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Abstract

Tuberculosis is a global health dilemma. In 2016, the WHO reported 10.4 million incidences and 

1.7 million deaths. The need to develop new treatments for those infected with Mycobacterium 
tuberculosis (Mtb) has led to many large-scale phenotypic screens and many thousands of new 

active compounds identified in vitro. However, with limited funding, efforts to discover new active 

molecules against Mtb needs to be more efficient. Several computational machine learning 

approaches have been shown to have good enrichment and hit rates. We have curated small 

molecule Mtb data and developed new models with a total of 18,886 molecules with activity cut 

offs of 10 µM, 1 µM and 100 nM. These datasets were used to evaluate different machine learning 

methods (including deep learning) and metrics and generate predictions for additional molecules 
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published in 2017. One Mtb model, a combined in vitro and in vivo data Bayesian model at a 100 

nM activity yielded the following metrics for 5-fold cross validation: Accuracy = 0.88, Precision = 

0.22, Recall = 0.91, Specificity = 0.88, Kappa = 0.31, and MCC = 0.41. We have also curated an 

evaluation set (n = 153 compounds) published in 2017 and when used to test our model it showed 

the comparable statistics (Accuracy = 0.83, Precision = 0.27, Recall = 1.00, Specificity = 0.81, 

Kappa = 0.36, and MCC = 0.47). We have also compared these models with additional machine 

learning algorithms showing Bayesian machine learning models constructed with literature Mtb 
data generated by different labs generally were equivalent to or outperformed Deep Neural 

Networks with external test sets. Finally, we have also compared our training and test sets to show 

they were suitably diverse and different in order to represent useful evaluation sets. Such Mtb 
machine learning models could help prioritize compounds for testing in vitro and in vivo.
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INTRODUCTION

Mycobacterium tuberculosis (Mtb) infection is causative of tuberculosis (TB), which in 

2015 claimed the lives of 1.7 million people with 10.4 million infections reported 1. TB 

continues to be the focus of intense international efforts to develop new therapeutics to 

address resistance to first- and second-line drugs 2. The discovery of new TB drug 

candidates with novel mechanisms of action and a shortened length of treatment is of 

fundamental importance. Much of the effort has resorted to large high-throughput screens in 

academia, industry and efforts funded by the NIH and the Bill and Melinda Gates 

Foundation 3–5. However, the translation of in vitro active compounds coming from these 

screens and moving them in vivo is fraught with difficulty in terms of finding molecules that 

balance activity versus good physicochemical and pharmacokinetic properties. For close to a 

decade we have focused our research on using machine learning models for in vitro Mtb 
datasets inspired by early Bayesian modeling by Prathipati et al., 6 and our own work using 

this approach for ADME/Tox properties 7, 8. This has led to modeling of the large Mtb 
datasets that were made available by SRI/NIAID 9, 10 and smaller datasets from Novartis 11. 

These models were initially used to score and filter similarly large numbers of molecules 

identified with pharmacophore methods before eventual testing in vitro 12. This led to three 

independent prospective tests of models built with in vitro data. One study used Bayesian 

models to suggest seven compounds for Mtb testing, out of which five were active 13. A 

second validation of this approach tested 550 molecules and identified 124 actives 14. A 

third example with an independent group tested 48 compounds and 11 were classed as active 
15. A retrospective validation used a set of 1,924 molecules as a test with the various 

Bayesian models to show the levels of enrichment which in some cases was greater than ten-

fold 16. We have since also assessed combining Mtb data sets and then testing the models on 

data published by other groups17, 18. These combined efforts suggested the importance of 

having multiple Mtb models and also suggested molecular features important for actives18. 

The molecular features identified from earlier Bayesian models have been used recently to 

create new β-lactam antibacterials with activity against Mtb 19. We have additionally 

developed machine learning models for individual Mtb targets which have been used in a 

mobile app TB Mobile 20, 21 as well as for drug discovery efforts for ThyX 22 and 

Topoisomerase I 23. A major hurdle to progressing molecules into the clinic is identifying 

compounds that have activity in the mouse models of Mtb infection 24. We therefore 

published a comprehensive assessment of over 70 years of literature resulting in modeling of 

773 compounds reported to modulate Mtb infection in mice 24 and more recently updated 

this with 60 additional molecules 25. Traditionally in vitro and in vivo data and resultant 

machine learning models have been kept separate and used for different applications.

We have taken the opportunity to curate some recent data from 2015–2016 to update the Mtb 
models and explore their utility. In addition, we have recently focused on developing 

software capable of sharing machine learning models based on open source software 26–28 as 

well as assessing a broader array of machine learning methods including Deep Learning 
29, 30. Our goal is to curate additional Mtb data, validate our models while continuing to 

show their value and predictive potential. Making such TB models accessible could have 
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significant value so that other labs can use them for scoring compounds before testing in 

global TB drug discovery efforts.

EXPERIMENTAL SECTION

Computing

Most of the computational work was performed using an iMac 21.5-inch iMac with Retina 

4K display, 3 GHz Intel core i5, 8 GB Memory 2400 MHz DDR4,1TB HDD, Radeon Pro 

555 2048 MB, Magic Mouse 2, Mac OS Sierra (10.12.4). All other computing was done on 

a single dual-processor, quad-core (Intel E5640) server running CentOS 7 with 96 GB 

memory and two Tesla K20c GPU. The following software modules were installed: nltk 

3.2.2, scikit-learn 0.18.1, Python 3.5.2, Anaconda 4.2.0 (64-bit), Keras 1.2.1, Tensorflow 

0.12.1, Jupyter Notebook 4.3.1.

Data Curation

The Mtb data was compiled from four distinct sources. The initial data set was data from 

approximately 140 primary-literature sources, published between 2014 and 2016, that had 

been extracted and compiled into a comprehensive list manually. The individual molecular 

structures of about 2,807 different compounds was created in a format conducive for model 

building and key data describing the inhibition potency of each of these molecules towards 

the Mtb H37Ra and H37Rv strain growth were compiled. The minimum inhibition data that 

was compiled was MIC (minimum inhibition concentration) and were recorded in units of 

either µg/mL, µM, or nM. Notations were made in each of the files regarding the specific 

MIC measured (e.g. MIC90, MIC, MIC99, etc.). While these values are slightly different, 

they are assumed similar enough for model building purposes to be considered 

approximately the same. If other data was available, such as inhibition % based on a fixed 

drug concentration, it was recorded in additional columns to be potentially used at a later 

date. In the cases where there were multiple molecules, a script was run to remove all salts 

and or all other molecules except for the molecule with the highest molecular weight. These 

data were extensively curated to guarantee the correctness of the compounds. A second data 

set that was compiled was extracted from ChEMBL31, 32. A search was performed on the 

ChEMBL website 32, 33 for a comprehensive list of 1,816 functional assays in the current 

ChEMBL database involving the target Mtb H37Rv strain. If a data set contained MIC 

values it was examined and extracted into a usable DataSheet XML (.ds) file format 34 from 

the latest ChEMBL database using a proprietary script 3536. The data was checked for 

consistency between the extracted data and the data on the website. If available, the source 

of the data was briefly examined to see if a specific target was identified or if it was being 

tested with knowledge of the target. Independently, a script extracted all of the molecules 

and the inhibition data from ChEMBL that matched the following criterion: those that 

included both the parameters Mtb or Mtb H37Rv strain and MIC values. Note this extraction 

included those that specifically had MIC values only and did not include values of MIC90, 

MIC99, etc. All of these data were concatenated, and when there were duplicates the MICs 

were averaged, and then the units were converted to a standard unit of -logM. This combined 

dataset contained approximately 12,000 compounds. The third data set was compiled from a 

publicly available SRI data set that contained about 7,000 molecules (a compilation of four 
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published datasets and focusing on dose response data with cytotoxicity16, 37–39). This set 

was manually curated into a form that was usable to build a model for Assay Central, 

utilizing the same criteria described above. It should be noted that a script corrected the 

structure for inappropriately neutrally charged nitro groups. The SRI/NIAID data measured 

the IC50 or IC90 for growth inhibition, and not the MIC. For the purposes of this model 

IC50/90 and MIC were estimated to be equivalent. Finally, the model was expanded to 

include in vivo data which generally assumes compounds would have activity in vitro (~800 

compounds) 24, 25. When a conflict existed between what is considered active in the in vivo 
or in vitro model, the in vivo model trumped was used preferentially. This decision was 

based on the generality that molecules that demonstrate in vivo efficacy of at least a 1 log10 

reduction in lung CFUs are suitably active in vitro. The one notable exception is 

pyrazinamide, due to a complex mechanism of action that is still the subject of debate 40–48. 

The In vivo data activity designation did not change based on the 3 cutoffs used in this study. 

An overview of this data curation process is described in a simplified form (Figure 1).

Model Building with Assay Central

We applied best-of-breed methodology for checking and correcting structure-activity data 49 

which errs on the side of caution for problems with non-obvious solutions, so that we could 

manually identify problems and either apply patches, or data source-specific automated 

corrections. As more data sources are added from diverse sources, the structure processing 

becomes increasingly important, as standard representation and de-duplication is essential 

for high quality machine learning model building. The primary deliverable of Assay Central 

is a “build system” that can routinely recreate a single model-ready combined dataset for 

each target-activity group. Most software engineering projects of any size use a source code 

management system such as git, which allows programmers to track the history of each file, 

resolve conflicts between concurrent branches, and keep their work stored in a safe and 

secure place while retaining the freedom to work on a local copy. We have repurposed these 

best practices to the collection of diverse structure-activity datasets, which turns out to be a 

very similar workflow to collaborative programming: molecular “source files” are edited by 

team members; our project configuration consists of instructions for gathering the data into 

categories related by disease target; our compilers filter, clean and merge incoming data-

points; and our deliverable is a collection of models that can be used to predict the efficacy 

and/or toxicity of future compounds of interest, to decide whether they are worth testing in 

the laboratory. The use of the git source code management program in particular is strategic, 

since it was designed to manage the sprawling Linux kernel codebase, with thousands of 

engineers spread across the globe. We have established that the techniques that have been 

found to be useful for computer programming are similarly effective for cheminformatics 

data, and our team has been able to perform seamlessly by working on their own local 

repositories, and periodically pushing their local copy back to the central repository. While 

many software services exist for explicitly managing SAR data, we began with the 

presumption that organizing our data as a collection of files in a tree of directories, mixed 

with build rules - much like computer software source code - would be as effective as using 

databases (SQL/NoSQL) and custom designed services. The increases in computing power 

make the relatively ad hoc nature of the system quite sustainable, e.g. the lack of 

precomputed indexes imposes a considerable computational burden, but this turns out to be 
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quite manageable using off the shelf hardware today. We have included in Assay Central 

several traditional measurements of model performance, including recall, specificity, 

precision, F1-Score, Receiver Operating Characteristic (ROC) curve and the area under the 

curve (AUC), Cohen’s Kappa 50, 51, and the Matthews correlation 52. In some cases, we 

manually specified a cut-off threshold for active versus. inactive, but we can also use default 

settings for an automated algorithm which we have described previously 27.

In past studies we have validated and described the generation of Laplacian-corrected 

Bayesian classifier models 13–15. In this study, three different Bayesian models were created 

using the combination of 2,807 compounds extracted from the primary literature listed above 

from 2015–2016, the large data set extracted from ChEMBL of approximately 12,000 

molecules, and the SRI/NIAID data set containing ~7,000 9, 10, 13–15, and the ~800 24, 25 

compounds from in vivo data as described earlier. The concatenated model, after duplicates 

were removed, is comprised of 18,886 molecules. The number of actives varied by the 

activity threshold with values of 645, 2,351, and 7,762 for 100 nM, 1 µM or 10 µM models, 

respectively. Prior to the model being created each value was converted from µg/mL, µM, or 

nM into a consistent -logM. A binary threshold of 5, 6, and 7 was then implemented into 

each model, which is the equivalent to a 10 µM, 1 µM, and 100 nM activity cutoff, 

respectively. As stated above, the threshold for the in vivo data was set by the experimenters 

and not by our chosen threshold. The data was either already binary (no action required) or it 

was converted to binary by applying a threshold (as described above). Each model was 

internally validated by a five-fold cross-validation, where 20% of the dataset is left out and 

used as a test set five times. Each 20% left out is randomly removed, but it still retains the 

representative ratio of the actives:inactives of the total set. Receiver operator characteristic 

(ROC) plots were generated and the ROC area under the curve (AUC), other model statistics 

were also calculated in Assay Central. The ROC plots were used to evaluate the predictive 

ability of the models.

Model Validation

To test the predictive ability of our Mtb models using extended connectivity fingerprints of 

maximum diameter 6 (ECFP6) we compiled a test set of 153 compounds not in the training 

set. These data were compiled from ten recently published papers in 2017 53–62 that 

quantified the growth inhibition of small molecules against Mtb. These were picked 

essentially at random from PubMed, with the only criterion being that the primary article 

contained at least one fairly active compound (MIC ≤ 10 µM) and that these data were not 

available in the current version of ChEMBL 32.

Datasets and Descriptors for Machine Learning Comparison—The Mtb models 

were used with different types of descriptors in the following comparison of machine 

learning algorithms. ECFP6 and FCFP6 fingerprints with 1,024 bins were computed from 

SDF files using RDKit (http://www.rdkit.org/), MACCS keys using 166 substructure 

definitions were calculated with RDKit Descriptors including 196 2- and 3-dimensional 

topological, compositional, or electrotopological state descriptors. Toxprint used a set of 

publicly available set of chemical substructures relevant to toxicity from ChemoTyper 

(https://chemotyper.org/).
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Machine learning comparison—Two general prediction pipelines were developed. The 

first pipeline was solely built using classic Machine Learning (CML) methods, such as 

Bernoulli Naïve Bayes, Linear Logistic Regression, AdaBoost Decision Tree, Random 

Forest, and Support Vector Machine. Open source Scikit-learn (http://scikit-learn.org/stable/, 

CPU for training and prediction) ML python library was used for building, tuning, and 

validating all CML models included in this pipeline. The second pipeline was built using 

Deep Neural Networks (DNN) learning models of different complexity using Keras (https://

keras.io/), a deep learning library, and Tensorflow (www.tensorflow.org, GPU training and 

CPU for prediction) as a backend. The developed pipeline consists of a random splitting of 

the input dataset into training (80%) and validation (20%) datasets, while maintaining equal 

proportions of active to inactive class ratios in each split (stratified splitting). All of the 

models’ tuning and hyper parameters search were conducted solely through five-fold cross 

validation on training data for better model generalization. Where possible, models were 

trained using the full unbalanced dataset, i.e., unequal active and inactive compounds. For 

Support Vector Machines and Linear Logistic Regression using a threshold of 100 nM the 

models failed to converge and reach a solution. This is likely due to the low number of active 

compounds (645) compared to inactives (18,241). For these models, 25% of the inactive 

class was therefore randomly down sampled to create an active, inactive ratio closer to that 

for the 1 µM threshold dataset.

Bernoulli Naive Bayes: Naïve Bayes method is a supervised learning algorithm based on 

applying Bayes’ theorem with the “naïve” assumption of independence between every pair 

of features. Bernoulli Naïve Bayes implements the naïve Bayes training and classification 

algorithms for data that is distributed according to multivariate Bernoulli distributions; i.e., 

there may be multiple features but each one is assumed to be a binary-valued (Bernoulli, 

Boolean) variable. Naïve Bayes learners and classifiers can be extremely fast compared to 

more sophisticated methods and have been widely used 63. Our Bernoulli Naïve Bayes 

(BNB) models were tuned and trained using the BernoulliNB class from the Naïve Bayes 

module of Scikit-learn. Isotonic calibration is a classifier optimization strategy that aims to 

calibrate the probability scores for a classifier. After training, an isotonic function, i.e., 

monotonically increasing, is learned mapping the probability scores of the classifier to the 

fraction of true positive cases at that probability score, creating a more reliable probability 

estimate 64, 65. In this work, we used the CalibratedClassifierCV available in Scikit-learn to 

tune our BNB estimator, through five-fold stratified cross-validation based on isotonic 

regression. The cross-validation generator estimates the model parameter on the train 

portions of cross-validation split for each split, and the calibration is done on the test cross-

validation split of the train dataset. Then, these calibrated probabilities predicted for the 

folds are averaged and used for prediction. AUC, F1-score and other metrics listed in data 

analysis section were computed using these calibrated probabilities.

Linear Logistic Regression with Regularization: Logistic regression measures the 

relationship between the categorical dependent variable and one or more independent 

variables by estimating probabilities using a logistic function, which is the cumulative 

logistic distribution, thus predicting the probability of particular outcomes. The L2 

binominal regularized logistic regression method was used to classify the activities. A 
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stochastic average gradient optimizer was used in the LogisticRegressionCV class from the 

Linear Module of Scikit-learn. A five-fold stratified cross-validation method was used in 

grid search of the best regularization parameter (L2 penalties were in logarithmic scale 

between 1e−5 and 1e−1). The AUC of ROC was used for scoring the classification 

(maximizing AUC) performance for each fold of balanced classes’ classification task.

AdaBoost Decision Tree: AdaBoost is a type of “Ensemble Learning” where multiple 

learners are employed to build a stronger learning algorithm by conjugating many weak 

classifiers. The Decision Tree (DT) was chosen as a base algorithm in our implementation of 

the AdaBoost method (ABDT). The AdaBoostClassifier class with 100 estimators and 0.9 

learning rate from Scikit-learn ensemble module was used. Similarly to Naïve Bayes, the 

ABDT models were tuned using isotonic calibration for the imbalanced classes with five-

fold stratified cross-validation method.

Random Forest: The Random forest (RF) method is another ensemble method, which fits a 

number of decision tree classifiers on various sub-samples of the dataset and use averaging 

to improve the predictive accuracy and control over-fitting. The RandomForestClassifier 
class with maximum depth of tree 5 and balanced classes weights was used to build the 

model. The five-fold stratified cross-validation grid search was done using 5, 10, 25, and 50 

estimators with the AUC of ROC as a scoring function of the estimator.

Support Vector Machine: Support Vector Machine (SVM) is a popular supervised machine 

learning algorithm mostly used in classification problems with high dimensional spaces 66. 

The learning of the hyperplane in the SVM algorithm can be done using different kernel 

functions for the decision function. C SVM classification with libsvm implementation 

method from Scikit-learn was used (svm.SVC). The five-fold stratified cross-validation grid 

search using weighted classes was done for 2 kernels (linear, rbf), C (1, 10, 100), and 

gamma values (1e-2, 1e-3, 1e-4). The parameter C, common to all SVM kernels, trades off 

misclassification of training examples against simplicity of the decision surface. A low C 

makes the decision surface smooth, while a high C aims at classifying all training examples 

correctly. The Gamma value defines how much influence a single training example has. The 

larger the gamma value is, the closer other examples must be to be affected. Our 

implementation of SVM automatically finds the best parameters based on these parameters 

and saves the best SVM model for activity predictions.

Deep Neural Networks: In recent years, deep artificial neural networks (including 

convolutional and recurrent networks) have won numerous contests in pattern recognition 

and machine learning 67–69. This algorithm has also sparked interest in the areas of 

pharmacology and drug discovery 70 while also stimulating numerous reviews of this still 

nascent area 29, 71–75. Deep learning addresses the central problem in representation learning 

by introducing representations that are expressed in terms of other, simpler representations. 

It is worth noting that a single-layer neural network describes a network with no hidden 

layers where the input is directly mapped to the output layer. In this work for simplification 

purposes DNN representation, we counted hidden layers only. Quite often 1–2 hidden layers 
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NN are called shallow neural networks and three or more hidden layers NN, are called deep 

neural networks.

Two basic approaches to avoid DNN model overfitting are used in training including L2 

norm and drop out regularization for all hidden layers. The following hyperparameters 

optimization was performed using a 3 hidden layers DNN (Keras with Tensorflow backend) 

and the grid search method from Scikit-learn. The following parameters were optimized 

prior to final model training: optimization algorithm (SGD, Adam, Nadam), learning rate 

(0.05, 0.025, 0.01, 0.001), network weight initialization (uniform, lecun_uniform, normal, 
glorot_normal, he_normal, he_normal), hidden layers activation function (relu, tanh, 
LeakyReLU, SReLU), output function (softmax, softplus, sigmoid), L2 regularization (0.05, 

0.01, 0.005, 0.001, 0.0001), dropout regularization (0.2, 0.3, 0.5, 0.8) and number of nodes 

all hidden layers (512, 1024, 2048, 4096).

The following hyperparameters were used for further DNN training: SGD, learning rate 0.01 

(automatically 10% reduced on plateu of 50 epochs), weight initialization he_normal, hidden 

layers activation SReLU, output layer function sigmoid, L2 regularization 0.001, dropout is 

0.5. The binary cross entropy was used as a loss function. To save training time, an early 

training termination were implemented by stopping training if no change in loss were 

observed after 200 epochs. The number of hidden nodes in all hidden layers was set equal to 

number of input features (number of bins in fingerprints). The DNN model performance was 

evaluated on up to eight hidden layers DNNs.

Molecular property distribution

AlogP, molecular weight, number of rotatable bonds, number of rings, number of aromatic 

rings, number of hydrogen bond acceptors, number of hydrogen bond donors, and molecular 

fractional polar surface area were calculated from input SD (structural data) files using 

Discovery Studio 4.1 (Biovia, San Diego, CA) 24.

Principal components analysis

To assess the applicability domain of the in vitro data for the Mtb training and test sets we 

used the union of these sets to generate a principal component analysis (PCA) plot based on 

the interpretable descriptors selected previously (AlogP, molecular weight, number of 

rotatable bonds, number of rings, number of aromatic rings, number of hydrogen bond 

acceptors, number of hydrogen bond donors, and molecular fractional polar surface area) for 

machine learning, as well as using ECFP6 fingerprints. In addition, we have also compared 

the Mtb data with a set of 19,905 antimalarials for comparison of a different biological / 

chemical property space 76, 77 and used the combination to generate a PCA.

Clustering data

We have previously described the Honeycomb clustering (Molecular Materials Informatics, 

Inc., Montreal, Canada) 25 which is a greedy layout method for arranging structures on a 

plane in a meaningful way using a reference compound as the focal point placed on a 

hexagonal grid pattern. This method uses ECFP6 fingerprints for all similarity comparisons 
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using the Tanimoto coefficient. This approach was used with the complete training and test 

set for compounds.

Determination of minimum inhibitory concentration (MIC) against M. tuberculosis

Methods previously described by us 78, 79 were used to generate MIC data with the M. 
tuberculosis H37Rv strain either grown in 7H9 broth (Becton, Dickinson and Company 

271310), plus 0.2% glycerol (Sigma G5516), 0.25% Tween 80-20% (Sigma P8074) and 

20% 5x ADC or a culture grown in Middlebrook 7H9 supplemented with 10% ADS 

(albumin-dextrose-sodium chloride), 0.2% glycerol and 0.05% tyloxapol to an OD600 0.7–1. 

Alamar blue or the resazurin assays were used 80.

Statistical analysis

Means for descriptor values for active and inactive compounds were compared by two tailed 

t-test with JMP v. 8.0.1 (SAS Institute, Cary, NC). In this study, several traditional 

measurements of model performance were used, including specificity, recall, precision, F1-

Score, accuracy, Receiver Operating Characteristic (ROC) curve and AUC, Cohen’s Kappa 
50, 51, and the Matthews correlation 52. For the metric definitions, we will use the following 

abbreviations: the number of true positives (TP), the number of false positives (FP), the 

number of true negatives (TN), and the number of false negatives (FN). Specificity or TN 

rate = TN/ (TN + FP). Model Recall (also known as the True Positive Rate or Sensitivity) 

can be thought of percentage of true class labels correctly identified by the model as true and 

is defined: Recall = TP
TP+FN . Similarly, model precision (also known as the Positive Predictive 

Value) is the probability a predicted true label is indeed true and is defined: 

Precision = TP
TP+FN . The F1-Score is simply the harmonic mean of the Recall and Precision: 

F1Score = 2 Precision⋅Recall
Precission+Recall . Accuracy is another measure of model robustness, and is the 

percentage of correctly identified labels out of the entire population: 

Accuracy = TP+FN
TP+TN + FP + FN . The ROC curve can be computed by plotting the Recall vs the 

False Positive Rate (FPR) at various decision thresholds T, where FPR = FP
FP+TP . In this 

study, all constructed models are capable of assigning a probability estimate of a sample 

belonging to the true class. Thus, we can construct an ROC curve by measuring the Recall 

and FPR performance when we considered a sample with a probability estimate > T as being 

True for various intervals between 0 and 1. The AUC can be constructed from this plot and 

can be thought of as the ability of the model to separate classes, where 1 denotes perfect 

separation and 0.5 is random classification. Another measure of overall model classification 

performance is the Matthew’s Correlation Coefficient (MCC), which is not subject to 

heavily imbalanced classes and is defined as MCC = TP ⋅ TN − FP ⋅ FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN) . 

As a measure of correlation, its value can be between −1 and 1. Cohen’s Kappa (CK), 

another metric estimating overall model performance, attempts to leverage the Accuracy by 

normalizing it to the probability that the classification would agree by chance (pe) and is 
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calculated by CK =
Accuracy− pe

1 − pe
, where 

pe = pTrue + pFalse , pTrue = TP+FN
TP+TN + FP + FN ⋅ TP+FP

TP+TN + FP + FN , pFalse

= TN+FN
TP+TN + FP + FN ⋅ TN+FP

TP+TN + FP + FN

.

RESULTS

Our previous Mtb machine learning models were primarily based on data generated from 

high throughput screens produced several years ago by SRI/NIAID 16, 37–39. Therefore, we 

decided to take advantage of the growing recent additional Mtb data in the literature and 

curate new datasets with likely increased structural diversity over the older datasets and that 

utilized different cutoffs for activity.

Model Building and Validation

We curated ~2,700 compounds from the primary literature published in 2015–2016, a data 

set extracted from ChEMBL of approximately 12,000 molecules, the SRI/NIAID data set 

containing ~7,000 molecules 9, 10, 13–15, and the ~800 24, 25 compounds from in vivo data. 

After duplicate removal our training set consisted of 18,886 molecules. This was then used 

to initially build three Bayesian models with different activity thresholds. Assessment of the 

three Mtb models with different thresholds showed that the ROC AUC values dramatically 

increased as the activity cut off decreased from 10 to 0.1 µM, with values of 0.82, 0.87, and 

0.94, respectively (Supplemental Table 1). The ROC values did not necessarily correlate 

with the F1-score and MCC (Figure 2, Supplemental Table 1). Our initial model validation 

performed in Assay Central used the various models to predict the activity of known FDA-

approved drugs after removing duplicates present in the training set. This validation was 

exemplified with our 1 µM activity threshold model, where out of the top 18 scoring 

compounds 17 were known antibacterials (Supplemental Figure 1) and cyclosporine, which 

was previously shown to have antitubercular activity 81. The top scoring compound was 

rifaximin, which has previously been shown to have antitubercular activity 82.

We additionally curated a set of 153 published in vitro antitubercular compounds from 2017. 

To assess the differences between the 2017 test set and the Mtb training set we looked at the 

Tanimoto similarity score distribution (Supplemental Figure 2). Each value represents the 

ECFP6 fingerprint Tanimoto score between each one of the molecules in the 2017 test set 

and the most similar compound in the Mtb training set. The average Tanimoto score is 0.35 

± 0.17 (std dev). The histogram shows that the highest occupied bin is 0.3> × >0.2 and that 

89.8% of the compounds have a closest Tanimoto similarity score of less than 0.7 (an 

arbitrary cut off above which one would consider similar compounds). These data show that 

the Mtb training set and 2017 test set are dissimilar when using ECFP6 fingerprints, the 

metric used to predict activity.

This test set was also used to build a Bayesian model with good internal statistics 

(Supplemental Figure 3). The three 18,886-compound Mtb models built in Assay Central 

with different activity cutoffs also demonstrated good external predictive abilities when 

using the 153 compounds as a test set. The three different 18,886-compound Mtb models, 
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with various activity thresholds, exhibited ROC values of 0.78, 0.84, and 0.93 corresponding 

to thresholds of 10 µM, 1 µM, and 100 nM, respectively (Supplemental Table 1). Each 

combination of modeling method and activity cutoff afforded a model with different 

strengths, with the most relaxed threshold having the best precision and specificity while the 

most stringent threshold had the foremost recall (Figure 3A–C, Supplemental Table 1). For 

comparison, we also tested the in vitro data only model. For this validation we removed a 

large portion of the ChEMBL data and used it as a test set (4,499 molecules), with the 

remainder of the data as the training set (13,713 compounds). The compounds that were 

used for the test set were essentially chosen at random. The set consisted of the non-

overlapping molecules between the compounds extracted from ChEMBL by organism (Mtb 
H37Rv, MIC only) and the rest of the molecules in the model. The 1 µM model fared well 

with a ROC and MCC score of 0.79 and 0.39, respectively, while the 100 nM model 

predicted moderately with ROC and MCC values of 0.66 and 0.21, respectively. While this 

is a large validation set and a good test of this ChEMBL model, unfortunately the training 

set is reduced by approximately 25% weakening its predictive ability (Supplemental Figure 

4). These examples above also show the importance of having multiple models at different 

thresholds.

Simple descriptor analysis

To assess the chemical property space of the training and test set used we studied the simple 

interpretable descriptors used to define the chemical property space of compounds namely: 

AlogP, molecular weight, number of rotatable bonds, number of rings, number of aromatic 

rings, number of hydrogen bond acceptors, number of hydrogen bond donors, and molecular 

fractional polar surface area. Analyses of these descriptors revealed several surprising 

differences between the active and inactive molecules in our Mtb models. We internally 

compared the actives versus inactives in both the 18,886 compound Mtb sets at different 

cutoffs and for the smaller 153 compound Mtb test set. For the 18,886 compound set we 

analyzed these differences for all three of our models, each with a different threshold. In all 

of the larger models there was a statistical difference between four of the eight descriptors (p 

<0.0001). One of the most significantly different descriptors between data sets is AlogP. At a 

low threshold (10 µM) the lipophilicity is virtually identical between active and inactive 

compounds, but as stringency increases there is a trend to decrease the hydrophobicity of the 

active compounds by 0.3 units. Molecular weight is significantly different in all of the 

models, increasing in the actives as the threshold increases. This trend is mimicked with 

hydrogen bond acceptors, with a dramatic ~33% increase with the strictest threshold. These 

data suggest that both molecular weight and the number of hydrogen bond acceptors are 

both important criteria for increased antitubercular activity. Similar trends are observed with 

the smaller 153 compound test dataset, but with less statistical significance (Table 1–4).

Model Property Space Analysis and Principal Component Analysis

Comparison of the 153 compound test set and the 18,886 compound training set using global 

fingerprints in Discovery Studio showed a low similarity score of 0.0095 (a value of 1 would 

equal identity). There were 93,299 total global fingerprint bits, 883 common global 

fingerprint bits, 677 unique fingerprint bits in the test set and 91,739 unique fingerprint bits 

in the training set. The similarity score is calculated by creating an independent, global 
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fingerprint for all ligands in both data sets and the comparison metric is the Tanimoto 

similarity score between the two fingerprints. A histogram shows clear separation of the 

training set and this independent evaluation set with minimal overlap suggesting the datasets 

are very different (Figure 4A).

The ability of the 18,886 compound Mtb models to predict the test set even though they are 

very dissimilar suggests that this Mtb model can successfully predict activity of a novel set 

of compounds that are far from the training set. To visualize these differences further, we 

created a Principal Component Analysis (PCA) using ECFP6 fingerprints alone. This PCA 

showed that the evaluation set is partially overlapping the training set (Figure 5D). This 

suggests that the applicability domain of the training set is sufficient to predict the activity of 

new compounds using these descriptors. To expand on this further, we looked at the ability 

of using the set comprised of the 153 Mtb compounds to predict the larger 18,886 compound 

Mtb models (the previous training set). The predictions varied from nearly random to weak 

with ROC scores of 0.55–0.60, dependent on the threshold (Figure 3D–F). These data show 

that the 18,886 compound Mtb model can predict the smaller 153 compound molecule set, 

but not vice versa.

As the 18,886 compound Mtb models are generally able to predict the smaller evaluation 

153 compound set using ECFP6 fingerprints we wanted to ascertain the chemical property 

space occupied by each model. A PCA was generated with the following descriptors: AlogP, 

molecular weight, number of rotatable bonds, number of rings, number of aromatic rings, 

number of hydrogen bond acceptors, number of hydrogen bond donors, and molecular 

fractional polar surface area. The three components represent 77% of the variance (Figure 

5B). The 153 compound test set is shown to be almost completely buried within the 18,886 

compound Mtb training set.

To give a sense of scale as to the potential diversity of the 18,886 compound Mtb library we 

plotted a similar size set of compounds tested as antimalarials (19,905 compounds from 

multiple laboratories) alongside the Mtb compounds in a PCA using multiple descriptors as 

described earlier (Figure 5A and 5C). The malaria set nearly comprehensively overlap the 

Mtb data set using these descriptors, suggesting that they occupy a similar chemical property 

space. The ECFP6 descriptors alone suggest that the Mtb and malaria set do have some 

limited overlap when using the compare libraries function in Discovery Studio, with a global 

fingerprint similarity score of 0.1745. There are a total of 177,031 global fingerprint bits, 

30,885 common bits, 84,409 unique bits in the malaria set, and 61,737 unique bits in the 

Mtb library. Interestingly, using ECFP6 fingerprints the Mtb training set has a much larger 

diversity than the malaria set (Figure 5B) as calculated from the Bayesian model in 

Discovery Studio. A PCA between the compounds tested for malaria and Mtb using only the 

ECFP fingerprints show that these fingerprint descriptors can differentiate these two datasets 

as the colored areas appear distinct for each set of compounds with the compounds tested for 

antimalarial activity spanning a larger area in the plot (Figure 5C). Our results also suggest 

that the results of a PCA analysis to understand the chemical property space covered by 2 

datasets is dependent on the type of molecular descriptors used.
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Clustering

We have previously briefly described Honeycomb clustering 25 and this approach was used 

in Assay Central to visualize the complete training and select compounds in the 153 

compound test set (Figure 6). This can be used as an independent guide to predictions and 

represents an approach that is different and yet is potentially complimentary to the Bayesian 

prediction.

External Testing of Different Machine Learning Algorithms

We have also compared different machine learning algorithms that can be used to build 

models30. We tested the classic machine learning models Logistic Regression, Adaboost 

Decision Trees, Random Forest, Bernoulli Naïve-Bayesian and Support Vector Machines as 

well as deep learning algorithms with 2–5 layers using various molecular descriptors. These 

comparisons were performed with the three separate 18,886 compound Mtb models with 

threshold cutoffs of either 100 nM, 1 µM or 10 µM. We used this dataset because it is our 

biggest curated dataset. Comparison as measured by five-fold cross validation, of the 

machine learning models using the various descriptors suggests that for these Mtb models 

DNN is the superior algorithm at this cutoff (Supplemental Figure 5). To ensure that these 

models were not “over-trained”, a separate experiment was done where 20% of the training 

set (representative of the ratio of active:inactive) was left out and used as a test set. These 

comparisons show that SVM and DNN outperformed the other machine learning algorithms 

on accuracy as well as for other statistical analyses for all of the thresholds tested 

(Supplemental Figure 6). Deep learning algorithms were overall the most efficacious for all 

the descriptors using all the metrics for training (Supplemental Figure 5) and cross 

validation (Supplemental Figure 6), including the entire 1 µM threshold set of models and 

for the 10 µM models: MACCS, RDKit, and toxprint descriptors. However, when using the 

153 compound set as an external test set there was more variability observed as to which 

algorithms performed the best for each descriptor type and based on each metric (Figure 7, 

Supplemental Tables 2–6). For ease visualization we have highlighted the model that 

performed the best based on AUC. For example, for the ECFP6 descriptors the ADA 

algorithm performed best at 10 µM, Assay Central (Bayesian) was best at 1 µM and DNN at 

100 nM. These results would suggest a difference between internal testing and external 

testing.

Large Test Set Analysis of Bayesian and DNN Models

Mtb inhibition data was generated in a single laboratory across many antitubercular drug 

discovery projects for 1,171 proprietary compounds with MIC data. We used our three 

18,886 compound Bayesian models generated with Assay Central as well as DNN models to 

predict the molecules at each activity threshold. We compared the test set molecules to this 

training set and it had an average closest Tanimoto similarity score of 0.42 ± 0.15. The 

highest occupied bin is 0.4>x>0.5 and 94.5% of the molecules have a Tanimoto similiarity 

score of less than 0.7 (Supplemental Figure 7). We found that the non-overlapping 1,171 

molecule test set with the Bayesian model at a cutoff of 1 µM performed the best 

(Supplemental Figure 8A–C) ROC = 0.68, MCC = 0.14, F1 score = 0.24. When the test set 

is used to predict the training set the statistics degrade (Supplemental Figure 8D–F). This 
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test set was also used to build a model (Supplemental Figure 9) which had excellent 

statistics ROC = 0.90, MCC = 0.66, F1 score = 0.81. Which will likely be further evaluated 

outside this study. Interestingly, the DNN models with ECFP6 fingerprints appear to poorly 

predict this 1,171 compound test set as the ROC values were low across all hidden layers 

evaluated (Supplemental Figure 10). The 100 nM model appears to show this most clearly 

with very poor ROC values. The 1 µM DNN model performs the best with MCC and F1 

scores slightly lower than obtained for the Bayesian model (Supplemental Table 7).

DISCUSSION

Over the past decade, whole-cell HTS approaches have been used to identify novel 

compounds with antitubercular activity, resulting in very low hit rates 37–39. Virtual 

screening using machine learning modeling utilizes data (actives and inactives) from these 

screens and smaller scale studies to improve the time and cost efficiencies of hit discovery. 

Machine learning has been similarly used in many areas of biomedical and environmental 

research 83–88. This study is a natural extension of our prior machine learning studies 

applied to Mtb 9–11, 13–18 which demonstrated an enhancement in hit rate. To further 

leverage public data to enhance the performance of our models, we have now curated a 

large, chemically diverse Mtb dataset through careful analysis of in vitro data mined from 

various sources, such as the primary literature and ChEMBL, and also included in vivo data. 

Machine learning models were then constructed with this combined data with the caveat that 

MIC, MIC90, and IC50 are equivalent values even though they may be several-fold different 

from each other. This is a limitation to our model, but based on the retained predictive ability 

of models built with this training set to correctly categorize the external compound test set, 

this assumption appears not to be detrimental. The initial models were built using the 

circular topological descriptor extended connectivity fingerprints ECFP6 with Assay 

Central. Internal validation of these models was achieved by using five-fold cross validation 

(Figure 2). One of the main purposes in the report is to show the validity of our newly 

curated 18,886 compound library using an array of machine learning approaches, descriptors 

and metrics. In addition, we have also created a separate test set of 153 compounds from the 

antitubercular literature from 2017. Library analysis software and Bayesian statistics with 

ECFP6 descriptors suggest that these test and training sets are nearly independent of one 

another. Surprisingly, analysis using PCA with different descriptors suggested that they both 

occupy the same chemical property space. Using different descriptors profoundly alters the 

way the chemical property space is defined. This would suggest that reliance on different 

descriptors and fingerprints can markedly change how 2 sets of compounds are perceived to 

cover chemical property space.

In the process of this study we have shown that Assay Central using the Bayesian algorithm 

and ECFP6 descriptors performs generally the best with the 153 compound test set as well 

as a set of 1171 proprietary compounds tested against Mtb. The 153 compound set 

represents compounds published in 2017 alone and is a different approach to predicting how 

a model can be used to prospectively predict ‘newer’ compounds. While others have used 

methods such as time-split validation 89 this is distinct to our approach.
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We have used the calculate diversity metrics protocol in Discovery Studio to assess the 

inactives, actives, and complete datasets for the 2017 Mtb test set, the proprietary test set, as 

well as the full Mtb training set at different threshold cutoffs for activity (100 nM, 1 µM, 10 

µM). When the average Tanimoto similarity score across these datasets was analyzed it 

showed a couple of key points: 1) the average for each dataset ranged from 0.10–0.22, 

suggesting a strong internal diversity within the datasets (Supplemental Figures 11–13) 2) 

the two smaller datasets showed an apparent increase in similarity in the actives with a more 

stringent activity cutoff (Supplemental Figures 11–12). This suggests that, for the two test 

sets, the stricter cutoffs tend to have a reduced ECFP6 diversity. In other words, with higher 

cutoffs similar fingerprints are selected. This decreased diversity may yield a reduced ability 

for the stricter cutoff models to predict novel compounds. The larger Mtb training set 

(Supplemental Figure 13) does not show this trend, suggesting that if the dataset is large 

enough, this reduced diversity based on the cutoffs analyzed is not relevant. The average 

Euclidean distance using multiple metrics (ALogP, MW, number of H-bond donors, number 

of H-bond acceptors, number of rotatable bonds, number of rings, number of aromatic rings, 

molecular fractional polar surface area) does not show the same trends (Supplemental 

Figures 14–16). For the two smaller datasets (Supplemental Figures 14–15) the average 

Euclidean distance is slightly higher in the actives, suggesting these molecules are actually 

more diverse than their inactive counterparts. There is the opposite trend in the Mtb training 

set for the 100 nM and 1µM cutoffs (Supplemental Figure 16), with virtually no difference at 

the 10 µM cutoff. These inconsistencies suggest that there is unlikely to be a difference 

between the diversity, using these metrics, in the actives versus inactives datasets. One of the 

most pronounced differences in diversity between the actives versus inactives for the 

different datasets is the average number of fingerprints per molecule (Supplemental Figures 

17–19) and the average number of assemblies per molecule (Supplemental Figures 20–22). 

Analysis of these metrics show that in the strictest cutoff of 100 nM both of these metrics are 

~2–3 fold higher in the actives as compared with the averages found in the entire model. 

This suggests that those molecules identified as active at 100 nM tend to be larger, more 

complex molecules. A trend towards diminished molecular complexity with more relaxed 

cutoffs continues in the majority of the models assessed. This agrees with our data (Tables 

1–4), where we see a significant increase in the average molecular weight in the actives 

versus inactives.

Using Bayesian modeling for testing of the 153 compound test set with ECFP6 descriptors 

alone we show a range of ROC AUC scores from 0.78–0.93, dependent on the activity 

threshold. This illustrates the ability of the training set to accurately predict the test set. 

Interestingly, the lowest threshold (10 µM) had the best precision and specificity, but the 

worst recall. Additionally, the 100 nM cutoff model had the best recall so it selected all the 

true positives, but had the lowest precision meaning that it identified many false positives. 

The Kappa and MCC scores were similar, with the 100 nM cut-off model having the highest 

MCC and the 1 µM cut-off model having the best Kappa score. We have recently shown that 

ROC values may be an optimistic measure of a model while Kappa and MCC may be more 

realistic 30. By using multiple models for Mtb we show that each activity threshold has 

different strengths and it is possible that all three models could be used when scoring 

molecules to aid in compound selection. Using Assay Central to build the Bayesian models 
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predicted the external evaluation test set with the additional metric of accuracy showing a 

score as high as 0.83 (100 nM threshold model). While the 18,886 Mtb set was able to 

predict the 153 compound Mtb test set, the inverse is not true. This suggests that the larger 

set has a better predictive ability with ECFP6 descriptors.

We have looked at the effect of dataset size by focusing on the ChEMBL dataset only and 

leaving out a subset. We found that the larger Mtb model slightly edged out the smaller 

ChEMBL data set, but the statistics were nearly identical. In a previous study we saw a 

similar plateauing of model ROC when assessing different dataset sizes 18.

One method to expand the usefulness of these larger models using Bayesian models would 

be to utilize a nearest neighbors approach. If a model weighted the final prediction score 

based on both the Bayesian score and the kNN score (weighted by the model size) this may 

yield more accurate predictions. Our honeycomb clustering approach may partially address 

this (Figure 6) as a molecule that is close to known active molecules in the training set may 

provide more confidence in the prediction. This will be further expanded upon by us in 

future studies with different datasets.

In this study we analyzed the chemical property space of both the Mtb 153 compound test 

set and the 18,886 compound Mtb training set via PCA (Figure 5). We showed that when 

looking at an array of descriptors, there is considerable overlap between these sets. It is 

notable that there are some compounds that lie outside of the cluster containing the majority 

of the molecules tested against Mtb. A cursory inspection of these outliers suggests that the 

majority of the molecules are inactive, showing that these were likely novel compounds that 

were tested against Mtb but did not have any activity. Further, we looked at the differences in 

the descriptors between the active and inactive molecules for each model built at different 

thresholds. The greatest differences were found in the 100 nM cut-off model, but the 

majority of trends were continued. These statistics suggest that active compounds have an 

increased molecular weight, number of hydrogen bond acceptors, rotatable bonds, and FPSA 

(polar surface area descriptor). As the model becomes more stringent for activity, the AlogP 

decreases from 3.80 to 3.50. Previous studies, however, have shown that reliance on 

individual descriptors for predicting antitubercular activity may be an oversimplification 
9, 10. By further exhaustive analysis we have also been able to compare the active and 

inactive molecules using average Tanimoto similarity with ECFP6 descriptors, average 

Euclidean Distance with many simple descriptors, average number of fingerprint features 

and average number of assemblies (Supplemental Figure 11–22) which confirm what we 

were seeing in Tables 1–4.

To test the predictive ability of different machine learning algorithms we generated cross 

validation statistics for each method. Beyond just testing each method with ECFP6 

descriptors, we also tested multiple, publicly accessible descriptors (Supplemental Figures 

5–6). Assay Central currently uses a Näive Bayesian algorithm with ECFP6 descriptors 
26, 27, so we were only able to compare the Assay Central Mtb models built with this 

descriptor for the 153 compound external test set (Figure 7). One of the differences between 

Assay Central and Bernoulli Naïve-Bayesian would be in the classification of true/false hard 

outcomes. For the Assay Central implementation, we do an analysis of the ROC and use that 
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to decide on a threshold for the unscaled output. The BNB implementation does it by 

making 2 predictions: one for positive and one for negative and taking whichever is higher. 

Comparison of these datasets using different machine learning algorithms, demonstrates 

deep learning and SVM appear to be superior methods regardless of the descriptor type for 

training (Supplemental Figure 5) and leave out validation (Supplemental Figure 6) whereas 

for external testing DNN models did not perform as well (Figure 7, Supplemental Tables 2–

6) with Adaboost Decision Trees performing the best at 10 µM, Assay Central at 1 µM and 

DNN_2 at 100 µM. This was shown most clearly with results for the 1171 compound test set 

(Supplemental Figure 10). This suggests we may have to optimize the descriptors or model 

parameters further. These results suggest that DNN may not always perform the best 

although we report a limited example for a single biological activity based on two external 

test sets. Further testing is needed to understand if DNN offers benefits for prospective 

testing for other datasets as it does for cross validation 30.

We were able to use our machine learning models to predict Mtb inhibition data from our 

laboratory generated over several years. This predictive analysis of a very large dataset of 

over 1,000 structurally diverse compounds (Supplemental Figure 7) suggests that the 

Bayesian models perform reasonably well at the 1 µM cutoff for predicting activity 

(Supplemental Figure 8B). In addition, a separate Bayesian model generated with this 

dataset suggests we could use this to predict future data from this laboratory that would be 

more comparable as the data would come from the same laboratory (Supplemental Figure 

9).

Additional limitations of this work include that we have focused from the outset on drug 

sensitive Mtb and not specifically modeled drug resistant Mtb. Our rationale for this is there 

is far less data in the literature that would enable building machine learning models against 

drug resistant strains in the same way that we have been able to build models versus the 

sensitive strain. It is still feasible that a model constructed with drug sensitive data could 

help us identify molecules active against drug resistant strains.

In conclusion, there is considerable publicly available antitubercular growth inhibition data 

generated over the last decade. Investing significant effort in data curation has allowed us to 

build accurate, predictive models for Mtb employing an array of machine learning methods, 

descriptors, statistical metrics and testing scenarios. The three models which we have 

focused on with different cutoff values could be used either together or in consensus as 

described for other Mtb models 18. Future work could certainly explore other descriptors and 

machine learning algorithms beyond those tested here, while a critical factor is the continual 

updating of the models with new experimental data that is a rate-limiting step in building 

accurate Mtb models. Assay Central offers a unique approach to building, updating and 

sharing models for Mtb that is essential if we are to increase the efficiency of drug discovery. 

Our future efforts will involve further prospective testing of the different machine learning 

algorithms with collaborators using data from the same laboratory as well as models derived 

after data curation across published literature and public databases.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS USED

ABDT AdaBoost

ADME absorption, distribution, metabolism, and excretion

ANN artificial neural networks

AUC area under the curve

BNB Bernoulli Naive Bayes

CML classic Machine Learning

DT Decision Tree

DNN Deep Neural Networks

ECFP6 extended connectivity fingerprints of maximum diameter 6

HTS high throughput screening

kNN k-Nearest Neighbors

QSAR quantitative structure activity relationships

Mtb Mycobacterium tuberculosis

NIAID NIAID, National Institute of Allergy and Infectious 

Diseases
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PCA Principal components analysis

PPV positive predicted value

QSAR quantitative structure activity relationships

RF Random forest

ROC receiver operating characteristic

RP Recursive partitioning

SI selectivity index

SVM support vector machines

TB Tuberculosis

XV ROC AUC cross-validated receiver operator characteristic curve’s area 

under the curve
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Figure 1. 
Schematic overview of training set curation, test sets and machine learning methods used in 

this work.
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Figure 2. 
Tuberculosis model 5-fold cross validation statistics and receiver operator characteristic 

plots. 5-fold cross validation ROC plots and supplementary statistical analysis of three Mtb 
models built with 18,886 molecules using Assay Central. A) 100 nM threshold, B) 1 µM 

threshold, C) 10 µM threshold. ROC AUC and MCC ranges from 0.94-0.82 and 0.41-0.49, 

respectively.
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Figure 3. 
External validation ROC plots and supplementary statistical information. Three 18,886 Mtb 
molecule models A) 100 nM threshold, B) 1 µM threshold, C) 10 µM threshold which were 

used as a training set with the 153 molecule library used as a test set. D-F) 153 molecule set 

used as a training set and the larger 18,886 molecule library used as a test set.
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Figure 4. 
Histograms of the Bayesian model distances as calculated in Discovery Studio. A) 18,886 

molecule Mtb library (Red) vs. 153 compound 2017 test set (blue). B) 18,886 molecule Mtb 
library (Red) vs. 19,905 anti-malaria set (blue).
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Figure 5. 
Principal Component Analysis of Mtb datasets using different descriptors and fingerprints. 

a.) 9 Molecular descriptors for TB Training Set (blue) and Malaria Set (green), b.) 9 

Molecular descriptors for TB Training Set (blue) and TB Test Set (red), c.) ECFP6 

fingerprints for the TB Training Set (blue) and Malaria Set (green), and d.) ECFP6 

fingerprints for TB Training Set (blue) and TB Test Set (red). The TB training set consists of 

18,886 Mtb compounds. The TB test set consists of 153 molecules. The malaria training set 

consists of 19,905 molecules.
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Figure 6. 
Examples of the scoring output from Assay Central for the test set 60. At the top is a hexplot 

which shows other molecules in the training set that are similar to our scored compound. 

The numbers surrounding the compound of interest (black) are Tanimoto scores showing 

quantitatively the similarity between the nearest neighbors. The green outlined molecules are 

active in the model chosen (1µM 18,886 Mtb model). The image shows the 2-D molecular 

structure with each atom colored based on the scores of each of the represented fingerprints. 

It is scored as a gradient- green is active and red is inactive. The applicability score is the 

similarity between the molecule of interest and the model.
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Figure 7. 
Results of various classic machine learning algorithms and deep learning on the 153 

compound TB test set using different evaluation metrics. The green bar represents the 

highest ROC AUC for each category. Machine learning algorithms compared include: 

Logistic Regression = LR, Adaboost Decision Trees = ADA, Random Forest = RF, Bernoulli 

Naïve-Bayesian = BNB and Support Vector Machines = SVM, DNN = Deep Neural 

Network with variable layers. Further details can be found in Supplemental Tables 2–6.
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