Skip to main content
. Author manuscript; available in PMC: 2018 Oct 2.
Published in final edited form as: Commun Stat Theory Methods. 2018 Jan 17;48(5):1092–1107. doi: 10.1080/03610926.2018.1423698

Table 1:

Simulation results summarizing the estimates of the “slope” coefficient obtained by AME, LS, LAD, and ZQR, for both the AEPD and non-AEPD error distributions. This summary includes the average estimate minus the true value (Bias), relative efficiency (Eff), estimated coverage probability (Cov) associated with 95% confidence intervals, and averaged confidence interval length (AL). Here t3 denotes Student’s t-distribution with 3 degrees of freedom; χ32 denotes a Chi-square distribution with 3 degrees of freedom; SN(4) denotes a skewed normal distribution with a slant parameter of 4; ST(3,0.5) for skewed t-distribution with 3 degrees of freedom and a skewing parameter of 0.5.

N(0,1) t3

Bias Eff Cov AL Bias Eff Cov AL

LS 0.0051 0.9741 0.960 0.2796 −0.0064 1.2331 0.954 0.4677
LAD 0.0037 1.2626 0.958 0.3598 −0.0036 1.0238 0.953 0.4042
ZQR 0.0037 1.2064 0.976 0.3765 −0.0028 1.0023 0.955 0.4174
AME 0.0053 1.0000 0.974 0.3104 −0.0023 1.0000 0.961 0.4238

χ32 Log-normal

LS 0.0053 2.3995 0.943 0.6811 −0.0017 1.4453 0.929 0.1665
LAD −0.0016 2.5165 0.959 0.7644 −0.0028 1.4602 0.965 0.1814
ZQR −0.0043 1.1525 0.977 0.4027 −0.0049 1.1287 0.963 0.1429
AME −0.0030 1.0000 0.969 0.3426 −0.0032 1.0000 0.965 0.1276

SN (4) ST (3,0.5)

LS −0.0014 1.0958 0.952 0.1768 −0.0224 2.0737 0.947 0.7030
LAD −0.0020 1.4075 0.966 0.2276 −0.0081 1.4816 0.971 0.5871
ZQR 0.0004 1.2190 0.958 0.1988 −0.0066 1.0047 0.977 0.4375
AME −0.0012 1.0000 0.942 0.1659 −0.0075 1.0000 0.979 0.4375

Laplace AEPD(0, 1.5, σ, 0.25)

LS −0.0016 1.2904 0.942 0.2781 0.0037 1.3014 0.957 0.2780
LAD −0.0028 0.9875 0.964 0.2347 0.0030 1.5021 0.979 0.3390
ZQR −0.0042 0.9971 0.968 0.2434 0.0012 1.1321 0.973 0.2733
AME −0.0044 1.0000 0.972 0.2562 0.0001 1.0000 0.965 0.2510