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Abstract

We introduce a modeling approach for characterizing heterogeneity in healthcare utilization using 

massive medical claims data. We first translate the medical claims observed for a large study 

population and across five years into individual-level discrete events of care called utilization 
sequences. We model the utilization sequences using an exponential proportional hazards mixture 

model to capture heterogeneous behaviors in patients’ healthcare utilization. The objective is to 

cluster patients according to their longitudinal utilization behaviors and to determine the main 

drivers of variation in healthcare utilization while controlling for the demographic, geographic, 

and health characteristics of the patients. Due to the computational infeasibility of fitting a 

parametric proportional hazards model for high-dimensional, large sample size data we use an 

iterative one-step procedure to estimate the model parameters and impute the cluster membership. 

The approach is used to draw inferences on utilization behaviors of children in the Medicaid 

system with persistent asthma across six states. We conclude with policy implications for targeted 

interventions to improve adherence to recommended care practices for pediatric asthma.
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1 Introduction

Appropriate utilization of the healthcare system is a positive tenet in preempting severe 

health outcomes and is the basis for more effective healthcare practices (Chang et al. 2014; 

McGrady and Hommel 2013; Piecoro et al. 2001). A well-managed health condition and 

adherence to recommended care practices typically result in reduced use of the emergency 

room (ER) and hospitalizations, thus leading to better health outcomes and less costly care 

for patients with chronic diseases (McGrady and Hommel 2013). Characterizing utilization 

behaviors and studying the drivers of variations in healthcare utilization can suggest targeted 

interventions for improving chronic disease management.

Understanding and managing healthcare utilization is now possible with the advent of 

individual-detailed health records and claims data, available from healthcare providers, and 

public or private insurers. The largest insurer in the United States, the Centers for Medicare 

and Medicaid Services (CMS), has provided a platform for acquiring such data in a 

standardized format across all states. Typically, CMS claims data include not only healthcare 
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services information such as the type and place of care, services provided, diagnosis and 

procedure codes but also individual-specific information such as demographics for more 

than 100 million patients.

The CMS Medicaid claims data are only available as identifiable patient health information 

divided into multiple files depending on the healthcare services provided, by year and by 

state. The patient identification is unique across all files allowing researchers to trace 

patients longitudinally. Thus, in order to characterize longitudinal healthcare utilization at 

the individual level, the Medicaid claims data need to be mapped into longitudinal sequences 

of care events, referring to visits to different provider types including physician office, 

emergency department and hospitalization, and to (re) filling medication prescriptions. After 

this initial translational process, statistical modeling can be applied to make inference on the 

heterogeneity in healthcare utilization.

In this study, we seek to make inferences on healthcare utilization for Medicaid-enrolled 

children diagnosed with persistent asthma across six states, including five southeast states, 

Georgia, Louisiana, Mississippi, North Carolina and Tennessee with comparison to 

Minnesota. Medicaid-eligible children typically belong to disadvantaged socioeconomic 

groups and are, therefore, more likely to utilize the healthcare system disparately 

(Pylypchuk and Sarpong 2013). We focus on asthma as it is the most prevalent respiratory 

chronic condition for children (Department of Health and Human Services, Centers for 

Disease Prevention and Control 2012). The study population includes more than 400,000 

children with approximately 6 million asthma events. The utilization sequences are 

complemented by child characteristics including demographics, enrollment characteristics, 

urbanization environment of their residence, spatial access to primary care (Gentili et al. 

2015) and clinical risk group (CRG) derived using the 3M Clinical Risk Grouping Software 

among others. Substantive computational challenges arise in deriving inferences from such 

highdimensional, massive datasets within a restrictive data environment in place for 

identifiable protected health information (PHI).

Healthcare utilization has been a topic of interest for many healthcare studies, where most 

studies explain the frequency of utilization with respect to patient characteristics and other 

determinants of utilization for various conditions, typically relying on statistical methods 

such as regression or general linear models, see Bahler et al. 2015; Grosse et al. 2013; Huber 

et al. 2013; Roebuck et al. 2011; Ross et al. 2010 among many others.

The motivating application has several challenging characteristics. Utilization data derived 

from medical claims are subject to data censoring, referring to missed events when a patient 

may not be eligible for Medicaid benefits or events occurring outside the study time period. 

The second limitation is the presence of the effects of event types on the prevalence of other 

event types. Moreover, each patient potentially has re-current events over the time period of 

interest. Thus, we have a competing-risks, repeated-events framework. A third limitation 

involves incorporating demographic and health-related covariates into the model.

To address these limitations, we will combine techniques from survival analysis and 

statistical clustering analysis to measure the rate at which patients in the study population 
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receive treatment for asthma from various types of care. A central theme in survival analysis 

is that of handling censored data. Cox’s proportional hazards model allows for the inclusion 

of possibly censored survival times in the likelihood function while also incorporating 

knowledge on characteristics of the patient. In this study, we will fit a parametric 

proportional hazards model to find the rate at which pediatric asthma patients visit different 

provider types given variables such as access to care, their current overall health condition, 

demographic variables, differences in state-based Medicaid programs, and history of 

healthcare utilization. We assume a mixture of proportional hazard models to capture 

heterogeneity in utilization behaviors. Using this model, we will derive three primary 

outputs from which we aim to determine the main contributors to variations in healthcare 

utilization: the posterior probabilities that a patient belongs to a specific cluster of patients 

given a set of control variables and utilization history, estimated effects of control covariates 

on the event hazard rates, and parameter estimates for the explanatory variables used to 

evaluate the impact of potential interventions on the rate of healthcare visits.

This method was inspired by the complexity of the healthcare data set that we study and has 

roots in the survival analysis literature, particularly an adaptation of the Cox model to 

parametric counting process data (Borgan 1984) and models for heterogeneity in discrete 

choice models and survival analysis (Blossfeld and Hamerle 1992; Browning and Carro 

2010; Dunn et al. 1987; Greene and Hensher 2003; Heckman and Borjas 1980; Heckman 

1981; Reader 1993; Vaupel and Yashin 1985). Two areas that are closely related to the 

proposed methodology are those of determining ‘long-term’ survivors in a cohort (Farewell 

1982; Kuk and Chen 1992; McLachlan and McGiffin 1994; Sy and Taylor 2000) as well as 

the use of the multivariate Weibull mixture model to capture heterogeneity in duration data 

(Bucar et al. 2004; Farcomeni and Nardi 2010; Mair and Hudec 2009; Mosler 2003; Mosler 

and Scheicher 2008; Mosler and Seidel 2001; Nagode and Fajdiga 2000). We look to extend 

the contributions of these authors by generalizing the proportional hazards cure model to 

allow for different rates for multiple (more than two) subpopulations. Furthermore, while 

mixture modelling is prevalent in the literature, few authors incorporate explanatory and/or 

controlling factors, see Bucar et al. 2004; Mair and Hudec 2009; Nagode and Fajdiga 2000. 

By bringing the computational feasibility of the estimation algorithm to bear, we can analyze 

massive, high-dimensional datasets. This is a promising contribution in light of the 

exponential growth of healthcare data (EMC Corporation 2014) and demonstrates the ability 

to apply these methods to high-dimensional counting process data.

The remaining structure of the paper is as follows: in Section 2 we further summarize the 

target population and the covariates we include in this study, in Section 3 we present the 

model and model estimation techniques, in Section 4 we present results from our application 

to pediatric asthma, and we conclude with a discussion in Section 5. We provide additional 

derivations and details on the results for the motivating case study in the Supplemental 

Materials.

2 Data

We begin by translating the Medicaid Analytic Extract (MAX) claims data into individual- 

level utilization data. Our study population consists of all Medicaid-enrolled children ages 

Hilton et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4–18 with persistent asthma (Wakefield and Cloutier 2006) from Georgia (GA), Louisiana 

(LA), Mississippi (MS), Minnesota (MN), North Carolina (NC), and Tennessee (TN) 

between 2005 and 2009. Children age 0–3 are not included in the study due to inconsistency 

in asthma diagnosis at this age. We only include children with persistent asthma, that is, 

children that have at least one emergency room visit or hospitalization with a diagnosis of 

asthma, at least three outpatient visits with a diagnosis of asthma, or a prescription fill for 

asthma controller medications. In total we have 426,400 patients, approximately 4 million 

healthcare events. Tables 1–3 in Supplemental Material A provide summary statistics.

To specify the provider type, we use a combination of Place of Service Code and Type of 
Service Code from the MAX data files. We abbreviate the provider types in the following 

manner: clinic visits (CL), emergency room and outpatient hospitalizations (ER), inpatient 

hospitalizations (HO), physician’s office visits (PO), and nurse practitioner care in a 

physician’s office (NP). In addition, we model a claim where a patient visits the pharmacy to 

fill a prescription for asthma controller medication (RX) as a unique event type.

We also extract demographic, zip code, and health-related information such as age, 

Medicaid eligibility status and health condition or clinical risk group (CRG) derived using 

the 3M Core Grouping Software (version 2014.3.2 with the Clinical Risk Groups version 

1.12) from the MAX data. Using the zip code of the child, we include additional variables 

such as the state of residence, urbanization level of a child’s residence zip code derived 

using the RUCA categorization (Morrill et al. 2005) and travel distance to pediatric primary 

care derived using optimization models (Gentili et al. 2015). We only consider access to 

primary care since it is the most prevalent non-emergency care type for Medicaid-insured 

children diagnosed with asthma.

We divide the covariates into two groups: control and explanatory. The control variables are 

patient-specific information used to account for the bias in the individual-level healthcare 

utilization. We include such variables to adjust for their confounding effect on the 

relationship between utilization patterns and explanatory variables. More specifically, the 

control variables in this study are: age group (4–5, 6–14, 15–17), race (white, black, and 

other), overall health condition of the child (healthy: CRG 1, minor chronic: CRG 2–4, 

chronic: CRG 5–7, and severe: CRG 8–9, determined by the 3M software), reason for 

Medicaid eligibility (disabled, foster care and income-based) and the last event type to 

account for the child’s healthcare history.

The explanatory variables are those that are assumed to be association with healthcare 

utilization patterns. The explanatory variables in this study include the state of residence of 

the child, urbanicity categorized as urban (RUCA 1–3), suburban (RUCA 4–6) and rural 

(RUCA 7–10) and travel distance to pediatric primary care.

A summary of the observed vectors of data is given below. Throughout this paper bold 

typeface will be used for vectors and matrices.

Hr(t) = {hr1 (t), . . . , hrS(t)} the count of visits for each child r to providers of type s ϵ 
{1, . . . , S} over the time t. In our study, we consider S = 6 event types (CL, ER, HO, PO, 

NP, and RX). H contains all counting processes for all children.
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• dr and er are row vectors of observed covariates corresponding to the control and 

explanatory variables, respectively. D and E contain all covariates for all children.

3 The Proportional Hazards Mixture Model

In this section we first motivate the use of survival analysis for this particular problem. We 

then introduce the mixture model formulation and demonstrate the use of the expectation- 

maximization (EM) algorithm to estimate the model parameters. Finally, we present a 

computationally efficient, iterative algorithm to estimate the proportional hazard and 

utilization-choice model parameters, which applies to high-dimensional, large sample size 

data.

3.1 The Proportional Hazards Model

Consider a counting process N(t) counting the number of events up to time t. Then Aalen 

(1978) and Andersen and Gill (1982) show that N(t) has a random hazard process λ(t) 
defined as

λ(t) = lim
h 0

Pr(T < t + h T > t), (1)

where T is a random variable for the time of the event. Let f(t) be the probability density 

function for an event at time t and S(t) be the survival function up to time t. Then we can 

relate the three functions with the following formula: f (t) = λ(t)S(t).

The Cox regression model (Cox 1992) specifies the hazard rate given a set of time varying 

covariates x(t) via the equation

λ(t x(t)) = λ0exp β⊤x(t) , (2)

where λ0 is a fixed underlying baseline hazard function. This model is typically referred to 

as the ‘proportional-hazards’ model due to the fact that the hazard rate of an event at time t 
for different subpopulations are proportional to each other.

Our model of the hazard rate for an event of type s can be written as

λs(τ dr(τ)) = λrs(τ) = exp βs
⊤dr(τ) , (3)

where βs = [β0s, β1s, . . . , βPs]. Thus, the baseline hazard function is λ0 = exp(β0). 

Furthermore, the vector dr may vary with time because it includes dummy variables for the 

last event type as well as the health status of the patient which may change annually. It is 

important to note that this differs from a competing risk model in that the time to event of 

type r is reset to 0 only when an event of type r occurs. The effect of other events are 

captured by a dummy variable for the last event type in the full model specification.
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Ss(τ dr(τ)) = Srs(τ) = exp −τexp βs
⊤dr(τ) , (4)

f s(τ dr(τ)) = f rs(τ) = λrs(τ)Srs(τ) . (5)

Generally, the model provides probabilistic insights on the gap time (called interarrival time) 

between events, under the assumption that the hazard rates are allowed to depend on 

previous event types in a Markov manner. Specifically, the clock for an event type does not 

reset until that particular event occurs again, and an event gap may span multiple years. The 

dependence on previous events is not only on individual event type, but also on other event 

types.

A Word on the Time Domain: In this paper we are interested in the time-to-event data and 

the effect of historical and demographic information on the times between events of the 

same type. We will denote the standard time domain with t and the time since the last event 

or re-enrollment time as τ. Changes from enrolled to unenrolled are considered to be 

censored lifetimes. See Supplemental Material B for an example.

3.1.1 Choice of Baseline Hazard Function—In the field of survival analysis there 

are two primary choices for the baseline hazard model: a nonparametric baseline hazard 

function and a parametric baseline hazard function such as the exponential, Weibull or log-

logistic, for instance. We choose a parametric baseline because we must force the baseline 

hazard function to be unimodal, otherwise heterogeneous subpopulations may be incorrectly 

grouped together. We chose the exponential for the interarrival times distribution because of 

the analytic properties of the exponential survival model, resulting in computational 

efficiency and and simple computation on interarrival rates for different control variable 

combinations. This model assumption also holds for the motivating application (see 

Supplemental Materials H). Extensions to other distributions such as the Weibull distribution 

will not benefit from this computational efficiency hence other computational approaches, 

such as distributed computing, could be considered in the context of high-dimensional, large 

sample data.

3.2 The Mixture Model

The problem we are trying to solve is that of clustering similar patients based on their 

utilization patterns, estimating the coefficients corresponding to the control variables, and 

determining the factors that explain the variations in longitudinal utilization behaviors. Let zr 

be a multinomial random variable denoting the latent cluster membership of patient r taking 

values 0 and 1, where zrk = 1 if patient r belongs to cluster k. Given that zrk = 1 the 

likelihood contributed by each patient history is
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Pr Hr dr, zrk = 1 = ∏
S = 1

S
∏

lr = 1

Lr
f rks(τlr

)
δs(τlr

)
× Srks(τlr

)
1 − δs(τlr

)
, (6)

where Tlr is the lth interarrival time between consecutive events, censoring, or re-enrollment 

times for patient r, and δs(τ) is an indicator function taking value 1 if patient r visits provider 

type s at time τ and 0 otherwise.

Following the cure model of Farewell (1982), Kuk and Chen (1992), McLachlan and 

McGiffin (1994), and Sy and Taylor (2000), we want to model the probability that patient r 
belongs to cluster k given the explanatory variables er. (For the purposes of the study we 

assume patients do not move.) Let zrk|er be a multinomial random variable denoting the 

latent cluster membership of patient r with explanatory variables er. We assume that the 

probability that zrk|er = 1 follows a multinomial logistic regression model:

Pr(z
rk er

= 1) = Pr zrk = 1 er = πrk =
exp er

⊤bk

1 + ∑k = 1
K − 1exp er

⊤bk

,  for k ∈ 1, …, K , (7)

and

πrK = 1
1 + ∑K = 1

K − 1 exp er
⊤bk

. (8)

Combining Equations 6 and 7, we can derive the likelihood function for b and β as

L(b, β) = ∏
r = 1

R
∏
k = 1

K
πrk Pr Hr dr, zrk = 1 . (9)

This model controls for the effects of the control covariates, dr, and allows the cluster- 

specific baseline hazard of an event to vary while explaining the causes of variations due to 

the explanatory variables er.

The optimal number of clusters can be selected based on the resulting likelihood, AIC or 

BIC derived from the estimated model. Specifically, the mixture model is estimated for 

different number of clusters and we select the model with the highest likelihood/AIC/BIC. 

The selected model using this classic approach can be complemented by additional user 

input on re-clustering based on insights on whether there is redundancy or overlap among 

the identified clusters.
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3.3 The EM Algorithm

Together [Z, H, D, E], where Z = [z1,..., zR], form the complete information on a patient’s 

utilization history. However, Z is unknown and must be inferred from [H, D, E]. We will use 

the EM algorithm (Dempster et al. 1977) to estimate the probability that patient r belongs to 

cluster k, Pr(Zrk = 1), for all r, k.

Under the framework of complete information we can revise Equation 9 to get the complete 

likelihood function:

LC(b, β |Z) = ∏
r = 1

R
∏
k = 1

K
πrk

zrk ∏
s = 1

S
∏

lr = 1

Lr
f rks(τlr

)
δs(τlr

)
× Srks(τlr

)
1 − δs(τlr

) zrk

(10)

= LC(b Z) × LC(β Z) . (11)

Due to the fact that the complete likelihood function can be split between a likelihood for b 
and β we can divide the model estimation procedures into three parts: estimating the 

probability that patient r belongs to cluster k (E-step), and estimating separately the 

proportional hazards coefficients and the multinomial logistic coefficients (M-step).

3.3.1 The E-Step—In the E-step we find the expected values of the missing values Z 
with respect to the distribution given the current estimates for the model parameters, b(m) 

and β(m):

zrk
(m + 1) = E zrk b(m), β(m) = P zrk = 1 b(m), β(m) (12)

=
∏r πrk

(m)∏s ∏lr
f rks

(m)(τlr
)
δs(τlr

)
× Srks

(m)(τlr
)

1 − δs(τlr
)

∑k = 1
K ∏r πrk

(m)∏s ∏lr
f rks

(m)(τlr
)
δs(τlr

)
× Srks

(m)(τlr
)
1 − δs(τlr

) . (13)

After performing the E-step we take the current estimates, Z(m+1), and use them to calculate 

the next step estimates for the parameters in the proportional hazards and multinomial 

logistic regression model.

3.3.2 The M-Step—Assuming that the probability distribution of events follows an 

exponential distribution we have that 
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f rks(τ) = λrks(τ)exp −τλrks(τ)  and Srks(τ) = exp −τλrks(τ) , where λrks(τ) = exp βks
⊤ dr(τ) .

Then the total likelihood function for all patients, LC(β), can be written as

LC(β | zr) = ∏
r

∑
k

zrk∏
s

∏
lr

exp δs τlr
βks

⊤ dr τlr
− τlr

exp βks
⊤ dr τlr

(14)

= exp ∑
r

∑
k

∑
s

∑
lr

zrkδs τlr
βks

⊤ dr τlr
− τlr

exp βks
Tdr(τlr

)}, (15)

where the equality holds in the second line because for zr only one entry is equal to one and 

all others are zero. Now, set βks
⊤ = β0ks, βs

⊤ , where βs
⊤ = β1s, …, βPs . Recall that βs are 

common across all clusters k ϵ {1, . . . , K}. Then the complete log likelihood function can 

be written as:

𝓁C(β |Z) = ∑
r, k, s, lr

δs τlr
zrkβks

⊤ dr τlr
− τlr

zrkexp βks
⊤ dr τlr

. (16)

Before moving onto the iterative procedure for estimating β and b we must perform some 

derivations first on the complete likelihood function for b, following the arguments of 

(Czepiel 2002):

LC(b |Z) = ∏
r

∏
k

πrk
zrk = ∏

r
∏
k = 1

K − 1
πrk

zrk × πrK
1 − ∑k = 1

K − 1 zrk (17)

= ∏
r

∏
k = 1

K − 1
πrk

zrk ×
πrK

∑k = 1
K − 1πrK

zrk
= ∏

r
∏
k = 1

K − 1 πrk
πrK

zrk

× πrK (18)

= ∏
r

∏
k = 1

K − 1
exp bk

⊤er

zrk × 1 + ∑
k = 1

K − 1
exp bk

⊤er

−1
. (19)

Therefore the log likelihood function is
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𝓁C(b |Z) = ∑
r

∑
k = 1

K − 1
Zrkbk

⊤er − log 1 + ∑
k = 1

K − 1
exp bk

⊤er . (20)

3.3.3 An Iterative Solution to the Likelihood Equations—Now we employ the 

iterative procedure of Genkin et al. (2007), Meng and Rubin (1993), Mittal et al. (2013), and 

Zhang and Oles (2001) to estimate the parameters b and β. The main idea of the algorithm is 

to split the large, computationally extensive task of estimating β and b into many single 

estimation steps. Therefore, in order to find the next step estimate for βρs, p ϵ {1,..., P} 

given the current estimates β(m) and Z(m+1), we take the derivative of ℓC (β) with respect to a 

single βρs:

𝓁C
(1) βps =

∂𝓁C(β Z(m + 1))
∂βps β = β(m)

(21)

= ∑
r, k, lr

δs τlr
zrk
(m + 1)drp τlr

− τlr
zrk
(m + 1)drp τlr

exp βks
(m) ⊤dr τlr

(22)

= ∑
r, lr

δs τlr
drp τlr

− ∑
r, k, lr

τlr
zrk
(m + 1)drp τlr

exp βks
(m) ⊤dr τlr

. (23)

Likewise, the second derivative is:

𝓁C
(2) βps =

∂2𝓁C(β Z(m + 1))
∂βps

2
β = β(m)

(24)

= − ∑
r, k, lr

τlr
zrk
(m + 1)drp

2 τlr
exp βks

(m) ⊤dr τlr
. (25)

Using Taylor’s expansion, we have that the one-step update for βps is

βps
(m + 1) = βps

(m) + Δ′ps = βps
(m) −

𝓁C
(1) βps

𝓁C
(2) βps

.
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Following similar arguments for β0ks we have that

𝓁C
(1) β0ks =

∂𝓁C(β Z(m + 1))
∂β0ks β = β(m)

(26)

= ∑
r, lr

δs τlr
zrk
(m + 1) − zrk

(m + 1)τlr
exp βks

(m) ⊤dr τlr
, (27)

𝓁C
(2) β0ks =

∂2𝓁C(β Z(m + 1))
∂β0ks

2
β = β(m)

= − ∑
r, lr

zrk
(m + 1)τlr

exp βks
(m) ⊤dr τlr

, (28)

and

β0ks
(m + 1) = β0ks

(m) + Δ′0ks = β0ks
(m) −

𝓁C
(1) β0ks

𝓁C
(2) β0ks

. (29)

As in Genkin et al. (2007), Mittal et al. (2013), and Zhang and Oles (2001), we perform a 

complete sweep over all parameters in β multiple times instead of performing multiple 

iterations of a single parameter and moving onto the next.

Following the arguments of Czepiel (2002) one can show that the first and second 

derivatives of Equation 20 with respect to a single bjk is

𝓁C
(1) b jk =

∂𝓁C(b Z(m + 1))
∂b jk b = b(m)

= ∑
r = 1

R
zrk
(m + 1) − πrk

(m) er j, (30)

and

𝓁C
(2) b jk =

∂2𝓁C(b Z(m + 1))
∂b jk

2
b = b(m)

= − ∑
r = 1

R
πrk

(m) 1 − πrk
(m) er j

2 . (31)

The one-step update for bjk is
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b jk
(m + 1) = b jk

(m) + Δ′ jk = b jk
(m) −

𝓁C
(1) b jk

𝓁C
(2) b jk

.

As with the proportional hazards coefficients we perform multiple sweeps over all model 

parameters instead of multiple iterations for a single parameter.

When performing these one-step estimation algorithms it is important that a single step does 

not go too far. This can occur when the log-likelihood function is not locally quadratic and 

can lead to ill-fitting results. Therefore, we employ the trust region algorithm of Genkin et 

al. (2007) and Zhang and Oles (2001). Furthermore, we only perform a maximum of five 

sweeps for the proportional hazards model coefficients in the M-Step, as the likelihood 

function will still sufficiently increase. The pseudocode is provided in Algorithm 1.

4 Case Study

In this section we present the results of our study on uncovering utilization patterns among 

the asthma diagnosed children in the Medicaid system.

4.1 Model Implementation and Evaluation

An important assumption in the implementation of the model is the independence across the 

states. Medicaid programs are run at the state level and thus each state Medicaid program 

will have its own public health policies and system characteristics, hence the assumption of 

independence.

The model selected using the approach in the Supplemental Material C presents five clusters 

of patients according to their utilization behavior. The model selection approach selects the 

model with the largest likelihood; the BIC or AIC penalty is small compared to the 

likelihood function and thus our approach is equivalent to identifying the number of clusters 

using such approaches. The estimated model parameters for a model with five clusters are in 

the Supplemental Material D.

Statistical significance of the covariate effects and multinomial logistic parameters is 

investigated using the Fisher information in the Supplemental Material E. The uncertainty 

associated with the model estimation is further studied using a multiple stratified sampling 

approach presented in the Supplement Material G. Based on this approach, we find that the 

resulting model parameters are identifiable and approximately unbiased. (See Supplemental 

Material H for details.)

The algorithm for the model estimation is computationally attractive, allowing for complete 

model estimation in 2–3 hours for a set of more than 420,000 patients and 6 million 

interarrival times. The computation scales approximately linear in time with varying 

problem sizes as discusses in Supplemental Material J.

We provide the estimated model along with a practical interpretation and various 

visualizations of the results in Supplemental Material D.
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4.2 Proportional Hazards Model

4.2.1 Baseline Rates—We first present the baseline rate of events per year for each 

provider type. To derive the baseline rates and their multipliers, we simply take exp(β), 

where β is the coefficient value.

The baseline group represents the population of children who are white, chronically ill, aged 
4–5, have not visited a healthcare provider yet in our study and are not eligible for Medicaid 
for reasons including blindness, disability or foster care. The baseline rates are in Figure 1. 

The proportion of children belonging to each cluster are 55.74% (Cluster 1), 16.10% 

(Cluster 2), 15.09% (Cluster 3), 10.32% (Cluster 4), and 2.75% (Cluster 5).

The baseline rate changes for each subpopulation within a cluster, and thus, should not be 

interpreted solely on their absolute value but on their relative values across clusters also. For 

instance, patients in Cluster 4 are more than twice as likely to fill a prescription than patients 

in any other cluster. Likewise, patients in Cluster 5 are more than six times as likely to visit a 

healthcare clinic than other patients. Because the effects of the control variables are the same 

regardless of cluster membership, these statements will hold regardless of age, 

demographics, or health status.

Cluster 1, with the greatest proportion of the population, has the least number of RX visits 

per year, less than one third of the cluster with the next lowest RX rate. Patients in Cluster 2 

rely almost solely on RX visits, with low rates of visits to all other provider types. Cluster 3 

patients have the highest rate of PO visits but the second lowest number of RX visits. 

Patients belonging to Cluster 4 have the greatest number of RX visits per year, but also have 

the second highest rate of HO visits. Finally, Cluster 5, with the fewest patients, has the 

greatest number of CL, ER and HO visits, with the third highest rate of PO visits and second 

highest rate of RX visits.

4.2.2 Covariate Effects—Now we describe the effects of the control covariates on the 

baseline visitation rates. In Figure 2 we provide the rate multipliers for the different 

covariate values. The rates of visits for different subpopulations can be found by multiplying 

the baseline rate by the rate multipliers from this chart. For instance, to find the rates for a 

black, age 16 child one would multiply the baseline rate from Figure 1 by the rate 

multipliers from the black and age 15–17 covariates in Figure 2. It is important to remember 

that the effects of these covariates are the same across all clusters. That is, a severely ill 

patient will have 6.79 times more hospitalizations regardless of whether they belong to 

Cluster 1 or Cluster 5.

We find that the effects of health status or clinical risk group (healthy, minor or severely ill) 

have the greatest practically significant effect on the baseline rate. While the clinical risk 

group is an overall evaluation of the health condition, it can also reflect the severity of 

asthma. For example, a patient categorized as healthy will have mild asthma. A severely ill 

patient has a higher rate for all provider types but the rate of hospitalizations is 6.79 times 

higher than a chronically ill patient. Children with a minor chronic illness have little relative 

change, while healthy children have drastically less events of all types. Other findings 

include higher utilization of the CL, ER, and HO and lower utilization of RX for patients 
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that are non-white, while patients who are eligible for Medicaid due to being blind or 

disabled or in foster care have overall lower rates of visits. Finally, the effects of age seem to 

have little practical difference for children in age group 6–14, while children age 15–17 have 

higher rates of visits to all provider types except CL and RX.

4.2.3 Provider Networks—Now we demonstrate how our model outputs can be used to 

visualize the provider transition networks for patients in different subpopulations and/or 

clusters. In this example, we compare the effects of the patient’s clinical risk group on 

healthcare utilization for the baseline group of patients. We chose this example for 

illustration purposes because of the drastic multiplicative effects of health status on the 

baseline visit rates as shown in Figure 2.

In Figure 3, we compare the network plots of healthy, chronically ill, and severely ill 

patients, leaving out those with a minor illness due to the small change from those that are 

chronically ill. The transition probability labeled on the edge is the probability for a patient 

to go to next event given patient’s last event type. The middle column of networks in Figure 

3 pertains to chronically ill patients and the rate parameters are λ0ks = exp(β0ks), where β0ks 

are the baseline proportional hazard coefficients for cluster k and event s.

Let βHealthy,s and βSevere,s be the coefficients for the healthy and severely ill patients, 

respectively. Then the event rates for these two groups are exp(β0ks × βHealthy,s) and exp(β0ks 

× βSevere,s). Furthermore, we can determine the rates for, say, a healthy patient with a last 

visit of CL by calculating exp(β0ks × βHealthy,s × βCL,s). Now we employ the following result 

on exponential random variables.

Let T1, . . . , T|S| be exponentially distributed random variables for the interarrival times for 

events 1,..., |S| with parameters λ1,..., λ|S|. Then it can be easily shown that the probability 

that Ts is the smallest of T1,..., T|S| is

λs
λ1 + ⋯ + λ S

These probabilities are the transition probabilities depicted in the provider networks.

Clusters 2, 3, and 4 networks have strong connections from all nodes leading to RX visits. 

However, as a child’s health condition becomes more severe, utilization becomes more 

variational, with a greater number of connections between different provider types for the 

chronic and severe illness columns. Patients in Cluster 1 have high probability transitions 

into PO and RX provider types, with a higher probability of readmission into HO for 

chronically and severely ill children. Clusters 2 and 4 are similar for healthy and chronically 

ill patients, except more transitions into HO in Cluster 2 and PO in Cluster 4. Cluster 3 

healthy patients have similar networks as Cluster 2 and 4 healthy patients but with much 

greater variation for those with a chronic or severe illness. Patients in cluster 2 route into RX 

regardless of overall health condition. Chronic and Severe patients in Clusters 1 and 3 have 

high probability transitions into PO from all nodes, while severe patients in Cluster 4 have 

some transitions from CL to PO. Cluster 5, with the smallest percentage of patients, consists 
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of those who more frequently utilize ER and HO with significant transitions into HO for 

both chronically ill and severely ill patients, while severely ill patients having more than 

50% chance of readmission into HO. Across all clusters, NP is insignificant and primarily 

routes patients back to NP or into PO or RX visits.

4.3 Latent Variable Model

Next we provide visualizations for the effects of the explanatory variables on cluster 

membership. The parameter outputs from the model chosen are in Supplemental Material D.

In Figure 4 we plot the proportion of children from each state by urbanicity category and by 

cluster. That is, for a given state and urbanicity level, the sum of the values in the chart 

across clusters will be one. The black dashed lines indicate the overall proportion of children 

belonging to a given cluster regardless of state and urbanicity.

While the urbanicity level of the child’s residence does affect cluster membership, it is the 

child’s residence state that is the main driver of variation in utilization behaviors. 

Furthermore, it appears that within each state, urban and suburban patients act similarly 

while rural patients behave differently. Clusters 1 and 3 have a higher proportion of urban 

and suburban patients relative to rural patients while Clusters 2 and 4 have the opposite. 

Cluster 5 appears to be evenly divided among the three urbanicity measures.

GA and MS behave differently than the other states while LA and MN, and NC and TN 

behave similarly. Recall that Cluster 1 patients rely on PO and RX visits, Clusters 2 and 4 

rely almost solely on RX for healthy and chronically ill patients, Cluster 3 has a high rate of 

PO visits and some RX visits, and Cluster 5 utilizes more ER and HO visits than the others. 

From Figure 4, it becomes clear that GA patients are overall more variational, relying less on 

RX visits than the overall average and more on other provider types, having the greatest 

proportion of patients in Cluster 5. MS has the highest proportion of patients belonging to 

clusters dominated by RX visits, namely Clusters 2 and 4, with MN, NC, and TN patients 

also having relatively high proportions in those clusters. LA has the highest proportion of 

patients belonging to Cluster 1 and the lowest belonging to Cluster 5.

The third explanatory variable in our study is a measure of travel distance to primary care, 

which is the main source of care for asthma for the Medicaid-insured children. Interpreting 

the effects of travel distance on cluster membership is more difficult because the variable is 

numerical instead of categorical. However, we provide an example of the effects of increased 

travel time on cluster membership, assuming that the baseline probability of belonging to 

Clusters 1–5 are equal (this is not always the case as state and urbanicity also factor in). In 

Figure 5, we demonstrate the change in probability for this hypothetical example for patients 

in Clusters 1–5 with travel distances ranging from 0–25 miles.

This graph should be interpreted by the relative change in probability across clusters. We 

find that higher travel distances increase the probability of membership in Clusters 1, 3, and 

5, with 5 being the greatest, while probabilities decrease for Clusters 2 and 4 as travel 

distance increases. Incidentally, Clusters 1, 3, and 5 tend to be more variational when 

compared to Clusters 2 and 4, which primarily rely on RX utilization.
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5 Discussion

In this paper we introduce a model-based clustering analysis via a parametric proportional 

hazards model that allows for derivation of model parameters, cluster membership 

probabilities and visualizations. We also demonstrate the applicability of the methodology to 

policy-making on healthcare utilization. By studying pediatric asthma patients from six 

states, we are able to determine the drivers of inter-cluster variation while controlling for the 

effects of controlling covariates such as age, race and ethnicity, and overall health status.

The primary outputs from our model consists of the rate of visits by event type for patients 

belonging to the baseline group; the effects of the control covariates on the baseline rates in 

the form of rate multipliers indicating the variations of utilization that cannot be impacted by 

interventions; and the effects of the last visit type on future utilization choice. We show how 

these effects can be used to determine a one-step provider network. We finish with 

visualizations of the effects of the explanatory variables on cluster membership.

The baseline rate per year shows that the majority of patients, those belonging to Cluster 1 

(55%), utilize asthma controller medications the least but also have few emergency room 

visits or hospitalizations. The provider networks across health conditions show that as the 

patient’s condition worsens, patients tend to utilize the physician’s office more, indicating 

that the majority of asthma patients are well-managed and require minimal, routine care to 

control asthmatic conditions. Cluster 3 (15%) is similar to Cluster 1 just with more visits to 

the physician’s office and prescription fills for asthma controller medication and relatively 

few emergency room visits or hospitalizations, also indicating patients who require minimal 

care. Higher travel distances increase the probability of membership within these two 

clusters. From Figure 4 we see that GA and LA have above average representation in Cluster 

1, with MS, NC, and TN having well below average. Cluster 3 has above average 

representation of NC patients while LA, MS, and MN are well below average.

Cluster 2, with 16% of the population consists of those patients who rely heavily on 

medication and little else, thus representing those patients with the least utilization of the 

system of care, hence with a well controlled asthma. The effects of health status on the 

provider networks are minimal with slightly more admission into hospitalizations for 

patients with a severe health condition. Despite the fact that lower travel distances increase 

the probability of membership in this cluster, these patients rarely utilize the physician’s 

office. GA has well below average representation in this cluster while MS has the greatest.

Cluster 4 (10%) patients are the highest utilizers of medication with relatively high rates of 

visits physician office visits but also relatively low baseline rates of ER and HO visits, hence 

another cluster of patients with well controlled asthma. This cluster has the least variation 

when comparing across health status with the severely ill patients having high transition 

rates to the physician’s office. NC and TN have above average representation in this cluster. 

Lower travel distances increase membership probability in this cluster which could explain 

the high baseline rate of visits to physician office. While NC has average representation in 

Cluster 2, it has the highest proportion of patients in Cluster 4.
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Finally, Cluster 5 (3%) consists of those patients who have the highest utilization of the 

emergency department and hospitalizations, and are likely to be those patients with the most 

severe asthmatic conditions requiring high-end care. Both chronically and severely ill 

patients have higher rates of emergency department visits and hospitalizations as indicated 

by the provider networks. GA has the most patients in this cluster and LA the least. These 

patients also tend to have the highest travel times to a physician’s office.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Some important findings drawn from this study are:

• The most influential factor on the differences between children at the baseline 

or entry point in the system is the overall health condition.

• Older children are higher utilizers of the system, particularly of both 

emergency departments and hospitalizations. One explanation is that asthma 

in older children can interfere with sleep, school, sports and social activities.

• Children in foster care are lower utilizers of the system with a lower rate of 

both emergency departments and hospitalizations. This is expected because 

such visits require the presence of a social worker and possibly a member of 

the foster care agency if one is involved. This additional requirements may 

discourage utilization of emergency services.

• The black population has twice the rate of emergency department visits. Prior 

research has not found a statistically significant association of the percentage 

of non-white population to geographic access while controlling for income in 

Georgia (Nobles et al. 2014).

• Patients who are categorized as severely ill using the clinical risk group 

classification have the highest utilization across all provider types and of 

being prescribed medication. This is not unexpected because other 

comorbidities could lead to more severe outcomes for asthma. Moreover, 

these patients are most challenging to control because of the preexistence of 

other conditions that could more severely affect a patient than asthma.

• The clustering of the patients reflects different utilization behaviors. While 

the majority of the patients utilize the system disparately (Cluster 1), others 

have a high rate of medication uptake with little interaction with the system 

(Cluster 2), with some utilization of the physician office (Cluster 3) or with 

high utilization of the physician’s office and high rate of medication uptake 

(Cluster 4). There is also a small percentage of patients (3%) who are higher 

utilizers of the system, not necessarily with a high medication uptake, that 

visit the emergency department or hospital at a higher rate with a 0.2–0.5 

probability of being followed by a hospitalization for most subpopulations.

• The probability of follow-up visits once a patient visits the emergency 

department or has a hospitalization is lower than 0.2 for most subpopulations 

that are not severely ill across all clusters except for some subpopulations in 

Clusters 1 and 5. Additionally, except for healthy patients, the probability of 

filling a prescription for an asthma controller medication after an emergency 

department visit or hospitalization is lower than 0.5 except for Clusters 2 and 

4.

• Most of all visits to a healthcare provider, including a hospital, a clinic or 

physician, result in a medication prescription being filled, with a high 

probability of a refill.
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• There are some variations across different urbanicity levels although the 

variations are higher between states. GA, LA and MN have a larger 

percentage of patients who utilize the system disparately (Cluster 1) while NC 

and TN have a higher percentage of patients who are high utilizers of 

medication (Cluster 4).
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Figure 1: 
Baseline rate of events per year for white, chronically ill patients, aged 4–5, who are not 

eligible for Medicaid for blindness/disability or foster care, and without a prior observed 

event.
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Figure 2: 
Baseline rate multipliers for each subpopulation
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Figure 3: 
Provider networks inferred from the proportional hazards coefficients. The following rules 

were used in setting the grayscale of the coefficients and nodes: < 0.2 → not shown/white, 

[0.2, 0.5) →gray, and ≥ 0.5 → black.
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Figure 4: 
Proportions of patients belonging to each cluster stratified by state and urbanicity
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Figure 5: 
Plot of the change in probability for Clusters 1–5 with travel time ranging from 0–10.
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Algorithm 1. 
M Step for PH and MN Coefficients
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