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Abstract

A robust regression methodology is proposed via M-estimation. The approach adapts to the tail 

behavior and skewness of the distribution of the random error terms, providing for a reliable 

analysis under a broad class of distributions. This is accomplished by allowing the objective 

function, used to determine the regression parameter estimates, to be selected in a data driven 

manner. The asymptotic properties of the proposed estimator are established and a numerical 

algorithm is provided to implement the methodology. The finite sample performance of the 

proposed approach is exhibited through simulation and the approach was used to analyze two 

motivating datasets.
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1 Introduction

Regression is the most common and useful statistical tool which can be used to quantify the 

relationship between a response variable (y) and explanatory variables (x). To this end, the 

seminal works of both Legendre in 1805 and Gauss in 1809 proposed the method of least 

squares (LS), which has arguably become the most popular approach to conducting a 

regression analysis. This popularity is likely attributable to the fact that the LS estimator can 

be expressed in closed form and can be shown to achieve minimum variance among all 

unbiased estimators, when the underlying error distribution is normal; e.g., see Rao (1945). 

However, this approach does not provide an optimal estimator for non-normal settings and is 

very sensitive to outlying observations (Koenker and Bassett, 1978). Further, experience has 

shown that LS regression may not be appropriate when the response variable differs from the 

regression function in an asymmetric manner, which is commonly encountered in medical 

data, among other venues. In lieu of these deficiencies, herein a general regression 

methodology is proposed which allows for the possibility of non-normal tail behavior and 

asymmetry in the conditional distribution of y given x, but will still perform well for 

symmetric and/or normally distributed data.
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One way to improve parameter estimates for non-normal data and to guard against the 

influence of outlying observations is to replace the LS loss function (i.e., the squared error 

loss) by a loss function which can accommodate asymmetry in the error distribution and is 

less susceptible to the magnitude of the residuals. For example, in 1793 Laplace proposed 

least absolute deviations (LAD), or L1-norm regression as an alternative to LS. This 

regression technique is less sensitive to outlying observations and is more appropriate, when 

compared to LS, for error distributions whose tails are heavier than that of the normal. More 

generally one can replace the LAD estimator, with an Lp norm estimator; for further 

discussion see Zeckhauser and Thompson (1970), Mineo (1989) and Agrò (1992). Quantile 

regression estimates are found by minimizing the quantile (check) loss function, and since 

they estimate quantiles of the conditional distribution of y given x, they are appropriate for 

asymmetric and heavy tailed distributions (Koenker and Bassett, 1978).

Each of the aforementioned loss functions have corresponding conditional distributions of y 

given x for which the maximum likelihood estimator (MLE) is equivalent to the estimator 

which minimizes the corresponding loss: the LS estimator corresponds to the MLE when the 

error distribution is normal; the LAD estimator is equivalent to the MLE under Laplace 

errors, the Lp norm estimator corresponds to the MLE when the error terms obey the 

generalized error distribution (GED) (Subbotin, 1923); and the quantile regression estimator 

is equivalent to the MLE when the errors follow an asymmetric Laplace distribution 

(ALPD). Moreover, in these very specific settings the regression estimators are 

asymptotically most efficient. More generally, the aforementioned loss functions do provide 

consistent estimators, under standard regularity conditions, but the efficiency of the resulting 

estimator is inherently tied to the chosen loss and underlying error distribution. That is, there 

does not exist a universally most efficient approach to conducting a regression analysis. 

Although, provided a priori knowledge of the error distribution, which is typically not 

available, a regression methodology could be selected with efficiency in mind. For example, 

in a location scale regression framework, the efficiency of the quantile regression estimator 

depends on the quantile of interest. Moreover, under asymmetric Laplace errors the 

asymptotic variance of the quantile regression estimator is minimized when the analysis 

proceeds to use the true skewness parameter as the quantile of interest. More generally, the 

quantile that corresponds to minimizing the asymptotic variance of the estimator depends on 

the underlying error distribution, which is unknown. The salient point is that to perform a 

regression analysis an analyst must select a particular methodology, which, in some sense, is 

equivalent to specifying either the error distribution or loss function under which the 

regression coefficients are estimated. This work provides a more general approach which 

allows the loss function to be selected in a data adaptive fashion, thus resulting in a more 

efficient and robust estimator.

In order to develop a robust regression procedure one could consider two competing 

approaches; i.e., perform the regression analysis with respect to multiple loss functions or 

allow the characteristics of the data to dictate the selection of the loss function. In order to 

improve the efficiency of quantile regression, Zou and Yuan (2008) introduced composite 

quantile regression (CQR), which optimizes over a sum of multiple quantile loss functions. 

As a robust regression procedure, CQR combines the strength of multiple quantile 

regressions to estimate the same “slope” coefficients across different quantiles. Kai et al. 
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(2010) adapted CQR to the local polynomial framework and established that for many 

common non-normal errors this extension provided for gains in estimation efficiency when 

compared to its local LS counterpart. Regretfully, when implementing CQR it is still unclear 

how many quantiles should be used and simply increasing the number of quantiles does not 

necessarily improve the efficiency of the estimator; for further discussion see Kai et al. 

(2010). Alternately, one could consider a convex combination of loss functions; e.g., Zheng 

et al. (2013) extended CQR by embedding the usage of an empirically weighted average of 

quantile loss functions and the LS loss function, so that the LS loss tends to be weighted 

heavier for normally distributed data. Rather than using several quantiles, another tact would 

be to let the data select the quantile of interest in quantile regression. Bera et al. (2016) 

proposed a Z-estimator which could be used to simultaneously obtain the quantile regression 

estimator and the quantile of interest in a data driven fashion, and is hereafter referred to as 

ZQR. In particular, this estimator is obtained by minimizing an objective function which is 

inspired by the maximum likelihood score function under the ALPD. Proceeding in this 

fashion results in a penalized quantile regression framework where the penalty depends on 

the quantile of interest.

Motivated by the work of Bera et al. (2016), the regression methodology presented herein is 

developed in the same vein. In particular, a robust loss function is constructed so that the 

proposed estimator corresponds to the MLE when the error terms obey the asymmetric 

exponential power distribution (AEPD). The AEPD class of distributions was first proposed 

by Fernandez et al. (1995), and was further studied in Theodossiou (2000), Ayebo and 

Kozubowski (2003), and Komunjer (2007). This flexible class of distributions holds the 

normal, skewed normal, Laplace, ALPD, and GED as special cases, among many others. 

Developing the proposed regression methodology under the AEPD has several definitive 

advantages. First, and foremost, the proposed method selects the best loss function (e.g., LS, 

LAD, Lp, quantile, etc.) from a broad class in a data driven fashion. For this reason, one 

could view this proposal as a method which unifies and bridges the gaps between LS, LAD, 

Lp norm, and quantile regression. Secondly, the proposed technique can effectively capture 

the tail decay and/or asymmetry of the error distribution, thus maintaining a high level of 

estimation efficiency in venues where other competing procedures do not. Lastly, as the 

AEPD holds many common distributions as special cases (e.g., normal, skewed normal, 

ALPD, GED, etc.), one may use model selection criteria, such as AIC or BIC, to identify the 

“best” model (e.g., LS fit, specific quantile regression fits, etc.), as is demonstrated in 

subsequent sections.

The remainder of this article is organized as follows. Section 2 presents the modeling 

assumptions, develops the proposed loss function based on the AEPD, and provides a stable 

numerical algorithm which can be used to obtain the regression parameter estimates. The 

consistency and asymptotic normality of the proposed estimator are established in Section 3. 

The results of an extensive Monte Carlo simulation study designed to assess the finite 

sample performance of the proposed procedure is provided in Section 4. The results of the 

motivating data analyses are provided in Section 5. Section 6 concludes with a summary 

discussion, and the regularity conditions under which the theoretical results can be 

established are provided in the appendix.
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2 Methodology

2.1 Model assumption

Consider a linear regression model

y = x′β + ϵ, (1)

where y denotes the response variable, x is a (p + 1)-dimensional vector of covariates, β is 

the corresponding vector of regression coefficients, and is the error term. Throughout the 

remainder of this article it is assumed that the error term is independent of the covariates 

(i.e., x ⊥ ϵ, where ⊥ denotes statistical independence) and that the probability density 

function of has a unique mode at zero. Under these assumptions, the linear predictor x’β = 

β0 + x1β1 + ··· + xpβp represents the unique mode of the conditional distribution of y given 

x. Note, this model becomes a mean regression model when the distribution of is symmetric 

and has a finite first moment. The primary focus of this work is aimed at estimating the 

“slope” parameters, β∗ = (β1,...,βp)’, since the intercept, β0, provides solely for a shift 

between different regression functions of interest; i.e., regression functions such as the mean 

and median for (1) have identical unknown slope parameters.

For ease of exposition, assume that the error term in (1) follows an AEPD, this assumption is 

later relaxed in subsequent sections. A random variable is said to follow an AEPD if there 

exist parameters α > 0, μ ∈ ℝ, σ > 0 and 0 < τ < 1 such that the probability density function 

of has the form

f(ϵ) = ατ(1 − τ)
Γ 1

α σ
exp − |ϵ − μ|α

σα I(ϵ ≥ μ)τα + I(ϵ < μ)(1 − τ)α , (2)

where μ is the location (mode) parameter, σ is the scale parameter, τ controls the skewness 

and α is the shape (tail decay) parameter. For notational brevity, this relationship is denoted 

ϵ ~ AEPD(μ,α,σ,τ). The AEPD class of distributions hold many common distributions as 

special cases; e.g., the epsilon-skew-normal distribution, studied by Mudholkar and Hutson 

(2000), is obtained when α = 2, which holds the normal distribution as a special case when τ 
= 0.5; Specifying α = 1 results in the ALPD which holds the Laplace distribution as a 

special case when τ = 0.5; And the GED results from specifying τ = 0.5. Moreover, as α 
approaches ∞, the AEPD approaches a uniform distribution with parameter (μ − σ/(1 − τ), μ 
+ σ/τ). To illustrate the broad spectrum of shapes for which the AEPD density can take, 

Figure 1 depicts several AEPD densities for different combinations of α and τ, where μ = 0 

and σ is specified such that the variance is unity.

Under the aforementioned assumptions, the response variable conditionally, given the 

covariates, follows an AEPD; i.e., y|x ∼ AEPD(x’β, α, σ, τ). Thus, the log-likelihood of the 

observed data yi, xi′ , i = 1, …, n  is given by
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ρ(θ) = 1
n ∑

i = 1

n
ln f yi |xi; θ = ln α

Γ(1/α) + ln[τ(1 − τ)] − ln(σ)

− 1
nσα ∑

j = 1

n
yi − xi′β α I yi ≥ xi′β τα + I yi < xi′β (1 − τ)α ,

(3)

where θ = (β’, α, σ, τ) denotes the collection of model parameters and θ0 = β0′ , α0, σ0, τ0
represents the true unknown value of θ. More generally, in the case in which the error 

distribution does not belong to the AEPD class, (3) can be viewed as a loss function, which 

still can be used to efficiently estimate the regression coefficients, as is demonstrated in 

Sections 4 and 5. In either case, let θ = (β ′, α, σ, τ) denote the value of θ which maximizes 

(3); i.e., θ is the proposed estimator of θ0.

To illustrate how the proposed approach is data adaptive, it is first noted that the process of 

estimating θ0 via maximizing (3), can be viewed as a two-step process. First, for fixed 

values of α, σ and τ an estimate of β0 is obtained by minimizing the following loss function

∑
i = 1

n
yi − xi′β α I yi ≥ xi′β τα + I yi < xi′β (1 − τ)α , (4)

This estimator is denoted as β (α, τ). The second step estimates the remaining parameters by 

maximizing (3) after replacing β by β (α, τ). The key feature of this approach is that every 

combination of α and τ corresponds to a different loss function specification in (4), and 

consequently results in obtaining a different estimate of β0. For example, if α = 2 and τ = 

0.5, the proposed approach and LS obtain the same estimate; when α = 1 and τ = τ∗, the 

resulting estimate is identical to the quantile regression estimate with the quantile of interest 

being τ∗. The salient point: by estimating α0 and τ0 the proposed procedure allows the data 

to determine the shape and skewness of the underlying distribution and as consequence 

selects the form of the loss function which is used to estimate the regression coefficients.

2.2 A general error distribution and the Kullback Leibler divergence

In the setting in which the error distribution does not belong to the AEPD class, one could 

view the model for the conditional distribution of y, given x, as being misspecified. Denote 

the true probability density function for y, given x, by f∗(y|x), the assumed parametric 

density by f(y|x; θ), and the density of x as h(x). Further, define the joint density of y and x 
as ɡ∗(y, x) = f∗(y|x)h(x) and ɡθ(y, x) = f(y|x; θ)h(x) under the true and assumed model, 

respectively. Subsequently, the Kullback-Leibler divergence is defined by

DKL g* gθ = − E ln gθ(y, x)
g*(y, x) = − E lnf(y |x; θ)

f*(y |x) , (5)

where the expectation is taken with respect to the true distribution ɡ∗. Minimizing (5) with 

respect to θ, or equivalently maximizing (3), results in identifying the AEPD density closest 

to f∗(y|x), i.e., f(y |x; θ) is the “projection” of f∗(y|x) onto the AEPD class. More 
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specifically, obtaining θ as the maximizer of (3) is equivalent to finding the AEPD density 

closest to the true probability density with respect to the observed empirical distribution. 

This feature allows the proposed approach to be robust to the structure of the underlying 

error distribution and to maintain a high level of estimation efficiency, by permitting the loss 

function (i.e., the assumed AEPD density) to adapt to the true underlying structure of the 

data.

2.3 Numerical algorithm

In order to develop a numerical algorithm for obtaining θ, the dimension of the loss function 

presented in (3) is reduced. In particular, for fixed values of β and α, the values of σ and τ 
which maximize (3) can be expressed as

σ(β, α) = α
n e+(β, α)τ(β, α)α + e−(β, α)[1 − τ(β, α)]α

1/α
,

τ(β, α) = 1 + e+(β, α)/e−(β, α) 1/(α + 1) −1
,

respectively, where e+(β, α) = ∑i = 1
n yi − xi′β αI yi ≥ xi′β  and 

e−(β, α) = ∑i = 1
n yi − xi′β αI(yi < xi′β). Replacing σ and τ in (3) by σ (β, α) and τ (β, α), 

respectively, leads to the following loss function

Q(β, α) = ln α
Γ(1/α) − 1

α ln α
n − 1

α − 1 + α
α ln

e+(β, α)1/(α + 1) + e−(β, α)1/(α + 1) .
(6)

In order to maximize (6) with respect to β and α, an iterative algorithm is employed with a 

well specified initial value. The proposed algorithm proceeds as follows:

1. Set j = 1 and initialize θ(0) = [β(0), α(0), σ(0), τ(0)] as β(0) = β(τ(0)), α(0) = 1,

σ(0) = n−1 ∑
i = 1

n
ρτ(0) yi − xi′β(0) ,

τ(0) = arg min
τ

∑
i = 1

n
ρτ yi − xi′β(τ) /[τ(1 − τ)],

where ρτ(·) is the usual quantile check loss function and β(τ) = arg minβ∑i = 1
n ρτ yi − xi′β .

2. Compute β(j) = argmaxβ Q(β,α(j−1)) and α(j) = argmaxα Q(β(j), α), respectively, 

and set j = j + 1.
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3. Repeat step 2 until convergence.

At the point of convergence the proposed estimator θ = (β ′, α, σ, τ) is determined as β = β(j), 

α = α(j), σ = σ(β(j), α(j)), and τ = τ(β(j), α(j)). Note, the more complex initialization step 

provides the numerical algorithm with a well posed initial value and results in gains in 

computational efficiency. Further, the necessary optimization steps throughout the algorithm 

can easily be completed using standard numerical software; e.g., quantreg, optim, and 

optimize in R.

3 Asymptotic properties

The proposed methodology falls under the general class of M-estimators introduced by 

Huber (1964), and as such, standard regularity conditions ensure consistency and asymptotic 

normality of the resulting estimators. The specific technical conditions required are given in 

the appendix, along with a brief discussion.

Theorem 1. (Consistency). Under regularity condition (A1)-(A6), provided in the appendix, 

θ is a consistent estimator of θ0; i.e. θ p θ0.

Theorem 2. (Asymptotic Normality). Under regularity condition (A1)-(A7), provided in the 

appendix, and for α0 > 1. The M-estimator θ of θ0 is asymptotically normal; i.e.,

n θ − θ0
d N 0, V 2θ0

−1 V 1θ0V 2θ0
−1 ,

where V 1θ0 = E[ψ y, x, θ0 ψ y, x, θ0 ′], V 2θ0 = ∂E[ψ(y, x, θ)]/ ∂θ′ θ = θ0, and ψ(y, x, θ) = ∂ 

ln[f(y|x;θ)]/∂θ.

Note, the proofs of Theorems 1 and 2 are standard, and simply involve verifying the 

conditions outlined by Huber (2009); for further discussion see the appendix. To establish 

these conditions, it is sufficient to assume that α0 > 1. This assumption ensures the 

differentiability of the loss function depicted in (3), and though sufficient this assumption 

may not be necessary. It is worthwhile to note that the computation of the asymptotic 

covariance matrix in Theorem 2 depends on the unknown distribution of the errors, thus 

making a direct appeal to asymptotic based inference challenging; i.e., an additional step has 

to be undertaken in order to estimate the error distribution. This same challenge is 

commonly encountered in other existing techniques; e.g., quantile regression. Further, based 

on simulation studies (results not shown), it was ascertained that standard asymptotic based 

inference based on the result established in Theorem 2 may not be appropriate for relatively 

small sample sizes; e.g., when n = 200. Thus, it is suggested that bootstrapping be adopted 

for the purposes of conducting finite sample inference.

In what follows, the bootstrapping procedure implemented throughout the remainder of this 

article is briefly described. To begin, for a given data set (i.e., yi, xi′ , i = 1,…,n) the 

numerical algorithm described in Section 2.3 is used to obtain an estimate of the regression 

parameters. Using the regression coefficient estimates, one then computes the residuals 
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ei = yi − xi′β , for i = 1,...,n. A random sample of size n is then drawn from the set of 

residuals, with replacement, providing the bootstrapped residuals ei*, for i = 1,...,n. The 

bootstrapped response is subsequently obtained via yi* = xi′β + ei*, and the proposed approach 

is used to model this data (i.e., yi*, xi′ , i = 1,...,n) resulting in the bootstrapped estimate θ∗. 

This process is repeated B times yielding B bootstrap replicates of the regression 

coefficients. The bootstrap replicates can then be used to construct standard error estimates 

in the usual fashion (Efron, 1982), and (1 − α)100% bootstrap confidence intervals using the 

empirical (α/2)100%th and (1−α/2)100%th percentiles of the bootstrap distribution.

4 Simulation study

In order to examine the finite sample performance of the proposed approach, the following 

Monte Carlo simulation study was conducted. This study considers a model of the form

yi = β0 + β1xi + ϵi, for i = 1, …, n, (7)

where β0 = 1, β1 = 0.1, and xi ∼ N(0,1). In order to illustrate the robustness property of the 

proposed estimator, several distributions of the error term i are considered, both within and 

outside of the AEPD class. In particular, the investigations discussed herein consider the 

settings in which the error terms are distributed AEPD(0,2,σ,0.5), AEPD(0,1,σ,0.5), and 

AEPD(0,1.5,σ,0.25), with the two former specifications providing for standard normal and 

Laplacian errors, respectively, where the σ parameters were selected so that the variance of 

the error term is 1. For error distributions outside of the AEPD class, this study considers 

Student’s t-distribution with 3 degrees of freedom; a skewed normal distribution with a slant 

parameter of 4 (Azzalini, 1985); a skewed tdistribution with 3 degrees of freedom and a 

skewing parameter of 0.5 (Fernandez and Steel, 1998); a Chi-square distribution with 3 

degrees of freedom; and a log-normal distribution with location and scale parameters being 

set to be 0 and 0.5, respectively. These choices provide for a broad spectrum of 

characteristics of the error distribution which are commonly encountered in practical 

applications; to include symmetry, heavy tails, and positive skewness. For each of the above 

error distributions, m = 500 independent data sets were generated, each consisting of n = 200 

observations.

The proposed methodology denoted by AME (adaptive M-estimator) was implemented to 

analyze each of the simulated data sets, using the techniques outlined in Section 2 and 3. In 

order to provide a comparison between the proposed methodology and existing techniques, 

several competing procedures were also implemented. In particular, each data set was 

analyzed using LS, LAD, and ZQR. The two former techniques are staples among standard 

data analysis methods, while the latter can be viewed as a generalization of quantile 

regression which estimates the quantile of interest along with the rest of the model 

parameters, thus allowing the approach to “adapt” to the data. In order to estimate standard 

errors and to construct confidence intervals the standard techniques were used for LS, while 

bootstrapping techniques with B = 1000 were used for the proposed approach, LAD, and 

ZQR. It is worthwhile to point out that all of the aforementioned methods attempt to 

estimate the same slope coefficient (i.e., β1) in the data generating model above; i.e., β1 is 
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the slope coefficient for the mean and all quantile functions. Thus, this study focuses solely 

on the results that were obtained from the proposed approach and the three competing 

techniques for the slope parameter.

Table 1 provides a summary of the estimators resulting from the proposed procedure, across 

all considered error distributions. In particular, this summary includes the empirical bias, the 

relative efficiency of the estimator (i.e., the average estimated standard error of the estimator 

divided by the average estimated standard error of the proposed estimator), empirical 

coverage probabilities associated with 95% confidence intervals, and average confidence 

interval length. From these results, one will notice that the proposed method performs very 

well; i.e., our estimator exhibits little if any evidence of bias and the empirical coverage 

probabilities appear to attain their nominal level.

Table 1 also provides the same summary for the other three competing regression 

techniques. Unsurprisingly, the same conclusions discussed above can also be drawn for LS, 

LAD, and ZQR, but differences in performance are apparent. First, under normal 

(Laplacian) errors the most efficient procedure is LS (LAD), which can be ascertained by 

examining both the relative efficiency and the average confidence interval length. Note, this 

finding was expected since LS and LAD result in the MLE under normal and Laplacian 

errors, respectively. With that being said, one will also note that the estimators resulting 

from the proposed approach are almost as efficient as the most efficient estimator under 

normal and Laplacian errors, even though the proposed method is tasked to estimate two 

additional parameters in these settings. Second, for all other considered error distributions 

the proposed method provided for the most efficient estimator, with the exception of the 

setting in which the errors obey a Student’s t-distribution. In some cases the efficiency gains 

are substantial; e.g., under Chi-square errors the proposed estimator is twice as efficient 

when compared to the the LS and LAD estimators. In general, the proposed approach 

performed better in terms of estimation efficiency than LS, LAD, and ZQR when the error 

distribution was asymmetric. Moreover, the proposed approach surprisingly outperformed 

ZQR, which is the most comparable existing technique, in all considered settings. In 

summary, this simulation study illustrates that the proposed methodology provides reliable 

estimates across a broad spectrum of potential error distributions, and can provide for more 

efficient estimates when compared to existing regression methods. Moreover, these gains in 

estimation efficiency are more dramatic for asymmetric errordistributions.

4.1 Power of the hypothesis test

In order to investigate other inferential characteristics of the proposed approach, a power 

analysis was conducted to assess the performance of the proposed methodology when 

utilized to test H0 : β1 = 0 versus H1 : β1 ≠ 0, at the α = 0.05 significance level. Data for this 

study was generated in the exact same fashion as was described above with a few minor 

exceptions; i.e., here the slope coefficient is taken to be β1 ∈ {0,0.005,...,0.2}, then for each 

error distribution and value of β1, m = 1000 independent data sets are generated each 

consisting of n = 500 observations. Our approach along with LS, LAD, and ZQR were 

applied to each of the data sets and the results from these analyses were used to create 95% 

confidence intervals, as was described in the previous section. Decisions between the null 
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and alternative hypothesis were made based on the confidence intervals in the usual fashion. 

These results were then used to construct power curves for each of the regression techniques, 

under each of the considered error distributions.

Figure 2 provides the empirical power curves for all four regression techniques across all 

considered error distributions. Again, as one should expect, in the case of Gaussian and 

Laplacian errors the methods with the most power are LS and LAD, respectively, but the 

power curve for the proposed approach is practically identical. In contrast, when the error 

distribution is not normal or Laplace, LS and LAD can suffer from a dramatic loss in power 

(e.g., Chi-square or skewed t errors) a feature which the proposed approach does not 

possess. In fact, for skewed distributions one will note that the proposed approach has the 

most power to detect departures from the null, under all considered configurations. In 

summary, the findings from this study reinforce the main findings discussed above; i.e., the 

proposed methodology provides for efficient estimation and reliable inference across a broad 

spectrum of error distributions.

5 Data applications

In this section the proposed M-estimator is used to analyze two data sets. These applications 

further illustrate the useful properties of the proposed regression methodology.

5.1 Blood pressure data

The National Health and Nutrition Examination Survey (NHANES) is a Center for Disease 

Control and Prevention program which was initiated to assess the general health of the 

populous in the United States. As a part of this study, data is collected from participants via 

questionnaires and various physical exams, to include laboratory testing. This information is 

subsequently made publicly available so that researchers may address/explore future 

medical, environmental, and public health issues that the United States, and more generally 

the world, may face. One such issue involves the significant number of adults who are 

affected by high blood pressure. In fact, the World Health Organization (World Health 

Organization; 2016) estimates that 22% of adults overs the age of 18 have abnormally high 

blood pressure, equating to approximately 1.2 billion afflicted individuals world wide. 

Individuals with chronic high blood pressure may develop further sequelae to include 

aneurysms, coronary artery disease, heart failure, strokes, dementia, kidney failure, etc. 

(Chobanian et al., 2003). Thus, developing a sound understanding of the relationship that 

exists between blood pressure and other risk factors is essential to public health.

To this end, the analysis considered herein examines blood pressure data collected on the 

participants of the NHANES study during the years of 2009–2010, and attempts to relate 

this response (diastolic blood pressure) to several different risk factors. In particular, the risk 

factors selected for this study include a binary variable (Food) indicating whether the 

participant had eaten within the last 30 minutes (with 1 indicating that they had, and 0 

otherwise), the average number of cigarettes smoked per day during the past 30 days 

(Cigarette), the average number of alcoholic drinks consumed per day during the past 12 

months (Alcohol), and the participants age (Age). This analysis assumes that a first order 

linear model is appropriate, and uses the proposed approach as well as LS, LAD, and ZQR 
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to complete model fitting. These techniques were implemented in the exact same fashion as 

was described in Section 4. Table 2 reports the estimated regression coefficients as well as 

the corresponding standard errors obtained from this analysis.

From the results presented in Table 2, one will note that the findings between the four 

regression methodologies are similar, but differences are apparent. In particular, this analysis 

finds that age and alcohol are significantly (positively) related to diastolic blood pressure, 

with the other two covariates being insignificant. The effect estimate associated with alcohol 

consumption is in agreement across all of the techniques, but the same cannot be said for the 

age effect. In particular, the proposed method actually renders an age effect estimate that is 

statistically different (or essentially) than the effect estimate which was obtained by LS. In 

contrast, the age effect estimates obtained by the proposed approach and ZQR are generally 

in agreement, this is likely attributable to the fact that both of these techniques are designed 

to adapt to the asymmetry of the data, which is present in this analysis; e.g., the proposed 

approach estimated the shape parameter to be α ≈ 1.4 and the skewness parameter to be τ  ≈ 
0.3, indicating that the error distribution has heavy tails and is right skewed. To further 

investigate this, Figure 3 provides QQ-plots and histograms of the residuals obtained under 

the four regression methodologies. From Figure 3 one would note that LS, LAD, and likely 

even ZQR would fail basic diagnostic checks. Further, when comparing the standard error 

estimates of the age effect one will also note that the proposed approach renders a smaller 

value when compared to LS, LAD and ZQR, which is not surprising given the results 

discussed in Section 4. Ultimately, in terms of choosing a “best” model fit in this scenario 

one could make use of the Akaike Information Criterion (AIC) or the Bayesian Information 

Criterion (BIC) to select between model fits, noting that the proposed approach holds the 

other 3 as special cases. Table 2 provides the values of these model selection criteria for all 

of the regression techniques, and one will note that both techniques unanimously select the 

model fit via the proposed approach. In summary, whether based on standard diagnostic 

procedures, estimator efficiency, or model selection criteria, the proposed approach appears 

to be the favorable technique for this application.

5.2 Miscarriage data

The Collaborative Perinatal Project (CPP) was a longitudinal study, conducted from 1957 to 

1974, which was aimed at assessing multiple aspects of maternal and child health (Hardy, 

2003). Even though this study was conducted half a century ago, the information collected 

still constitutes an important resource for biomedical research in many areas of perinatology 

and pediatrics. For example, in 2007 a nested case-control study which examined whether 

circulating levels of chemokines were related to miscarriage risk was conducted using (n = 

745) stored serum samples collected as a part of the original CPP study, for further details 

see Whitcomb et al. (2007). In particular, this study focused on monocyte chemotactic 

protein-1 (MCP1), which is a cytokine that is located on chromosome 17 in the human 

genome and is believed to have a pregnancy regulatory function, for further details see Wood 

(1997). The cases (controls) in the study were participants who had (not) experienced a 

spontaneous miscarriage, and cases were matched with controls based on gestational age. In 

addition to the measured MCP1 levels, several other variables were collected on each 

participant; i.e., age, race (with 1 denoting Africa American, and 0 otherwise)), smoke (with 
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1 denoting that the participant had smoked before and 0 otherwise) and miscarriage status 

(with 1 denoting that miscarriage had been experienced, and 0 otherwise).

In this analysis, the measured MCP1 level is considered to be the response variable and all 

other variables are treated as covariates. A full linear model consisting of all first order 

terms, as well as all pairwise interactions, is assumed and best subset model selection is 

implemented using BIC as the criteria. The proposed approach was used to fit all possible 

models, including models where (α,τ) were set to be (2,0.5), (1,0.5), and (1,τ), which are 

equivalent to implementing LS, LAD, and ZQR, respectively. Model fitting was conducted 

in the exact same fashion as was described in Section 4. This process identified an intercept 

only model for LS, a model consisting of race as the only covariate for ZQR, and a first 

order model consisting of both age and race as covariates for LAD and AME, with BIC 

values of 431.28, −395.51, −822.02, and −937.55 for LS, LAD, ZQR, and AME, 

respectively. From these results, one will note that important relationships will potentially be 

missed when the appropriate regression methodology is not used. In particular, this study 

illustrates that the best model chosen under these existing procedures may differ from the 

best model chosen under the proposed approach. When one considers the model selection 

process described above, it would be natural to place more faith in the results that were 

obtained under the proposed approach. This assertion is based on two primary facts. First, 

the proposed procedure holds the other competing procedures as special cases, thus the 

analysis described above should be viewed as a much more in depth model selection process 

which evaluates whether it is more reasonable to view α and τ as being fixed (with known 

value) or as unknown parameters. Second, of the considered techniques the proposed 

procedure has the ability to more aptly adapt to the underlying error structure, and is 

therefore able to render a more reliable analysis.

6 Conclusions

This work has developed a general robust regression methodology, which was inspired by 

the asymmetric exponential power distribution. In particular, the proposed methodology is 

robust with respect to the underlying error structure, thus rendering reliable estimation and 

inference across a broad spectrum of error distributions, even in the case of heavy tails 

and/or asymmetry. This is made possible by the fact that the loss function is chosen in a data 

adaptive fashion, during the estimation process, thus capturing the shape and skewness of 

the underlying distribution of the errors. The asymptotic properties of the proposed estimator 

are established. Through an extensive Monte Carlo simulation study, the proposed approach 

was shown to perform as well if not better than several existing techniques. In particular, 

these studies show that the proposed method generally performs better than these existing 

techniques when the error distribution is heavy-tailed and/or skewed. The strengths of the 

proposed method were further exhibited through the analysis of two motivating data sets. To 

further disseminate this work, code (written in R) which implements the proposed 

methodology has been prepared and is available upon request.

A direction for future research, pointed out by an anonymous referee, could explore the 

development of a more general loss function, which could account for even more asymmetry 

in the error distribution. Similar to the proposed approach, this could be developed based on 
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a very broad class of distributions, such as the extended AEPD distribution (Zhu and Zinde-

Walsh, 2009). Although, initial investigations into this generalization showed little promise 

at providing more efficient estimation and was far more computationally complex when 

compared to the proposed approach.
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Appendix

The regularity conditions under which consistency and asymptotic normality of the proposed 

Mestimator can be established are provided below.

A1: [(xi, yi),i = 1,...,n] is an i.i.d. sequence of random variables.

A2: The conditional cumulative distribution function of y|x is absolutely continuous and has 

a positive density denoted by f∗(·|·).

A3: The parameter space Θ ⊂ Ξ ≡ {θ|α > 0,σ > 0,τ ∈ (0, 1),βi ∈ ℝ,∀i} and is a compact 

set.

A4: There exists a unique θ0 ∈ Θ such that E[ln f(y|x, θ)] is maximized and has nonsingular 

second derivative at θ0.

A5: There exists a unique interior θ ∈ Θ such that ρ(θ) is differentiable at θ and 

‖n−1∑i = 1
n ψ(yi, xi, θ)‖ = op(n−1/2).

A6: There exists a δ such that 0 < δ < α − 1, E |ϵ|2α + 4δ < ∞, and E xj
2α + 4δ < ∞, for j = 

1,...,p, where α and α denote the infimum and supremum of the set of all α in Θ, respectively.

A7: V 1θ0 and V 2θ0 exist and are finite, V 1θ0 is positive definite, and V 2θ0 is invertible.

Conditions A1-A5 and A7 are common in the literature, see Huber (1967), Huber and 

Ronchetti (2009), Koenker (2005), and Bera et al. (2016). Condition A2 restricts the 

conditional distribution of the dependent variable and Condition A7 is assumed so that the 

asymptotic variance of the estimator exists and is finite. Condition A4 ensures identifiability 

and existence of a unique solution. Condition A5 is used to ensure that the derivative of the 

loss function evaluated at θ is “nearly zero”. Condition A6 restricts the absolute moments on 

the conditional distribution of y|x and each covariate xj in order to ensure the asymptotic 

behavior of the proposed estimator.

The consistency and asymptotic normality of the proposed estimator are established by 

verifying the conditions in Huber and Ronchetti (2009) (page 127 for consistency and 

Theorem 6.6 as well as its corollary for normality). The arguments to verify these 

assumptions are similar to those in Zhu and Zinde-Walsh (2009) and Bera et al. (2016), and 

the details of these arguments are available from the corresponding author.
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Figure 1: 
The AEPD densities for different parameter configurations.
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Figure 2: 
Empirical power curves obtained under AME, LS, LAD, and ZQR. Here t3 denotes 

Student’s t-distribution with 3 degrees of freedom; χ3
2 denotes a Chi-square distribution with 

3 degrees of freedom; SN(4) denotes a skewed normal distribution with a slant parameter of 

4; ST(3,0.5) for skewed t-distribution with 3 degrees of freedom and a skewing parameter of 

0.5.

Yang et al. Page 17

Commun Stat Theory Methods. Author manuscript; available in PMC 2018 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
QQ-plots and histogram of the residuals under AME, LS, LAD, and ZQR for the blood 

pressure dataset.
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Table 1:

Simulation results summarizing the estimates of the “slope” coefficient obtained by AME, LS, LAD, and 

ZQR, for both the AEPD and non-AEPD error distributions. This summary includes the average estimate 

minus the true value (Bias), relative efficiency (Eff), estimated coverage probability (Cov) associated with 

95% confidence intervals, and averaged confidence interval length (AL). Here t3 denotes Student’s t-

distribution with 3 degrees of freedom; χ3
2 denotes a Chi-square distribution with 3 degrees of freedom; SN(4) 

denotes a skewed normal distribution with a slant parameter of 4; ST(3,0.5) for skewed t-distribution with 3 

degrees of freedom and a skewing parameter of 0.5.

N(0,1) t3

Bias Eff Cov AL Bias Eff Cov AL

LS 0.0051 0.9741 0.960 0.2796 −0.0064 1.2331 0.954 0.4677

LAD 0.0037 1.2626 0.958 0.3598 −0.0036 1.0238 0.953 0.4042

ZQR 0.0037 1.2064 0.976 0.3765 −0.0028 1.0023 0.955 0.4174

AME 0.0053 1.0000 0.974 0.3104 −0.0023 1.0000 0.961 0.4238

χ3
2 Log-normal

LS 0.0053 2.3995 0.943 0.6811 −0.0017 1.4453 0.929 0.1665

LAD −0.0016 2.5165 0.959 0.7644 −0.0028 1.4602 0.965 0.1814

ZQR −0.0043 1.1525 0.977 0.4027 −0.0049 1.1287 0.963 0.1429

AME −0.0030 1.0000 0.969 0.3426 −0.0032 1.0000 0.965 0.1276

SN (4) ST (3,0.5)

LS −0.0014 1.0958 0.952 0.1768 −0.0224 2.0737 0.947 0.7030

LAD −0.0020 1.4075 0.966 0.2276 −0.0081 1.4816 0.971 0.5871

ZQR 0.0004 1.2190 0.958 0.1988 −0.0066 1.0047 0.977 0.4375

AME −0.0012 1.0000 0.942 0.1659 −0.0075 1.0000 0.979 0.4375

Laplace AEPD(0, 1.5, σ, 0.25)

LS −0.0016 1.2904 0.942 0.2781 0.0037 1.3014 0.957 0.2780

LAD −0.0028 0.9875 0.964 0.2347 0.0030 1.5021 0.979 0.3390

ZQR −0.0042 0.9971 0.968 0.2434 0.0012 1.1321 0.973 0.2733

AME −0.0044 1.0000 0.972 0.2562 0.0001 1.0000 0.965 0.2510
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Table 2:

Blood pressure data analysis: Estimated regression coefficients, their estimated standard errors in parenthesis, 

and the values of the model selection criteria AIC and BIC, resulting from AME, LS, LAD, and ZQR.

Estimate(SE)

Method Food Alcohol Cigarette Age (AIC,BIC)

LS −0.481(1.279) 0.452(0.157) −0.001(0.069) 0.473(0.041) (7066.61, 7095.06)

LAD 0.170(1.251) 0.430(0.170) −0.024(0.057) 0.385(0.044) (7028.93, 7057.37)

ZQR 1.429(1.451) 0.429(0.182) 0.000(0.051) 0.286(0.051) (6985.03, 7018.22)

AME 0.675(1.170) 0.405(0.160) 0.004(0.047) 0.316(0.039) (6962.68, 7000.61)
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