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Abstract

The tree-based scan statistic is a statistical data mining tool that has been used for signal detection 

with a self-controlled design in vaccine safety studies. This disproportionality statistic adjusts for 

multiple testing in evaluation of thousands of potential adverse events. However, many drug safety 

questions are not well suited for self-controlled analysis. We propose a method that combines tree-

based scan statistics with propensity score matched analysis of new initiator cohorts, a robust 

design for investigations of drug safety. We conducted plasmode simulations to evaluate 

performance. In multiple realistic scenarios, tree-based scan statistics in cohorts that were 

propensity score matched to adjust for confounding outperformed tree-based scan statistics in 

unmatched cohorts. In scenarios where confounding moved point estimates away from the null, 

adjusted analyses recovered the pre-specified type 1 error while unadjusted analyses inflated type 

1 error. In scenarios where confounding moved point estimates toward the null, adjusted analyses 

preserved power whereas unadjusted analyses greatly reduced power. Although complete 

adjustment of true confounders had the best performance, matching on a moderately mis-specified 

propensity score substantially improved type 1 error and power compared to no adjustment. When 

there was true elevation in risk of an adverse event, there were often co-occurring signals for 

clinically related concepts. TreeScan with propensity score matching shows promise as a method 

for screening and prioritization of potential adverse events. It should be followed by clinical 

review and safety studies specifically designed to quantify the magnitude of effect, with 

confounding control targeted to the outcome of interest.
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INTRODUCTION

Identification of potential adverse events related to drugs or other marketed medical products 

can come from many sources, including experiences during early trials, spontaneous 

reporting by members of the public (doctors, patients, other stakeholders), post-marketing 

studies, as well as active surveillance activities.1,2 The United States Food and Drug 

Administration’s has built a large distributed network that includes 17 Data Partners and 

over 175 million covered lives as part of the Sentinel Initiative for prospective, post-market 

safety surveillance. Specific adverse events are investigated in post-market safety evaluations 

because someone has hypothesized a credible link between use of a particular drug and the 

occurrence of a particular adverse event. Data mining is one method to inform these 

hypotheses and can be applied in administrative and clinical healthcare databases, such as 

the ones participating in the Sentinel Initiative.3–8

Tree-based scan statistics are a data mining approach implemented by TreeScan™ software 

(www.treescan.org). The statistics were developed for application in longitudinal data and 

are compatible with a variety of epidemiology study designs and analytic approaches.9,10 

Three features set tree-based scan statistics apart from most other disproportionality 

methods11–14; 1) they are built on scan statistical theory, 2) they use a hierarchical diagnosis 

tree to simultaneously evaluate outcomes at different levels of granularity (including specific 

diagnoses and groups of related diagnoses), and 3) they use a frequentist method to formally 

adjust for the multiple testing inherent in evaluation of thousands of potential adverse events.
15

TreeScan has previously been used in self-controlled analyses of vaccine safety; however, 

self-controlled designs are not well suited for many drug safety questions due to the 

complexity of confounding related to timing of initiation, duration of exposure of interest 

and reference exposure.16–20 In contrast, propensity score propensity score matched active-

comparator analyses in new initiators are a flexible and commonly used design for 

investigations of drug safety.21–23 Tree-based scan statistics have never been used for 

screening potential adverse outcomes with a propensity score matched new initiator, active-

comparator cohort design. Our objective was to conduct a plasmode simulation24 to evaluate 

the performance of the unconditional Bernoulli TreeScan statistic when scanning across 

outcomes for a propensity score matched new initiator cohort design with active 

comparators.

METHODS

Proposed Method for Signal Detection

The Tree—The “tree” in tree-based scan statistics refers to a hierarchical classification 

system for clinical concepts. These concepts may be drug products, procedures or diagnoses. 
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When scanning across outcomes for a given exposure, one hierarchical classification of 

diagnoses that could be used is the multi-level Clinical Classifications Software produced by 

the Healthcare Cost and Utilization Project (HCUP) sponsored by the Agency for Healthcare 

Research and Quality.25

Our multi-level Clinical Classifications Software tree included International Classification of 

Diseases (ICD) 9th revision diagnosis codes grouped into four hierarchical levels 

representing increasingly specific clinical concepts. At the top level, there are 18 categories, 

most of which represent different body systems. At each level of the hierarchical tree, there 

are mutually exclusive nodes that contain increasingly specific classification of ICD-9 codes. 

The increasing specificity of hierarchical levels and tree-structure is depicted in Figure 1, 

eAppendix 1. The tree we used was curated to remove conditions that were unlikely to be 

caused by drugs or had long induction times relative to exposure (details in eAppendix 2).

The Tree-based Scan Statistic—An unconditional Bernoulli tree-based scan statistic is 

appropriate for propensity score-matched cohort analyses comparing two treatments. This 

statistic assumes that the follow up window is the same for the exposed and comparator 

patients in a matched pair and tests the null hypothesis of no difference in incidence rate for 

adverse events in any node against a one-sided alternative that there is at least one node 

where the rate of adverse events is higher in the exposed group than the comparator.

The distribution of the test statistic T is unknown so we derive p-values non-parametrically 

using Monte Carlo hypothesis testing where permutations of the data are generated under the 

null hypothesis. For these random datasets, nodes contain the same number of events as 

observed in the original data; however, the events are assigned to exposure based on a 

binomial draw with the expected proportion based on the null hypothesis. In a 1:1 matched 

setting, the expected probability of being in the exposure group is 0.5. Formulas and 

additional details regarding tree-based scan statistic methodology are available in eAppendix 

3.

Plasmode simulation

To evaluate the performance of tree-based scan statistic with propensity score matching on 

screening for potential adverse events, we chose to use a plasmode simulation24 rather than 

generate entirely synthetic data. These simulations retain the complexity of relationships 

among 1) baseline covariates, 2) covariates and exposure, and 3) clustering of co-occurring 

outcomes within patients observed within the real dataset used as the basis for the 

simulation. The complex relationships between diagnosed outcomes are particularly 

important to maintain when investigating a method that scans across thousands of outcomes 

in a hierarchical tree. The complexity of the correlation across outcomes would be difficult 

to generate with conditional probability models. We permuted the data to simulate a true 

increase of risk for the exposure of interest by assigning a higher proportion of outcomes in 

selected nodes to initiators of the exposure than initiators of the comparator. However, 

outcomes in selected nodes do not occur independently from outcomes in other nodes. 

Therefore, when permuting the data, outcomes across all nodes were clustered at the patient-

level and assigned together to either exposure or comparator.
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We constructed simulation scenarios that varied the number of outcome nodes affected by 

confounding, whether confounding moved the crude estimate closer to or farther from the 

null, and the magnitude of the true effect. For each set of simulated data, we performed 

varying degrees of confounding adjustment by including random subsets of true 

confounders.

The plasmode simulation process that we implemented expands upon a previous plasmode 

simulation24 framework. In brief, the steps we took were:

1. Extract a cohort of incident users of an exposure drug and comparator drug of 

interest and their baseline covariates from Optum Clinformatics, a large 

administrative healthcare database.

2. Extract incident outcomes across the multi-level Clinical Classifications 

Software tree for the cohort of incident users

3. For each scenario, generate 1,000 simulated datasets by permuting relationships 

between baseline covariates, exposure, and outcome at the patient level.

4. Run the tree-based scan statistic with 1:1 propensity score matching in simulated 

data and evaluate its performance

Additional details on the simulation process are available in eAppendix 4.

Step 1. Extract cohort of incident users and baseline covariates—We used a 

publicly available SAS macro based tool from the Sentinel routine analytic framework, the 

Cohort Identification and Descriptive Analysis + propensity score matching tool (CIDA 

version 3.3.0)26, to extract the underlying cohort for our simulations. The cohort was created 

from Optum Clinformatics data converted to the Sentinel Common Data Model (version 

5.0)27. We extracted a cohort consisting of new users of DPP4-inhibitors (exposure of 

interest) or sulfonylureas (comparator) based on a protocol used in a prior Sentinel analysis.
28 We selected this protocol because the evaluated products have an established safety 

profile and adequate uptake in the data source. The study period was 1 January 2007 and 31 

December 2010. The index date was the first dispensing date for a study drug after 1) at least 

183 days without a dispensing for either study drug, and 2) continuous drug and medical 

coverage (30 day gaps allowed). Twenty-six baseline covariates were defined, but no 

outcome was specified. More details on cohort parameters are available eAppendix 5. This 

project made secondary use of de-identified data. Human subject review was not required.

Step 2. Extract incident outcomes across multi-level Clinical Classifications 
Software tree—We defined incidence at level 3 of the multi-level Clinical Classifications 

Software tree. Incident outcomes were defined by the date of the first emergency department 

or inpatient diagnosis in the node after at least 183 days of medical and drug enrollment with 

no diagnosis codes from the node recorded in any care setting (Figure 2). Incident outcomes 

were included if they occurred within 183 days following the index date for initiation of a 

study drug. Hypothesis testing occurred at levels 3, 4, and the leaf level (individual ICD-9 

codes).
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Step 3. Generate cohorts with known truth for 11 simulation scenarios—For 

our simulation, we chose three level 3 outcome nodes to insert true elevation in risk and/or 

confounding. The three outcome nodes were: (1) hemorrhage from gastrointestinal ulcer; (2) 

acute cerebrovascular disease; (3) acute and unspecified renal failure. These nodes were 

selected to span a range in frequency of incident outcomes observed in the extracted cohort.

We permuted the observed data in order to inject known truths and confounding while 

maintaining as much of the complexity of the observed data as possible. The permutation 

strategy retained the observed baseline characteristics and exposure for patients as well as 

the collection of co-occurring outcomes observed within patients. However, the permutation 

randomly assigned which baseline characteristics and exposure were assigned to which set 

of outcomes. Because of the permutation strategies we implemented, unknown effects of 

exposure that existed in the original observed data were eliminated. We were also able to 

simulate the desired “true” magnitude of effect and confounding in selected nodes. For this 

simulation, we chose to use the 26 predefined covariates as true confounders.

We simulated data under 11 scenarios (Table 1). Scenario 1 had no confounding and no true 

elevation in risk from exposure in any node. Scenario 2 had positive confounding that moved 

estimates away from the null in the three selected nodes, but no true effect of exposure in 

any node. Scenarios 3, 4, and 5 had no confounding, but true elevation in relative risk for 

three selected nodes of magnitude 1.5, 2.0 and 4.0. Scenarios 6–8 had positive confounding 

that biased effect estimates away from the null, but after adjusting for confounders in a 

perfectly specified outcome model, the true relative risks were 1.5, 2.0, and 4.0. Scenarios 

9–11 had negative confounding, where bias moved the unadjusted estimate closer to the null, 

but after adjusting for confounding in a perfectly specified outcome model, the true relative 

risks were 1.5, 2.0, and 4.0.

Step 4. Run TreeScan with propensity score matching and evaluate 
performance—For the simulation scenarios with no true confounding (Table 1 scenarios 

1, 3, 6, 9) we randomly 1:1 matched initiators of the exposure of interest to initiators of the 

comparator drug because there was no need for confounding adjustment. For simulation 

scenarios that included positive or negative confounding, we varied the degree of 

confounding adjustment in the analyses. For 0% adjustment of confounding, we 1:1 matched 

initiators of the exposure of interest and comparator drug randomly. For partial adjustment, 

we used nearest-neighbor matching on a propensity score derived from a logistic regression 

model that included a subset of true confounders, where the subset included a random 11 

(40%), 13 (50%), 18 (60%), or 21 (80%) of the full set of true confounders. For full 

adjustment, we used nearest-neighbor matching on a propensity score with 100% of true 

confounders.

In all scenarios, the propensity score matching caliper was 0.025 on the probability scale. 

We arbitrarily chose to set the threshold for alerting to p <0.01. For each dataset in each 

scenario, we ran TreeScanTM to identify signals. For each scenario, we then calculated the 

proportion of datasets with signals in each of the three selected nodes, their descendant 

nodes, and non-descendant nodes to evaluate power and type 1 error. For scenarios where 

there is a true increase in risk for the exposure of interest over the comparator in a selected 
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node, power was defined as the proportion of the 1,000 simulated datasets for which there is 

a signal in the selected node.

RESULTS

The base cohort extracted from a large healthcare database included 25,849 initiators of 

DPP4-inhibitors and 88,312 initiators of sulfonylureas. There were some imbalances 

between the exposure groups (Table 2).

The three selected nodes in which we inserted confounding and/or true effect of exposure, 

had incidence in the unmatched cohort of DPP4-inhibitor and sulfonylurea initiators ranging 

from 0.0005 to 0.0069 (Table 3) over 183 days of follow up. The number of outcomes that 

were included in matched datasets varied with direction of confounding and true effect size. 

The simulation results for each scenario are presented in eAppendix 6 and are discussed 

below.

Scenario 1 had no confounding and no true elevation in risk from exposure in any node. 

With a pre-specified threshold of p<0.01, 9 out of 1,000 (0.009) simulated datasets had a 

node that signaled, while 991 datasets did not have a single node that signaled. Thus, the 

observed type 1 error was close to the expected.

Scenario 2 had confounding that moved estimates away from the null in the selected nodes, 

but no true effect of exposure in any node. Nearly 40% of simulated datasets had a false 

positive signal when there was no confounding adjustment (Figure 3). With propensity score 

adjustment, the rate of false positive alerts was close to the nominal type 1 error rate if at 

least 50% of true confounders were included in the propensity score model. Propensity score 

models that included larger subsets of true confounders had better performance in terms of 

type 1 error.

Scenarios 3–5 had true elevation in relative risk for selected nodes of magnitude 1.5, 2.0 and 

4.0 and no confounding. Unsurprisingly, the power to detect true elevation in risk increased 

both with the magnitude of the true effect and the prevalence of the outcome (Figure 4). 

Because the threshold for TreeScan signaling is designed to maintain an overall type 1 error 

level when scanning across thousands of outcomes, the power to detect true signals was 

lower than it would have been had only a single node been evaluated. The power to detect a 

relative risk of 2.0 with alpha at 0.01 in a one-sided test of difference in proportions would 

have been 25% for “hemorrhage from gastrointestinal [tract]” 82% for “acute 

cerebrovascular disease,” and 100% for “acute and unspecified renal disease”. When the true 

relative risk was 2.0 and alpha set to 0.01, for the same nodes, TreeScan signaled 0%, 30%, 

and 100% of the time (eAppendix 6). There were more signals in nodes that were not 

descendants of the nodes where true effects were inserted than would have been expected 

based on the pre-specified threshold of 0.01. When the true relative risk for the three 

selected nodes was set as 4.0, over half of the permuted datasets included signals in non-

descendant nodes. We speculate that these non-descendant nodes signaled because they were 

associated with the nodes where true signals were inserted. Non-descendant nodes that 

signaled when there was true elevation in risk for selected nodes were not randomly 
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dispersed throughout the multi-level Clinical Classifications Software tree. Nodes covering 

concepts such as “respiratory failure”, “hyposmolality” and “hemiplegia” signaled 

repeatedly (Table 4). These non-descendant nodes represent co-occurring conditions that are 

clinically related to the selected nodes where we had simulated true elevation in risk. Our 

simulations retained the observed co-occurrence of diagnoses within patients. In the 

observed data, patients with incident “acute and unspecified renal failure” were over 10 

times as likely to also have incident “acute cerebrovascular disease” than those without the 

renal outcome (2.5% vs. 0.2%). Patients with incident outcomes in either of these selected 

nodes where true effects were simulated were more likely to have co-occurring signals in 

non-descendant but clinically related nodes such as “respiratory failure,” “hyposmolality” 

and “hemiplegia” (p <0.001). As an example, patients with incident “acute cerebrovascular 

disease” were nearly 1,000 times as likely as those without to have a co-occurring 

“hemiplegia” (19% vs. 0%, p <0.001).

Scenarios 6–8 had confounding that moved estimates away from null, true relative effect 

ranging from 1.5 to 4.0 and varying degree of confounding adjustment. The power to detect 

signals increased with outcome prevalence and true effect size, but some of the “signals” 

were due to residual confounding. As the number of true confounders included in the 

propensity score decreased, residual confounding increased and the proportion of simulated 

datasets with signals at alpha 0.01 increased (eAppendix 6, 7). This reflected a mix of 

signals arising due to the true effect and signals due to confounding. The pattern of signals 

in descendant nodes (children of the 3 selected nodes) paralleled the pattern in the three 

selected nodes. The proportion of datasets that signaled in non-descendant nodes increased 

as residual confounding increased. When the true effect size was a relative risk of 4.0, 75% 

of simulated datasets included signals in non-descendant nodes after matching on a 

propensity score that included all true confounders. These signals reflected co-occurring 

diagnoses for conditions clinically related to the selected nodes.

Scenarios 9–11 had confounding that moved estimates toward the null, true relative effect 

ranging in magnitude from 1.5 to 4.0, and varying degrees of confounding adjustment. 

Unadjusted analyses had low power to detect true elevation in risk when the magnitude of 

the effect was smaller and the prevalence of the outcome lower (eAppendix 6, 7). With 

increased confounding adjustment, power to detect true signals was recovered. For example, 

when the true relative risk for acute and unspecified renal disease was 2.0, the power to 

detect the signal was around 8% in unadjusted analyses but around 90% if at least 80% of 

true confounders were included in propensity score adjustment. When there was greater 

power to detect true signals, there was also an increase in signals for co-occurring diagnoses 

of conditions clinically related to the selected nodes.

DISCUSSION

Lack of confounding control will lead to alerts for spurious findings as well as decreased 

ability to detect true associations.29 We conducted simulations to evaluate the ability of the 

tree-based scan statistic to screen for unknown adverse events when used with a new 

initiator cohort design and propensity score matching to adjust for confounding. Use of a 

plasmode simulation allowed us to evaluate the performance of TreeScan in a setting with 
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known truth while also retaining the observed complexity in relationships between baseline 

characteristics and observed clustering of outcomes within patients in a cohort created from 

a large healthcare database.

In multiple realistic scenarios, tree-based scan statistics in cohorts that were propensity score 

matched to adjust for confounding outperformed tree-based scan statistics in unmatched 

cohorts. In scenarios with confounding that moved point estimates away from the null, 

adjusted analyses recovered the pre-specified type 1 error while unadjusted analyses had 

inflated type 1 error. In scenarios with confounding that moved point estimates toward the 

null, adjusted analyses preserved power while unadjusted analyses had greatly reduced 

power. Although complete adjustment of true confounders had the best performance, 

matching on a moderately mis-specified propensity score substantially improved type 1 error 

and power compared to no adjustment. Our plasmode simulation was based on a real dataset 

and preserved the observed correlation of baseline characteristics. Because of this 

correlation between true confounders, even when some true confounders were left out of the 

propensity score model, their confounding effect could be partially adjusted by inclusion of 

correlated confounders (e.g. proxy adjustment30).

When we simulated true elevation in risk in selected nodes, there was an increase in signals 

from non-descendant nodes. Many of these were clinically related diagnoses that co-occur 

with the selected nodes for which we simulated true signals. It would be possible to reduce 

signals from co-occurring diagnoses by 1) only considering the signal from the most 

extreme node in the observed data or 2) restricting outcomes to inpatient diagnoses in the 

primary position, rather than any inpatient or emergency room visit. However, signals in co-

occurring non-descendant nodes could help paint a more complete picture of the underlying 

clinical issue related to exposure. Relationships between nodes that signal at the pre-

specified alpha level could be evaluated holistically via a clinical lens as well as statistically 

by examining correlation matrices between relevant nodes.

There are several limitations of our evaluation of the performance of the tree-based scan 

statistic with propensity score matching. First, the plasmode simulation was based on the 

correlation structure between exposure, covariates, exposure, and outcomes from a single 

cohort of commercially insured patients. In other cohorts, the prevalence of outcomes may 

differ as well as the degree of correlation between covariates and their association with 

exposure.

Second, we used 1:1 matching with a fixed follow up of 183 days but did not address 

considerations of how to choose an appropriate risk window. It is unlikely that any single 

risk window will be the correct and best choice across all potential adverse events in an 

outcome tree. Development of tree-based scan statistics compatible with variable ratio 

matching and variable follow up (time-to-event) is underway.

Third, the hierarchical multi-level Clinical Classifications Software classification system we 

used is primarily organ-based, and the diagnostic codes and their classification into different 

nodes are not based on validated algorithms for specific outcomes. In contrast, the observed 

data from a large administrative claims data source reflect patterns of coding for multi-
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system diseases that may span in multiple branches of the multi-level Clinical 

Classifications Software tree. Our results highlight the necessity of combining data mining 

techniques with clinical review and other screening of potential signals.

Fourth, our evaluation did not address how to select covariates for a propensity score to 

simultaneously address confounding for potential adverse events across an outcome tree. 

Tree-based scan statistics consider thousands of outcomes, making it difficult to choose risk 

factors for inclusion in the propensity score model used for adjustment. However, the 

variable reduction property of propensity score analyses allow adjustment for many 

covariates, making it more likely that risk factors (or their proxies) for a range of outcomes 

will be balanced for compared exposure groups. In our simulations, we varied the degree of 

propensity score misspecification. Given our findings that partial adjustment could perform 

nearly as well in terms of type 1 error and power as full adjustment, we expect that a general 

propensity score that includes numerous measures of general comorbidity31 or frailty32 

would provide broad confounding coverage. A set of empirically identified baseline 

covariates selected30 based on the strength of their relationships with exposure could also 

provide balance on a wide spectrum of baseline characteristics. However, the relative 

performance of confounder selection strategies in the context of scanning across outcomes 

should be evaluated further.

Finally, Bayesian approaches are another option to support decisionmaking and 

prioritization of potential safety signals. These approaches can capitalize on the availability 

of other information to generate prior distributions.33–35 However, when screening for 

unanticipated safety signals, decision-makers must decide which estimates merit further 

investigation when there is no informative prior. The tree-based scan statistic produces p-

values that are adjusted for multiple testing. Traditional frequentist methods for adjusting p-

values for multiple comparisons are too conservative for scan statistics, where the multiple 

testing adjustment needs to account for correlation between similar tests of related 

hypotheses. This means that when there is no elevation in risk of potential adverse events 

with exposure relative to a comparator (and negligible confounding), with a threshold for 

alerting at p = 0.01, TreeScan has a 99% probability of not generating any alerts at all.

Adjusting for multiplicity will decrease power compared to analyzing a single pre-specified 

hypothesis, so the tree-based scan statistic should only be used in surveillance for 

unanticipated outcomes, where there is no prior hypothesis. As such, tree-based scan 

statistics can fill an important gap, complementing the FDA Adverse Event Reporting 

System, a system that has been helpful in detecting rare events but is less sensitive at 

detecting modest differences for relatively higher prevalence outcomes. Furthermore, as with 

other disproportionality measures in signal detection, statistical significance is only one 

dimension to evaluate. Because p-values conflate sample size with effect size, they can be a 

useful metric for prioritizing associations for further investigation to avoid excessive false 

alarms. Possible signals should also be prioritized based on metrics such as relative risk, 

attributable risk, disease severity or other clinical criteria.

Tree-based scan statistics with propensity score matching shows promise as a method for 

screening and prioritization of potential drug adverse event signals to pursue with deeper 
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investigation. This method could be particularly useful in the context of newly marketed 

drugs, where there is little experience and few hypotheses regarding the safety profile. 

However, the method is not limited to application with drug or vaccine safety. For example, 

it could be applied to screen for adverse health effects of exposures studied in ‘omics’ 

research (e.g. metabolomics, exposome, biomarkers). Screening should be followed by 

efforts to better understand the clinical context around potential signals as well as studies 

specifically designed to quantify the magnitude of effect, with confounding control tailored 

to the outcome under investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Example of a multi-level Clinical Classification tree
At level 1, there are 18 categories that largely represent different body systems. In this 

example, the category specifies only that the person has a disease of the genitourinary 

system. There are several potential sub-classifications of the genitourinary system. By 

moving to level 2, one could discern whether the patient has a disease of the urinary system 

or a disease of a genital organ. At level 3, the finer classification can identify that a disease 

of the urinary system is acute and unspecified renal failure. At level 4, the type of renal 

failure is further specified as acute renal failure. Finally, each node in the leaf node of the 

hierarchy is based on specific ICD-9 codes. In this figure, the specific diagnosis code for the 

patient was 584.6 “acute kidney failure with lesion of renal cortical necrosis”. In this figure, 

the level 3 node “Acute and unspecified renal failure” has 1 parent, “Diseases of the urinary 

system” and is the parent of two level 4 children, “Acute renal failure” and “Unspecified”. 

Children of children down to and including the leaf nodes are considered descendants. Thus 

the diagnosis code 584.6 is a descendant of the level 3 node “Acute and unspecified renal 

failure” but is not a descendant of the level 3 node “Nephritis, nephrosis, renal sclerosis”.
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Figure 2. Incident outcome criteria
Note that there was a fixed follow up window of 183 days for incident outcomes.
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Figure 3. Percent of simulated datasets with false signals when there is confounding but no true 
effect of exposure
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Figure 4. Power to detect true signal in the absence of confounding
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Table 1

Simulation scenarios

Scenario Confounding? Direction of confounding True Relative Risk # Nodes with
true effect

1 No n/a
1.0 0

2 Yes Positive (away from the null)

3

No n/a

1.5

3

4 2.0

5 4.0

6

Yes Positive (away from the null)

1.5

7 2.0

8 4.0

9

Yes Negative (toward the null)

1.5

10 2.0

11 4.0
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Table 2

Distribution of covariates by exposure

Baseline Covariates DPP4 inhibitor Sulfonylurea

n = 25,849 n = 88,312

Mean (SD) Mean (SD)

Age 56 (11.0) 54 (12.6)

Count (%) Count (%)

Gender (F) 12,185 (47.1) 40,510 (45.9)

Chronic Kidney Disease 1,419 (5.5) 4,053 (4.6)

Hypoglycemia 757 (2.9) 2,435 (2.8)

Diabetic Nephropathy 935 (3.6) 2,300 (2.6)

Diabetic Neuropathy 1,594 (6.2) 4,401 (5.0)

Diabetic Retinopathy 1,025 (4.0) 2,726 (3.1)

Diabetic Peripheral Circulatory Disorder 510 (2.0) 1,497 (1.7)

Erectile Dysfunction 689 (2.7) 2,098 (2.4)

Skin Infections 341 (1.3) 1,199 (1.4)

Diabetic Unspecified Complications 842 (3.3) 2,514 (2.8)

Alphaglucosidase 104 (0.4) 198 (0.2)

Glitazones 8,188 (31.7) 16,184 (18.3)

GLP1RA 1,326 (5.1) 3,097 (3.5)

Insulin 2,844 (11.0) 6,079 (6.9)

Meglitinides 945 (3.7) 934 (1.1)

Metformin 13,662 (52.9) 47,816 (54.1)

Mean (SD) Mean (SD)

Number of ambulatory visits 8.5 9.1 7.8 9.4

Number of emergency department visits 0.2 1.5 0.2 1.5

Number of inpatient visits 0.1 0.4 0.2 0.5

Number of institutional stays 0.1 0.8 0.1 1.1

Number of outpatient visits 0.4 1.7 0.4 1.8

Number of classes of medication 7.4 4.5 6.5 4.2

Number of generic medications 8.4 4.8 7.4 4.5

Number of dispensations 20.1 15.6 15.6 14.0

Age defined at the index date, all other characteristics defined using data within the 183 days prior to the index date. SD indicates standard 
deviation.
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Table 3

Observed frequency of outcomes in selected nodes

MLCCS
Level 3 node Concept Count Incidence

09.10.01 Hemorrhage from gastrointestinal ulcer 53 0.0005

07.03.01 Acute cerebrovascular disease 217 0.0018

10.01.02 Acute and unspecified renal failure 792 0.0069

Multi-level clinical classification software (MLCCS)
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Table 4

Percent of simulated datasets in scenarios with true effect = 4.0 and no confounding where non-descendant 

nodes that signaled at alpha = 0.01

Node Percent MLCCS level 3

08.06.01 32.6 Respiratory failure

03.08.01 18.6 Hyposmolality

06.03.01 17.7 Hemiplegia

07.01.02 17.5 Hypertension with complications

03.08.05 13.7 Other fluid and electrolyte disorders

17.01.05 11.0 Shock

10.01.03 10.4 Chronic kidney disease

10.01.04 8.2 Urinary tract infections

07.02.11 6.7 Congestive heart failure; nonhypertensive

03.08.03 4.2 Hyperpotassemia

Signals that occurred at level 4 and leaf level were rolled up to level 3 to calculate percents.
Multi-level clinical classification software (MLCCS)
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