GB RAM, 64
GB eMMC and a custom-made Holographic Processing Unit (HPU) coprocessor exclusively used for spatial
tracking. Overall, very little is known about the graphics capabilities of the whole system. So far, it has not yet
been thoroughly investigated how HoloLens can handle molecular visualisation using state-of-the-art render-
ing methods tailored to modern desktop hardware. Since fast, high-quality rendering is crucial for AR, this is an
important first step towards an immersive analytics application for molecular visualisation. As a rule of thumb,
software for AR headsets should maintain at least 60 fps to ensure user comfort and judder-free rendering that
stays in sync with the registered environment. Due to the limited processing power of HoloLens, Microsoft
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provides extensive performance recommendations to developers3, which suggest that the typical rendering
approaches for desktops are not a good match, as discussed in Section 5.

In this paper, we evaluate the rendering capabilities of HoloLens for molecular graphics and present pos-
sible solutions and guidelines for scientific visualisations. We use the space-filling model for our scaling tests,
because the fact that it is the computationally least expensive representation should be beneficial with respect
to the limited computational power of the HoloLens. This model uses a simple sphere to represent each atom,
which of the radius corresponds to the atomic radius (or the van der Waals radius) of the chemical element. Fig-
ure 1 shows a small protein rendered as space-filling model, where the atom spheres are coloured by element
(so-called CPK colouring).

Figure 1: Rendering of the space-filling model for a small protein (PDB ID: 1RWE) coloured by element.

In traditional computer graphics, objects like spheres have to be tessellated as triangle meshes prior to ren-
dering. Today, GPU-based raycasting [5], [6] is the fastest way to render large numbers of implicitly defined
objects of low polynomial degree (e.g. quadrics) [7]. Here, a small proxy geometry covering the whole object
is generated and rendered. The pixel shader (PS) then computes a ray from the camera through the current
fragment and tests it for intersection with the implicit object – the sphere in our case. This way, the technique
cannot only guarantee the best visual representation of a sphere, but it is also the fastest method to render large
numbers of particles on desktop hardware [8], [9]. Figure 2 shows a schematic of this rendering method, which
is, for example, also implemented in the molecular visualisation tools VMD [1] and MegaMol [10].

Figure 2: Schematic drawing of GPU-based raycasting: for each sphere, a proxy geometry that covers the whole sphere is
rendered (blue quad in the image plane). For each fragment of this quad, a view ray is computed in the pixel shader and
a ray-sphere intersection determines whether the actual sphere is visible through this pixel. Our objective is to assess the
rendering speed of the custom GPU used by HoloLens for such shader-based methods. We also compare this approach to
traditional rendering methods based on triangle meshes.

As test environment, we developed a prototypical molecular visualisation software specifically tailored to
HoloLens. Our custom prototype is a Universal Windows Platform (UWP) app written in C++ using the native
Direct3D API and HLSL shaders. We use real-world molecular data sets obtained from the RCSB Protein Data
Bank (PDB) [11] to evaluate the performance. As the most popular and convenient way to develop software for
the HoloLens is the Unity game engine4, we also implemented a Unity prototype that can load and visualise
PDB data sets and compared the frame rates with our custom prototype.
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2 Related Work

Our work is about the evaluation of rendering performance and the scalability of Microsoft’s HoloLens for
molecular visualisation. The rendering performance is an essential factor for the usability of HoloLens for im-
mersive analytics, i.e. the combination of immersive techniques like AR or VR, natural user interfaces and visu-
alisation to foster data analysis. For a concise definition of immersive analytics, we refer to the recent overview
paper by Chandler et al. [12].

Molecular visualisation itself is a very diverse field in bioinformatics. In this work, we focus mainly on
visualisation for structural biology, i.e. on three-dimensional visualisations of molecules with atomistic detail.
There is a large variety of established representations used in this field; an in-depth overview of visualisation
methods for biomolecular data can be found in the recent survey by Kozlíková et al. [13]. We use the space-filling
model, which we expect to be best suitable for HoloLens thanks to the simplicity of its visual primitives.

As mentioned in the introduction, stereoscopic rendering is widely used for molecular visualisation. Be-
side established tools like PyMol or VMD, a range of specialised immersive visualisation tools for molecular
data have recently emerged that make use of the capabilities of modern VR head-mounted displays (HMDs)
like Oculus Rift or HTC Vive5. Examples are Molecular Rift [14], which is intended for drug designers, or the
Caffeine molecular viewer [15], [16], which can also visualise the results of quantum mechanics computations.
Recently, Molecular Rift has been extended by adding support for the Leap Motion6 controller [17], which of-
fers hand tracking via an infrared camera. The black-and-white image of the Leap attached to the front of the
HMD is also used as background for the visualisation, giving users a sense of their surroundings, thus moving
in the direction of an AR application.

AR has been used for molecular visualisation, too. However, the technical approaches differ widely. Early
work by Gillet et al. [18] uses a camera to capture a 3D-printed molecule. The position and orientation of the
molecule is obtained via markers that are attached to the 3D print. Thus, the molecule in the captured video
can be enhanced with additional information such as the electrostatic field. A similar, camera-based AR setup
has more recently been used by Berry and Board [19]. Their tool, which is intended for educational use, also
recognises printed markers in a live-captured video and renders different molecular models at this location. The
user can investigate the virtual molecule by moving the camera or the markers. Similar tools were developed
for mobile devices like smartphones or tablet PCs, for example Miew7. An alternative to such camera-based
setups are modern see-through AR HMDs like HoloLens. Zheng and Waller [20] presented ChemPreview, an
AR molecule viewer that works with the Meta 1, an AR HMD that is similar to HoloLens, but has to be con-
nected to a desktop PC that handles the rendering. Hoffman and Provance [21] described how to create an
AR application based on the Unity game engine for HoloLens. However, in contrast our work, they only used
precomputed models of small data sets and did not evaluate the performance or technical limitations of the
hardware. Another software similar to our work is the HoliMoli app8 by Sobhani, which uses the tessellation
shader to create triangulated spheres for the space-filling representation. We included this rendering method
in our performance tests (cf. Section 4). The app Holocule, which is available from the Microsoft Store9, ren-
ders different representations of a molecule, including ball-and-stick and cartoon. The techniques used in this
app are unknown, but from its performance and visual appearance, we assume that at least the ball-and-stick
representation uses a raycasting-based method.

As mentioned above, none of the existing work on molecular visualisation using HoloLens contains a rig-
orous testing of the rendering performance, which, however, plays an important role for many applications.
Therefore, it comes at no surprise that this topic is touched upon in a variety of works from other areas. Voinea
et al. [22] mention the problem of predicting CPU and GPU performance due to power/thermal throttling for
biomechanical simulations. The requirements for rendering reconstructed three-dimensional models for tele-
presence applications that are transmitted to the HoloLens using a WiFi connection are discussed by Joachim-
czak et al. [23]. They propose sending models with a low number of polygons and counteract the loss in model
detail with higher resolution of texture data to realise acceptable frame rates using the HoloLens hardware.
Chen et al. [24] compare the performance of different wearable devices including the HoloLens with respect
to latencies occurring when running different edge computing applications. These previous works mention
the importance of, and problems with, rendering performance of the HoloLens, but quantitative evaluations
dedicated to this specific aspect are still missing. With our approach, we would like to shed first light on what
can be expected in terms of HoloLens’ rendering performance and how this impacts the choice of application
scenarios.
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3 HoloLens Prototype Implementations

3.1 Standalone UWP Application

HoloLens is based on Windows 10 and can therefore run most universal Windows apps in a floating window
that can be placed somewhere in the real world. Immersive applications like ours, which allow the user to place
virtual objects (holograms) in the real world, differ in that they use a fullscreen window and the Direct3D API
for rendering their 3D content. In contrast to standard 3D applications, HoloLens takes care of all low-level
tasks like managing the viewport, the coordinate systems and transformations. That is, the device chooses an
appropriate coordinate system based on the surroundings it discovers with its sensors and provides the view
and projection transformations for rendering. This enables the programmer to place objects relative to the user’s
current physical position, and HoloLens makes sure that they stay there as the user moves. All coordinates in
the software development kit (SDK) are given in metres, i.e. if an object is placed 2 m in front of the virtual
camera, it appears 2 m in front of the user. Likewise, the size of the object specified in virtual units directly
matches its apparent size in metres. HoloLens additionally provides the user with a three-dimensional model
of the surroundings allowing virtual objects to be occluded by real-world ones.

Our prototype is a Direct3D-based UWP app, which renders molecules from the Protein Data Bank using
different techniques. On the GPU, we try to use the minimal representation required to render an atom, which
is its position, radius and colour. Using this input, we implemented several variants of two basic approaches:
the first one is generating primitives resulting in a screen-space bounding geometry of each atom (sprite or
billboard) and raycasting a sphere for each pixel covered by the sprite. This is currently the fastest approach on
desktop-class GPUs and the most suitable for dynamic data as it minimises the amount of data to be streamed
to the GPU (a float4 vector for a sphere without properties beside its position and radius). There are different
ways of generating the sprites for raycasting, which are described later. However, all of them eventually yield the
same image, which is a pixel-perfect sphere, regardless of the distance between the camera and the object. The
second and fundamentally different approach is rasterising and shading the triangle representation of a sphere
for every atom, which is the traditional interactive computer graphics approach. Its visual quality depends on
how many triangles are used per sphere and how close the camera is. At large distances, differences to the
raycasted spheres might be barely noticeable, but if the camera is close to the sphere, individual triangles will
become visible around its silhouette.

The original approach for raycasting spheres on the GPU suggests using point sprite primitives, i. e. point
primitives with a variable extent in screen space [5], [6]. However, such point sprites are unsupported starting
with Direct3D 10. Therefore, our first approach expands the single vertex representing an atom into the four
corners of a sprite using the geometry shader (GS), which was introduced in Direct3D 10. A similar effect can
be achieved using dynamic tessellation capabilities, which are available starting with Direct3D 11. Dynamic
tessellation is separated in three phases: first, the hull shader (HS) computes the control points of a patch (a
quad in our case) from the control points of a lower-order representation (the single vertex representing an
atom in our case) as well as per-patch constants like the subdivision level for the following second stage, the
non-programmable tessellation. The third and final domain shader (DS) stage moves the vertices created in the
tessellation stage to their final location. In our case, the polygon generating the pixels for raycasting is resized
to match the radius of the atom and oriented towards the camera. The number of vertices of the polygon is a
trade-off between the computational load of transforming additional vertices and the number of pixels that fail
the hit test of the sphere: in case of a quad, there are more pixels for which the pixel shader is executed, but
which are eventually empty (see Figure 2). A higher number of vertices can better approximate the shape of the
sphere, but high geometry load also has a massively negative impact on the performance of the HoloLens. In
our tests, a pentagon proved to be the best compromise between high geometry load and high overhead in the
pixel shader stage.

A third way to obtain the primitives for raycasting is instancing, i.e. emitting each vertex multiple times.
It is possible to draw an empty vertex buffer four times per atom and then compute the vertex position solely
from the instance ID and a structured buffer view holding the parameters of each atom. Therefore, the data
transferred between CPU and GPU is the same as for techniques reading the atom positions from a vertex
buffer. The instancing-based approach needs to be aware of the fact that HoloLens uses instancing to minimise
the overhead of rendering for the left and the right eye. Therefore, any number of instances needs to be doubled
to render one time to the left and the other time to the right image.

Instancing is also the basis for one of our geometry-based approach: in this case, we prepare a vertex buffer
for a unit-sized geodesic sphere comprising 128 triangles, which is scaled and moved by the parameters of
each atom stored in a structured buffer view. This approach has the advantage to use only two shader stages,
the vertex shader (VS) performing all geometry transformations and the pixel shader computing simple Blinn-
Phong shading.
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Finally, the tessellation stage can be used to generate the geometry for a sphere from the centre point of
each atom. This approach is also used by the HoliMoli app (cf. Section 2). We use a hull shader requesting a
tessellated quad which is conceptually “wrapped around” the sphere like cloth in the domain shader, which
is also responsible for applying all transformations. The shader uses an adaptive tessellation factor computed
in the hull shader using exactly the same method as in HoliMoli. The pixel shader is only performing shad-
ing computations in this approach. We have also implemented an optimised variant of this approach, which
only renders a hemisphere that is oriented towards the viewer in the domain shader. This way, we can avoid
generating and transforming the vertices, which would be dropped during back face culling anyway.

During normal operation, the user can place a molecule 2 m in front of the device and then start wandering
around. However, in order to obtain consistent results during benchmarking, we eliminated all AR-related
influences on the rendering speed by ignoring HoloLens’ tracking-based view transform. The result is the
molecule always floating 2 m in front of the user regardless of how the HoloLens is oriented. Furthermore,
we do not perform any clipping against the model of real-world objects such that all atoms of the molecule are
drawn in any case.

3.2 Unity-Based Prototype

Microsoft provides the Mixed Reality Toolkit for Unity10 for the Unity game engine, which facilitates content
creation for HoloLens and other immersive headsets (Microsoft summarises their AR and VR efforts under the
Mixed Reality term). As Unity is mainly targeted at game development, it provides extensive scripting support.
Using the natively supported C# interface, we implemented the routines to load molecular data into a Unity
scene. In terms of rendering, our Unity prototype uses instancing. Unity provides a so-called Prefab asset type
that acts as a template object. In our prototype, the Prefab asset is a triangle mesh representing a sphere with
136 faces. We assigned the built-in standard shader of Unity to render opaque spheres (see Figure 3). Secondary
lighting effects like shadows or reflections were disabled. For each atom, an instance of the Prefab is created
which is translated and scaled according to the atom’s parameters.

Figure 3: Live capture from the Unity prototype showing one of the protein data sets used for testing (PDB ID: 1AF6).

4 Results

Most of the following performance numbers were obtained using our UWP-based prototype, which gives us
most flexibility in isolating influencing factors. We also compared the performance of the UWP-based prototype
to the Unity-based one. We measured frame rates while moving the camera on five scripted paths: rotating the
molecule around its y-axis and around its x-axis, respectively, while being either 2 or 1 m away from the user.
Each of the rotations took 10 seconds. Furthermore, we moved the camera along the z-axis through the whole
molecule starting again at 2 m distance. This camera path required 30 seconds to complete. All frame rates
were measured by averaging over 500 ms periods. Following each of these periods, we additionally obtained
statistics from the graphics pipeline comprising the geometry load and shader invocations of the last frame of
the period. Table 1 shows the data sets (Figure 4) from the PDB we used for our tests. All data sets were scaled
such that they fit a box of 0.5 m side length, i.e. the data set always covered approximately the same fraction of
the image, but as the data set grows, the individual atoms get smaller. The last column in Table 1 shows how
the holograms were scaled in comparison to the real size of the molecules.

Table 1: Data sets from the Protein Data Bank used for performance evaluation.
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Data set PDB ID # of atoms Scaling of bounding box

Insulin 1RWE 826 1:1.2E+08
Enterotoxin 1TII 5475 1:6.8E+07
Maltoporin 1AF6 10,052 1:5.9E+07
Plasmid coupling protein 1GKI 19,541 1:4.8E+08
T. thermophilus 30S ribosomal subunit 4KVB 50,952 1:2.2E+07

Figure 4: Live captures from our standalone UWP application rendering the data sets used in our benchmarks using
raycasting on instances sprites. Upper row: 1RWE (826 atoms), close-up of 1RWE, 1TII (5475 atoms). Lower row: 1AF6
(10,052 atoms), 1GKI (19,541 atoms), 4KVB (50,952 atoms).

In the following, we show the frame rates for the rotation around the y-axis at 2 and 1 m. The numbers we
obtained for the rotation around the x-axis are almost identical and show only slight variations for data sets
which of the bounding box strongly deviates from a cube. In this case, the on-screen footprints differ in size,
which causes noticeable differences in the performance.

As can be seen in Figure 5, only one technique reaches the target frame rate of 60 fps for the approximately
1000 atoms of the 1RWE data set: the instanced geodesic spheres. The tessellated full spheres and the hemi-
spheres follow with an average of 35 fps and 33 fps respectively, while all three raycasting approaches reach
only around 31 fps. We attribute this to the complex pixel shader for raycasting, which requires about 60 in-
structions and is invoked over 6 million times on average, whereas for the instancing and tessellation cases, we
see only about 1.9 million invocations of the pixel shader (having only 23 instructions). Remember that 1RWE
is relatively small, so the atoms are large, and in turn the number of pixels per sprite that are not part of the
sphere (cf. Figure 2) is also large, which explains the large difference in pixels being filled.

Figure 5: Average frame rates during a full rotation around the data set at 2 m distance.
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Table 2 shows the approximate number of shader instructions for all techniques and stages. As the number
of vertex shader invocations is solely dependent on the number of atoms (four vertices per atom for instanced
sprites, 384 for each instanced sphere and one per atom for all other cases), the larger vertex shader for the
instanced spheres has no negative impact for the small 1RWE data set. A special case are the tessellated hemi-
spheres and spheres: these use an adaptive tessellation factor, i. e. the number of vertices per sphere increases
as the camera gets closer (see also Figure 8). When rotating at 2 m distance, on average 423062 vertices are
eventually generated for the hemispheres and 741,156 for the full spheres. As we move closer to the data set
(Figure 6), the number rises to an average of 637,408 and 1,150,470 vertices for the both cases. Please note that
the adaptive tessellation factors need to be rounded to an integer number, which causes the number of vertices
for hemispheres being more than 50 % of the full sphere case. Additionally, we use “fractional odd” partition-
ing to achieve the same behaviour as HoliMoli, which generates slightly more excess vertices than “integer”,
specifically for small tessellation factors. We also use the same algorithm as HoliMoli to compute the dynamic
tessellation factors to achieve a faithful comparison. Note that the total number of triangles generated by this
algorithm for the hemispheres is about the same as for the instanced spheres at a distance of 1 m. At 2 m,
the number of triangles is much lower (∼85 vs. 128). The visual quality, however, is much higher, since more
triangles are distributed over the visible hemisphere compared to the instanced spheres.

Table 2: Approximate number of assembler instructions as reported by the HLSL compiler for the vertex shader (VS),
geometry shader (GS), hull shader (HS), domain shader (DS) and pixel shader (PS) stage.

Rendering technique VS GS HS DS PS

Raycasting with GS 6 127 – – 60
Raycasting with tessellation 6 – 28 66 60
Raycasting on instanced sprites 77 – – – 60
Instanced spheres 21 – – – 23
Tessellated hemispheres 6 – 28 66 23
Tessellated spheres 6 – 27 35 23

A dash indicates that the shader stage is not used for the respective technique. Note that the tessellated hemispheres use a significantly
more complex domain shader than the tessellated spheres, because additional code is required to orient the hemispheres towards the
user, whereas the orientation of the spheres is irrelevant.

Figure 6: Average frame rates during a full rotation around the data set at 1 m distance.

Comparing Figure 5 and Figure 6 also reveals that the cost of rendering at close distances is rasterisation-
bound: Although the vertex load is the same for the instanced spheres, the frame rate of the instanced spheres
drops to 32 fps if a larger fraction of the screen needs to be filled. To examine this further, we turned off the
per-pixel shading for this case and returned a constant colour instead, but the frame rate stayed at 32 fps. That
is, the cost of the shading in the pixel shader is negligible. Consequently, only the fragment generation and
the resulting invocation of the pixel shaders causes the drop in frame rate. These now need to process around
6 million pixels per frame, while for raycasting, almost 21 million need to be computed. However, due to the
lower number of instructions per pixel, the geometry-based methods only drop to 30 fps while the number
of pixels triples, whereas the raycasting-based ones drop by more than half and only reach 11–15 fps. This is
backed by the observation that the raycasting reaches 60 fps when turning off the intersection test in the pixel
shader and returning just a colour instead.

As the number of atoms increases, more differences between the techniques emerge. In case of 1TII, in-
stanced spheres still perform best, but the distance of the raycasting-based techniques becomes smaller at 2 m
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distance. We attribute this to two factors: first, as the number of atoms becomes larger, the performance impact
on methods with large number of vertices per atom becomes also larger. This can also be observed with both
dynamic tessellation techniques, which achieve a visual quality close to the raycasting techniques thanks to
adaptive tessellation. Second, the previously mentioned scaling of the data set to the same bounding box de-
creases the screen-space footprint of each atom, which in turn reduces the relative total cost of the pixel shader.
For instance, during the rotation at 2 m distance, we see an average of 3712 pixels per atom for 1RWE compared
to 1166 for 1TII. At 1 m distance, having again larger per-atom footprints, instanced spheres clearly outperform
all other techniques. A very similar behaviour as for the approximately 5000-atom 1TII data set can be observed
for the almost double-sized 1AF6. The only significant difference is that the performance advantage of using the
tessellated sprites over the ones from the geometry shader becomes smaller. This trend continues for 1GKI, in
which case both techniques are already even, while for 4KVB, the geometry shader even performs better. Again,
we attribute this to a combination of two factors: first, as the tessellation-shader technique uses a pentagon to
avoid pixels without a hit during raycasting, the transformation load in the domain shader grows faster with
the size of the data set than the one in the geometry shader. Second, as the footprints of the atoms become
smaller, the benefit of avoiding misses during raycasting vanishes because the number of these problematic
pixels per atom decreases. Therefore, the additional effort on the geometry side does not pay off any more for
large data sets like 4KVB. Interestingly, the absolute frame rate we can achieve with raycasting is higher for the
approximately 50,000 atoms of 4KVB than for the just below 20,000 atoms of 1GKI. Again, we think this is due
to the smaller footprint of each atom: on average, 603 pixels for 1GKI and only 114 for 4KVB. The difference is
so large that the average number of pixel shader invocations during the rotation at 2 m distance is lower for
4KVB (14,294,200) than for the much smaller 1GKI (23,574,700) – an effect that is not least due to the shape of
the data sets: while 1GKI has a largely cubical bounding box, 4KVB has a relatively larger height, which causes
the scaling to have a larger effect, because it is computed based on the longest edge of the bounding box (cf.
Figure 4).

The effect of the image-space footprint of the data can be investigated when flying through the data set along
one of the main axes. Figure 7 shows how the frame rate changes while flying through 1RWE. All raycasting-
based methods behave very similarly in this test: as the camera gets closer to the data set, the frame rate first
decreases with the increasing number of pixel shader invocations (Figure 8).

Figure 7: Frame rate over time while flying through 1RWE starting at 2 m distance and ending 2 m behind the data set.
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Figure 8: Pipeline statistics collected while flying through the 1RWE data set along the z-axis. The solid lines denote the
number of pixel shader invocations. The dotted ones designate the number of vertices emitted in the last stage producing
geometry.

As the camera moves through the data, more and more atoms are behind the camera, which causes the num-
ber of pixel shader invocations to decrease again around the centre of the molecule. At some point around 0.2
m behind the centre, all of the atoms are behind the camera, such that all vertices still need to be transformed,
but none of them results in pixel shader invocations, which are the limiting factor for this technique. In this sit-
uation, all raycasting-based methods reach 60 fps. As mentioned before, the geometry-based methods, namely
using instancing and hemispheres, also suffer from large footprints due to the increasing rasterisation cost. The
yellow line in Figure 7 shows that this happens abruptly after approximately half a metre on the path, although
the number of pixel shader invocations increases smoothly (Figure 8). We therefore hypothesise, that we hit
some limit in hardware parallelisation at this point. As the tessellated hemispheres (blue line) and spheres
(green line) use an adaptive tessellation factor, more vertices are generated (Figure 8), which causes a drop in
the frame rate at about 0.7 m before the centre of the data set. These techniques also reach 60 fps once the atoms
are behind the camera, because this can be detected in the hull shader, i.e. no subdivision needs to be applied,
which obviously drastically reduces the vertex load.

Figure 9: Frame rate over time while flying through 1AF6 starting at 2 m distance and ending 2 m behind the data set.

The diagram for the same fly-through using 1TII looks quite similar. As the data sets become larger, the
constant cost of vertex transformations is already too high to achieve 60 fps even if nothing is visible. From the
pool of the data sets we tested, this is the case for A1F6 and all larger ones. Figure 9 shows that all techniques
that require more than one vertex per atom and/or need more than three shader stages cannot reach more than
30 fps even if nothing is visible.

In summary, we found that reaching the 60 fps target is possible for smaller data sets when using geometry-
based rendering. However, this requires using coarsely tessellated spheres to keep the triangle count sufficiently
low. The spheres we used in our tests are sufficiently tessellated for a good representation at 2 m distance. At a
closer distance, the triangles become visible at the silhouettes, but the visual quality is still acceptable. Although
the tessellation-based techniques did not reach 60 fps in the results presented above, this can be achieved by
reducing the tessellation factors computed in hull shader. Raycasting renders only faster for the largest of our
data sets, which is, however, too complex to reach acceptable frame rates with any technique on the HoloLens.

As described in Section 3.2, we also created a Unity prototype since this is the most popular way of devel-
oping apps for HoloLens. Our prototype uses Unity 2017.3.0f3 with the Microsoft Mixed Reality Toolkit for
Unity 2017.2.1f1 and a custom sphere consisting of 136 triangles, which is close to the 128 triangles we used in
our standalone prototype. The small difference of eight triangles per sphere is a result of the different ways of
constructing a subdivision sphere in Unity and our prototype. As for the measurements above, we rotated the
data set around the x-axis and the y-axis at a distance of 2 m. For both axes, the average frame rates obtained
through HoloLens’ device portal were similar. For 1TII, we reached 11.7 fps during the rotation and for 1AF6
6.2 fps. At a distance of only 1 m, performance significantly increases: during the rotation, the frame rate for
1TII was 19.9 fps, whereas for 1AF6, we measured 11.5 fps.

Table 3 shows a summary of all techniques we implemented in our UWP and Unity prototypes. While the
performance of the smallest data set using the same rendering mode (instanced spheres) is comparable at 2
m distance, Unity can keep the frame rate when getting closer, whereas our prototype cannot. For the larger
data sets, our standalone application reaches about thrice the frame rate at 2 m distance. At 1 m distance, the
Unity implementation is between 7 % and 38 % slower than our hand-tailored application. We believe that this
difference in performance cannot be explained by the above-mentioned slightly higher triangle count, but must
be ascribed to additional computations performed by the Unity game engine. However, these computations
apparently allow the engine to achieve better performance in cases where view frustum culling is possible,
e.g. if the viewer is close to the molecule. In case of the of the smallest data set with 1000 atoms, this allows
Unity to almost keep the frame rate. Nevertheless, with an increasing amount of objects, the advantage of this
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optimisation diminishes. This is not least caused by the application case – viewing a molecule from outside –
which causes most atoms being visible in most cases.

Table 3: Comparison of average frame rates for the rotation around the y-axis between the UWP and the Unity prototype.

Technique 1RWE 1TII 1AF6 1GKI 4KVB

2 m 1 m 2 m 1 m 2 m 1 m 2 m 1 m 2 m 1 m

Raycast. w/ GS 31.3 12.5 16.3 7.8 13.6 7.9 11.8 7.8 13.6 7.8
Raycast. w/ tessellation 31.1 14.4 21.6 9.5 15.5 8.2 11.6 7.8 11.4 7.7
Raycast. on inst. sprites 31.1 14.3 21.5 9.2 16.5 8.2 13.7 7.7 16.4 8.6
Instanced spheres 60.8 31.7 31.2 21.5 21.4 18.6 13.5 12.6 7.8 7.7
Tess. hemispheres 35.5 31.3 20.3 13.4 13.6 9.3 8.9 7.8 7.8 7.7
Tess. spheres 32.5 28.3 16.3 11.5 11.6 8.1 7.7 7.8 7.8 7.8
Unity 55.6 52.6 11.7 19.9 6.2 11.5 3.0 6.7 3.0 4.4

5 Discussion

As mentioned in the introduction, our current prototype is only the first step on the way to a comprehensive
immersive analytics environment for molecular data. The ability of HoloLens to share scenes between devices
is not only useful for collaborative data analysis, but also for educational scenarios. For instance, as all users
are able to walk independently around the virtual molecule, they can choose their own view without influ-
encing those of others – in contrast to a scenario of multiple users in front of a (large) screen where only one
user can control the camera. The AR approach still allows users to point out locations of interesting aspects of
the data to each other in a natural way. Consequently, it offers all benefits of physical navigation, which has
been shown to be advantageous for comparison and search tasks in two-dimensional data like maps on large
displays [25]. However, results of our previous experiments in this direction [26] suggest that the effect is less
pronounced when working with three-dimensional data on a large display, which still requires virtual navi-
gation to investigate from all sides. We believe that this is due to the fact that three-dimensional content also
requires three-dimensional navigation, which is possible in the AR scenario.

Another inherent benefit common to AR and VR when working with three-dimensional data are the stereo-
scopic rendering capabilities. Stereoscopic rendering is routinely used for molecular visualisation to make the
highly complex structures of molecules comprehensible. Therefore, many available popular molecular viewers
like VMD or PyMol offer support for traditional stereoscopic output devices like 3D displays, powerwalls or
VR headsets. The latter have the same properties as AR with respect to stereo rendering and three-dimensional
physical navigation and would lend themselves also to create a collaborative immersive analytics environment.
However, we see several advantages of AR over VR in our context: obviously, a see-through AR HMD like
HoloLens leads to minimal detachment of the user from the environment. Consequently, natural communi-
cation among collaborators is possible, which could only be approximated by the use of avatars in VR. The
connection to the real world makes it possible to interact with physical objects like models of proteins and
augment them with visualisation, as proposed by Gillet et al. [18], who rendered the electrostatic field around
a 3D-printed protein (cf. Section 2). During development, we noticed that HoloLens is less obtrusive than we
initially expected. It is not only possible to use the device for a longer period of time, but also to perform short
non-AR tasks while wearing it (taking notes on paper, reading from screen or textbook and even making code
changes while testing our prototype). This is naturally not possible with a VR headset. One benefit of a VR
environment would be the larger field of view offered by current devices. We therefore think that VR might be
advantageous in a remote collaboration scenario where each user is in a separate location until the advent of
improved AR headsets.

Besides the benefits of stereoscopic rendering, which makes complex three-dimensional molecular struc-
tures easier to grasp, and the natural physical navigation, an immersive analytics environment can offer an
engaging way of viewing and interacting with molecular visualisation. This advantage must not be underesti-
mated, especially for educational scenarios. An example for such an educational AR application from the field
of medicine is Insight Heart by AnimaRes11, which teaches the user about common conditions of the heart. We
envision that a collaborative AR application could also be used in a classroom. Students could investigate the
same molecular data sets together, which fosters discussion. In this scenario, the natural communication be-
tween students and teachers while working in the AR environment would be especially useful. As mentioned
above, it is also still possible to take notes or read from a whiteboard while wearing HoloLens, which is often
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necessary in a classroom. Since a smooth user experience is an important factor for an engaging experience,
fast rendering should be ensured for educational applications.

As stated in the introduction, we expected complex rendering methods like GPU-based raycasting to per-
form poorly on HoloLens given the performance guidelines for the device. Specifically, the method requires sig-
nificantly more instructions per pixel than the recommended maximum, the compact structure of the molecules
usually causes much overdraw and makes frustum culling superfluous since all atoms are typically within the
frustum, and the raycasting requires the unfavourable high-precision depth buffer. For the smaller data sets,
this assumption proved to be correct, as raycasting reaches only 31 fps for the smallest data set, which renders
at 60 fps using instanced geometry. If the data sets significantly exceed 1000 atoms, none of the techniques are
able to reach the 60 fps target. Since we cannot expect that further micro-optimisation of the rendering will
lead to a significantly increased frame rate, large data sets need to be rendered based on drastically simplified
representations. Replacing the spheres with pre-lit, flat imposters reduces the per-atom cost compared to the
techniques we used. Another simplification could be to pre-compute clusters of spheres and render only one
representative for the cluster similar to the work of Parulek et al. [27]. Alternatively, one could resort to using
other representations like low-polygon molecular surfaces or ribbon models. For larger data sets, these become
easier to render than the spheres. An unsystematic black-box-test of the Holecule app using the frame rates
reported by the HoloLens device portal showed that no technique was able reach the 60 fps goal for our test
data sets, but for the large 4KVB, the supposedly more complex cartoon representation was even faster than
ball-and-stick (19 fps in contrast to 11 fps at an estimated distance of 3 m). When targeting HoloLens, using
spatial structures on the CPU to reduce the overdraw of raycasting-based techniques, which performed better
for large data sets, could also be a way to extend the size of data sets the hardware can handle. Finding the
optimal strategy requires, however, further empirical investigation. The same is true for different and more
powerful hardware like the DAQRI Smart Glasses12, which sport an Intel Core m7 CPU with Intel HD Graph-
ics 515. Solutions like Meta 213, which are tethered to a desktop PC can, of course, leverage its full processing
power. Since this restricts the physical navigation, especially when multiple users are present, we rate this as
unsuitable for collaborative immersive analytics. The increasing number of different VR and AR systems does
not only promise more capable hardware, but confronts developers with a variety of different native SDKs.
Adapting software to different environments for reaching the best possible performance on every platform
naturally increases the cost of development and might deter users from trying another platform. Therefore,
developing reusable rendering strategies for Unity, which has become the common denominator of all recent
VR and AR platforms, that adapt the engine to the requirements of bioinformatics applications might be a way
to quickly leverage new hardware in the field.

6 Summary and Future Work

In this paper, we have presented a prototypical AR molecular visualisation application for HoloLens. We imple-
mented several different rendering methods for the space-filling model (sphere rendering) and compared their
performance to identify the technology that works best on the rather limited HoloLens hardware. As input, we
used publicly available protein data sets obtained from the RSCB PDB [11], hence, our results are reproducible
and meaningful for real-world data. In our tests, we found that different methods give maximum performance,
depending on data set size and image footprint of the final rendering. We further found that GPU-based ray-
casting, which is currently the fastest method on desktop hardware, is only advisable for very large data sets.
For data sets below 50,000 atoms, triangulated spheres rendered via instancing give much better performance.
This is due to the high number of shader instructions needed for raycasting, which is not a good match for the
GPU used by HoloLens. It is also noteworthy that only the smallest of our test data sets with 1000 atoms reached
the target frame rate of 60 fps. Consequently, we recommend the use of level-of-detail techniques or reducing
the visual fidelity of the representations for larger data sets to ensure a smooth, judder-free user experience,
which is important for AR.

In the future, we want to extend our prototype to a collaborative immersive analytics application for molec-
ular structures and other three-dimensional data from different areas of bioinformatics. Therefore, we also
discussed different application scenarios for such a system and examined the technical feasibility using the
available hardware. Besides implementing additional representations like molecular surfaces such that they
can be rendered interactively on HoloLens, we also want to complement the current speech-based user inter-
face with a graphical user interface (GUI). While voice input is recommended by Microsoft as one the three key
forms of input on HoloLens14, it could become infeasible in a collaborative environment with multiple peo-
ple talking and giving voice commands at the same time. This GUI should also support typical collaborative
features like placing text labels for annotations, which can either be private or shared with other users. We
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also want to investigate the low performance of the Unity prototype further and find ways to speed it up as
well, e.g. by employing level-of-detail rendering similar to the one used by Le Muzic et al. [28] in their desktop
Unity-based tool cellVIEW.
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