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Abstract

Purpose of review—The use of quantitative analysis in single photon emission computed 

tomography (SPECT) and positron emission tomography (PET) has become an integral part of 

current clinical practice and plays a crucial role in the detection and risk stratification of coronary 

artery disease. Emerging technologies, new protocols, and new quantification methods have had a 

significant impact on the diagnostic performance and prognostic value of nuclear cardiology 

imaging, while reducing the need for clinician oversight. In this review, we aim to describe recent 

advances in automation and quantitative analysis in nuclear cardiology.

Recent Findings—Recent publications have shown that fully automatic processing is feasible, 

limiting human input to specific cases where aberrancies are detected by the quality control 

software. Furthermore, there is evidence indicating that fully quantitative analysis of myocardial 

perfusion imaging is feasible and can achieve at least similar diagnostic accuracy as visual 

interpretation by an expert clinician. In addition, the use of fully automated quantification in 

combination with machine learning algorithms can provide incremental diagnostic and prognostic 

value over the traditional method of expert visual interpretation.

Summary—Emerging technologies in nuclear cardiology focus on automation and the use of 

artificial intelligence as part of the interpretation process. This review highlights the benefits and 

limitations of these applications, and outlines future directions in the field.
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INTRODUCTION

Single photon emission computed tomography (SPECT) myocardial perfusion imaging 

(MPI) remains the most widely used non-invasive technique for the detection and risk 

assessment of patients with coronary artery disease (CAD).(1) To that end, positron emission 

tomography (PET) applications in MPI and coronary flow assessment are emerging as 

techniques with even greater diagnostic and prognostic value. (2–4) One of the most 

important advantages of these methods over other modalities, such as echocardiography and 

magnetic resonance imaging, is the ability to obtain objective and reproducible quantitative 

data.(5, 6) Most of the published literature on diagnostic and prognostic value of SPECT and 

PET has been based on semi-quantitative assessment of perfusion. However, recent advances 

in software development and emerging artificial intelligence technologies have indicated that 

it is feasible to obtain at least similar diagnostic accuracy with better reproducibility when 

fully automated, quantitative assessment is used.(7, 8) This approach has the potential to 

improve the efficiency of image interpretation while reducing the inter- and intra-observer 

variability.(9) Current analysis methods are employed in left ventricle segmentation, motion 

correction, myocardial perfusion, myocardial blood flow assessment, left ventricular 

function quantification, and evaluation of mechanical dyssynchrony. Emerging technologies 

include the use of artificial intelligence in machine learning and deep learning algorithms.

ADVANCES IN IMAGE PROCESSING

Left Ventricular Segmentation

Adequate segmentation of the left ventricle (LV) with proper delineation of LV contours is 

required for a reliable quantitative assessment of MPI. Myocardial segmentation can be 

particularly difficult in certain circumstances, such as increased extra-cardiac radiotracer 

uptake, large and severe perfusion defects, and the presence of significant image noise. 

These scenarios can lead to errors in LV contour selection and incorrect definition of the 

mitral valve plane, in which cases, operator supervision is required to verify and correct 

myocardial segmentation.

In recent years, different software tools that optimize the automatic segmentation process 

have been developed. One of these methods checks the automatically obtained contours to 

derive two quality control (QC) scores which define the probability of segmentation failure. 

One of these scores detects mask-failure (incorrect LV shape) known as “shape flag” and the 

other one is related to inadequate position of mitral valve known as “valve-plane flag”. In a 

recent study, this QC software method produced similar results to expert readers in 

identification of segmentation failures and significantly decreased the amount of operator 

oversight required for image processing. (10)

Another method that has been recently used is “same patient processing”, in which 

segmentation mask location is obtained from multiple data sets (with the higher quality ones 

given higher weight) and applied to cases flagged as possible failure by the algorithm. This 

processing method improves contour detection by avoiding inter-study inconsistencies. 

However, this can only be applicable in patients with multiple MPI studies. (11) Most 

recently, machine learning algorithms have been included in the process of automatic valve 
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plane localization through the use of support vector machines (Figure 1), demonstrating that 

the machine learning model was as effective as expert operator in localizing the valve plane 

and had equivalent diagnostic accuracy.(12) These findings suggest that full automation in 

the segmentation process is feasible with the use of QC software in combination with 

machine learning algorithms. These methods will lead to higher efficiency in data processing 

and better allocation of human resources.

Motion Correction

Motion during image acquisition could be related to the cardiac contraction, respiration, or 

patient movement. Motion from any source can produce significant image degradation. 

Patient motion correction algorithms have been applied for years. More recently, different 

methods have been proposed to decrease the effect of cardiac and respiratory motion.

To avoid the degrading effects of cardiac motion and myocardial wall thickening on 

perfusion images, analysis of end-diastolic images only has been suggested, particularly in 

patients with small hearts.(13) However, routine use of only end-diastolic frames is not 

practical due to reduced count statistics. More recently, a new “motion-frozen” technique 

has been developed. This method employs the detection and tracking of the endocardial as 

well as epicardial borders of the left ventricle in all the gated frames using a contour 

extraction algorithm; then, image warping is applied to the gated data to match the diastolic 

position, and finally these warped images are added, creating motion frozen perfusion 

images (Figure 2). (14)

Recent studies have demonstrated the feasibility and applicability of respiratory motion 

correction in conventional dual-head cameras as well as in the newer CZT SPECT systems. 

These applications have been shown to decrease the incidence of false positive perfusion 

defects.(15–17) A more recent study evaluated the utility of dual cardiac and respiratory 

motion correction in PET imaging (Figure 3) using the novel radiotracer F-18 flurpiridaz, 

demonstrating an improved image resolution, contrast, and contrast-to-noise ratio (Figure 

4 ).(18)

TRENDS IN QUANTITATIVE PARAMETER ASSESSMENT

Perfusion Quantification

Traditionally, interpretation of perfusion images has been performed through visual 

assessment by clinicians. However, this approach is time consuming and suffers from 

significant inter- and intra-observer variability and consequently limited reproducibility.(5, 

8) Multiple software packages have been developed by different vendors to generate 

automatic myocardial perfusion quantification.(19–22) All these software packages have a 

similar approach to evaluating myocardial perfusion, which begins with the generation of 

polar maps on a standard American Heart Association 17 segment model. (23) Polar maps 

then undergo count normalization to allow an objective comparison with a normal database. 

After normalization, the rest and stress polar maps are compared with the respective normal 

dataset (consisting of 20–50 scans of normal subjects) and differences in relative segmental 

counts are quantified to determine the extent and severity of hypoperfusion. Standard 
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segmental AHA scores can be obtained in 17 segments, can be reported in as partial scores 

in specific vascular territories or for the entire myocardium by deriving the commonly used 

parameters of summed rest score (SRS), summed stress score (SSS) and summed difference 

score (SDS).(24)

Similarly, using the polar maps, a different method of perfusion quantification, based on 

pixel-by-pixel assessment and known as total perfusion deficit (TPD) has been developed. 

This method combines both extent and severity of hypoperfusion. Automated comparison of 

TPD at rest and stress quantifies the amount of myocardial ischemia by generating the 

ischemic TPD. This quantification method has been shown to be superior to visual 

assessment of perfusion images.(25)

In recent years, there has been a growing body of literature evaluating the diagnostic and 

prognostic utility of fully automated MPI interpretation. Arsanjani et al. demonstrated that 

this approach, using TPD as the main parameter of perfusion abnormality, was at least 

equivalent to expert readers in identifying significant coronary artery lesions, irrespective of 

the use of attenuation correction (Figure 5).(7) Furthermore, the prognostic value of a fully 

quantitative assessment of perfusion images integrated with clinical variables, using a 

machine learning algorithm, was shown to be comparable or superior to expert interpretation 

in predicting early coronary revascularization.(26) More recently, in a large cohort of 

patients with automatically processed MPI studies, fully quantitative stress TPD was shown 

to be an independent predictor of future myocardial infarctions, regardless of the use of 

attenuation correction (Figure 6).(27, 28)

Ischemic Change

Another area where fully quantitative perfusion analysis has demonstrated its clinical utility 

is in the longitudinal assessment of ischemic change. This assessment has been traditionally 

done by expert visual side-by-side comparison; however, small but clinically relevant 

changes over time can be difficult to identify visually due to the subjectivity and limited 

intra- and inter-observer reproducibility. A fully quantitative approach can eliminate the 

subjectivity and precisely identify small but relevant temporal changes. Furthermore, the use 

of automated software in the longitudinal evaluation of ischemic burden can be further 

refined by analyzing serial stress/rest studies together in pairs, eliminating errors associated 

with multiple comparisons to normal limits and variations in contour placements. Moreover, 

this method has the advantage of not requiring a normal limit database.(29, 30)

Quantitative comparison has been shown to achieve a higher level of reproducibility and 

repeatability.(5, 8) A clear example is the nuclear sub-study of the COURAGE trial, in 

which a significant difference in the fully quantitative TPD measurement of ischemic burden 

was noted in the percutaneous coronary revascularization group versus the medical therapy 

only group (TPD: −2.7% vs. −0.5%, P <0.0001).(31) Such a difference would have been 

more difficult to demonstrate if visual interpretation of perfusion images had been used. 

Importantly, in the COURAGE trial, this small difference in TPD translated into a difference 

in patients’ outcomes.(31)
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Myocardial Blood Flow and Early Ejection Fraction

Myocardial blood flow (MBF) and myocardial flow reserve (MFR) are important variables 

which have been shown to add relevant information to perfusion imaging. Absolute MBF 

has been noted to add value in the diagnosis of multivessel coronary artery disease as well as 

predict the extent of disease more accurately than traditional perfusion assessment.(32, 33) 

Similarly, MFR has demonstrated increased prognostic value compared to relative perfusion 

defects alone, allowing for more accurate risk stratification.(34–36) Traditionally, MBF 

evaluation has been achieved using PET imaging. However, recent publications have 

established the feasibility of MBF assessment using dynamic SPECT acquisition.(37) 

Furthermore, emerging data suggests that the accuracy of SPECT and PET to determine 

MBF values may be comparable.(38, 39) Considering that the vast majority (95%) of 

nuclear MPI studies in the United States are performed using SPECT, these recent studies 

open the possibility of a much wider use of MBF and MFR, even with the understanding 

that there are still significant limitations to overcome.

An additional benefit of dynamic image acquisition for the purpose of measuring MBF and 

MFR, is the possibility of measuring LV ejection fraction during stress, as is the case with 

PET imaging. True stress LV ejection fraction allows for determination of LV ejection 

fraction reserve. The predictive value of this parameter has been validated when obtained by 

PET imaging.(3, 40) Preliminary data suggests that obtaining accurate measurements of both 

myocardial flow data and LV ejection fraction reserve is not only feasible but also may be 

used to improve the predictive value of SPECT imaging.(41)

Left Ventricular Mechanical Dyssynchrony

The use of phase analysis for the detection of mechanical dyssynchrony of the left ventricle 

has gained attention in recent years. In this method, a count distribution is derived from each 

of the LV short-axis datasets; then, a Fourier transformation is applied to the count variation 

over time for each voxel, generating a 3D phase distribution describing the onset of 

mechanical contraction over the entire cycle (Figure 7).(42, 43) The two commonly used 

parameters are phase standard deviation and histogram bandwidth; these measures have been 

validated against other imaging modalities demonstrating excellent reproducibility and 

repeatability. (44, 45) Furthermore, in addition to demonstrating utility in the selection of 

patients for resynchronization therapy, fully automated quantification of left ventricular 

mechanical dyssynchrony has recently been shown to provide important prognostic 

information in different populations including patients with heart failure, CAD and end-

stage renal disease.(46, 47)

Calcium Scores from CT Attenuation Correction Scans in PET/SPECT

Coronary artery calcium score (CACS) has been shown to add diagnostic and prognostic 

value to MPI, and is an independent predictor of future cardiovascular events.(48) The 

increased use of combined SPECT and PET MPI with low-dose CT for attenuation 

correction has raised interest in the possibility of deriving complimentary information 

regarding CACS from the CT component of the exam. Recent studies have investigated the 

feasibility of identifying and quantifying CACS from the CT attenuation correction images, 

in an attempt to avoid a dedicated CT scan for CACS, thus, reducing radiation exposure, 
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cost, and time. (49–51) Most studies have focused on manual or visual estimation of CACS 

from attenuation correction scan. However, in a recent study, Isgum et al. evaluated a fully 

automated method to determine CACS from CT attenuation correction images obtained 

during PET/CT acquisition, indicating that this approach may allow routine cardiovascular 

risk assessment from the CT attenuation correction component of perfusion studies. (52)

MACHINE LEARNING AND DEEP LEARNING ALGORITHMS

The use of computer algorithms to identify patterns in multivariable datasets through 

machine learning has gained popularity in many different imaging fields including nuclear 

cardiology.(12, 26, 53, 54) These algorithms usually create a model from test inputs; based 

on these data, these algorithms render decisions or predictions. In MPI, a large number of 

parameters including stress data, clinical parameters, and imaging variables can be used by 

machine learning algorithms to make predictions of relevant outcomes, such as the presence 

of obstructive CAD or risk of major adverse cardiac events. Recent studies have evaluated 

the applicability and impact of machine learning algorithms into daily clinical practice. In a 

retrospective analysis of over ten thousand patients undergoing coronary computed 

tomographic angiography (CCTA) from the CONFIRM registry, Motwani et al. evaluated 

the feasibility and accuracy of machine learning to predict 5-year mortality compared to 

standard CCTA parameters and found that machine learning combining clinical and CCTA 

parameters was able to predict all-cause mortality at 5 years significantly better than CCTA 

parameters alone. (53)

Furthermore, specifically using SPECT MPI, the same group evaluated the predictive value 

of combining clinical information with MPI data using machine learning in a cohort of 2,619 

patients. The authors considered a total of 28 clinical, 17 stress and 25 imaging variables and 

found that machine learning combining these variables had a high predictive accuracy for 3-

year risk of adverse cardiac events and was superior to existing visual or automated 

perfusion assessment in isolation (Figure 8).(55) More complex algorithms involving deep 

machine learning are currently under investigation.

Currently, the reported results for cardiovascular death prediction use a simple probabilistic 

model of the event presence or absence within the average patient follow-up time, since 

adjustments for the time-to event cannot be readily applied with most existing machine 

learning tools. However, clinicians are often more interested in evaluating the relative risk of 

a disease or event between patients with different covariates rather than absolute chance of 

event. More sophisticated analysis adjusting for the time to event have not yet been reported 

with machine learning in cardiovascular imaging. There are new tools becoming available 

for such analysis and future machine learning methods may compare these methods to 

traditional analysis. This adjustment for the time-to-event would play a lesser role in data 

with relatively uniform and shorter follow-up time for the prognostic prediction.(56, 57)

Deep machine learning has recently been shown very effective in many imaging 

applications. Deep learning or convolutional neural network learning uses more layers than 

traditional approaches, making it better suited for large and complex datasets, and in 

particular for direct image analysis. Standard machine learning methods typically require 
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pre-specified measurements and feature extraction (for example quantitative parameters such 

as perfusion defect size or, amount of ischemia, coronary plaque size etc.) to characterize the 

information from the raw imaging data. In contrast, deep learning can absorb the 

measurement engineering directly into a step that learns the required measurements while 

processing the data in its natural form.

Preliminary studies of deep learning application directly to medical image data indicate that 

these approaches may be able to outperform existing quantitative image processing methods. 

Recently, the use of deep convolutional neural networks (CNN) for automatic prediction of 

coronary stenosis using raw polar black-out maps plus TPD was compared to standard 

quantitative analysis (TPD) only, in a preliminary report at the ASNC 2017 congress. The 

authors demonstrated that CNN using deep learning, raw polar maps and TPD improved 

prediction of obstructive coronary stenosis. (58) In summary, the use of machine learning 

technology is rapidly evolving in nuclear cardiac imaging allowing more accurate diagnosis 

and risk prediction. Nonetheless, its routine application in daily clinical practice is still yet to 

come.

CONCLUSIONS

Novel applications in MPI have been facilitated by the rapid development of newer 

technologies. These applications demonstrate potential as important tools to diagnose and 

better risk stratify patients with known or suspected CAD. Full automation of MPI 

processing and interpretation has become more widespread with the use of new technologies 

and machine learning algorithms. Nonetheless, additional data validating these applications 

in multicenter uncontrolled clinical settings are still required before wide scale 

implementation in routine clinical use. The impact of these tools on decision making, 

downstream utilization of resources, cost, and value-based practice needs to be investigated.

Acknowledgments

This work was supported in part by grant R01HL089765 from the National Heart, Lung, and Blood Institute/
National Institutes of Health (NHLBI/NIH) (PI: Piotr Slomka). The views expressed in this manuscript are those of 
the authors and do not necessarily reflect the official views of the National Heart, Lung, and Blood Institute, the 
National Institutes of Health, or the Department of Health and Human Services.

ABBREVIATIONS

CAD coronary artery disease

LV left ventricular

MPI myocardial perfusion imaging

PET positron emission tomography

SPECT single photon emission computed tomography

TPD total perfusion deficit

Gomez et al. Page 7

Curr Cardiovasc Imaging Rep. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Salerno M, Beller GA. Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging. 
2009; 2(5):412–24. [PubMed: 19808630] 

2. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol. 
2004; 11(2):171–85. [PubMed: 15052249] 

3. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left 
ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the 
extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med. 2007; 48(3):
349–58. [PubMed: 17332611] 

4. Yoshinaga K, Chow BJ, Williams K, Chen L, deKemp RA, Garrard L, et al. What is the prognostic 
value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am 
Coll Cardiol. 2006; 48(5):1029–39. [PubMed: 16949498] 

5. Berman DS, Kang X, Gransar H, Gerlach J, Friedman JD, Hayes SW, et al. Quantitative assessment 
of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible 
than expert visual analysis. J Nucl Cardiol. 2009; 16(1):45–53. [PubMed: 19152128] 

6. Iskandrian AE, Garcia EV, Faber T, Mahmarian JJ. Automated assessment of serial SPECT 
myocardial perfusion images. J Nucl Cardiol. 2009; 16(1):6–9. [PubMed: 19152123] 

7. Arsanjani R, Xu Y, Hayes SW, Fish M, Lemley M Jr, Gerlach J, et al. Comparison of fully 
automated computer analysis and visual scoring for detection of coronary artery disease from 
myocardial perfusion SPECT in a large population. J Nucl Med. 2013; 54(2):221–8. [PubMed: 
23315665] 

8. Xu Y, Hayes S, Ali I, Ruddy TD, Wells RG, Berman DS, et al. Automatic and visual reproducibility 
of perfusion and function measures for myocardial perfusion SPECT. J Nucl Cardiol. 2010; 17(6):
1050–7. [PubMed: 20963537] 

9. Slomka P, Xu Y, Berman D, Germano G. Quantitative analysis of perfusion studies: strengths and 
pitfalls. J Nucl Cardiol. 2012; 19(2):338–46. [PubMed: 22302181] 

10. Xu Y, Kavanagh P, Fish M, Gerlach J, Ramesh A, Lemley M, et al. Automated quality control for 
segmentation of myocardial perfusion SPECT. J Nucl Med. 2009; 50(9):1418–26. [PubMed: 
19690019] 

11*. Germano G, Kavanagh PB, Fish MB, Lemley MH, Xu Y, Berman DS, et al. “Same-Patient 
Processing” for multiple cardiac SPECT studies. 1. Improving LV segmentation accuracy. J Nucl 
Cardiol. 2016; 23(6):1435–41. [PubMed: 27743294] 

12*. Betancur J, Rubeaux M, Fuchs TA, Otaki Y, Arnson Y, Slipczuk L, et al. Automatic Valve Plane 
Localization in Myocardial Perfusion SPECT/CT by Machine Learning: Anatomic and Clinical 
Validation. J Nucl Med. 2017; 58(6):961–7. [PubMed: 27811121] 

13. Taillefer R, DePuey EG, Udelson JE, Beller GA, Benjamin C, Gagnon A. Comparison between the 
end-diastolic images and the summed images of gated 99mTc-sestamibi SPECT perfusion study in 
detection of coronary artery disease in women. J Nucl Cardiol. 1999; 6(2):169–76. [PubMed: 
10327101] 

14. Slomka PJ, Nishina H, Berman DS, Kang X, Akincioglu C, Friedman JD, et al. “Motion-frozen” 
display and quantification of myocardial perfusion. J Nucl Med. 2004; 45(7):1128–34. [PubMed: 
15235058] 

15. Qi W, Yang Y, Wernick MN, Pretorius PH, King MA. Limited-angle effect compensation for 
respiratory binned cardiac SPECT. Med Phys. 2016; 43(1):443. [PubMed: 26745937] 

16*. Daou D, Sabbah R, Coaguila C, Boulahdour H. Applicability of data-driven respiratory motion 
correction to CZT SPECT myocardial perfusion imaging in the clinical setting: The birth of an 
old wish. J Nucl Cardiol. 2017; 24(4):1451–3. [PubMed: 27538570] 

17. Daou D, Sabbah R, Coaguila C, Boulahdour H. Feasibility of data-driven cardiac respiratory 
motion correction of myocardial perfusion CZT SPECT: A pilot study. J Nucl Cardiol. 2016

18*. Slomka PJ, Rubeaux M, Le Meunier L, Dey D, Lazewatsky JL, Pan T, et al. Dual-Gated Motion-
Frozen Cardiac PET with Flurpiridaz F 18. J Nucl Med. 2015; 56(12):1876–81. [PubMed: 
26405171] 

Gomez et al. Page 8

Curr Cardiovasc Imaging Rep. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Liu YH. Quantification of nuclear cardiac images: the Yale approach. J Nucl Cardiol. 2007; 14(4):
483–91. [PubMed: 17679055] 

20. Garcia EV, Faber TL, Cooke CD, Folks RD, Chen J, Santana C. The increasing role of 
quantification in clinical nuclear cardiology: the Emory approach. J Nucl Cardiol. 2007; 14(4):
420–32. [PubMed: 17679051] 

21. Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: the Michigan method for quantitative 
nuclear cardiology. J Nucl Cardiol. 2007; 14(4):455–65. [PubMed: 17679053] 

22. Germano G, Kavanagh PB, Slomka PJ, Van Kriekinge SD, Pollard G, Berman DS. Quantitation in 
gated perfusion SPECT imaging: the Cedars-Sinai approach. J Nucl Cardiol. 2007; 14(4):433–54. 
[PubMed: 17679052] 

23. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized 
myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for 
healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical 
Cardiology of the American Heart Association. Circulation. 2002; 105(4):539–42. [PubMed: 
11815441] 

24. Hendel RC, Budoff MJ, Cardella JF, Chambers CE, Dent JM, Fitzgerald DM, et al. 
ACC/AHA/ACR/ASE/ASNC/HRS/NASCI/RSNA/SAIP/SCAI/SCCT/SCMR/SIR 2008 Key Data 
Elements and Definitions for Cardiac Imaging A Report of the American College of Cardiology/
American Heart Association Task Force on Clinical Data Standards (Writing Committee to 
Develop Clinical Data Standards for Cardiac Imaging). J Am Coll Cardiol. 2009; 53(1):91–124. 
[PubMed: 19118731] 

25. Slomka PJ, Nishina H, Berman DS, Akincioglu C, Abidov A, Friedman JD, et al. Automated 
quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol. 
2005; 12(1):66–77. [PubMed: 15682367] 

26*. Arsanjani R, Dey D, Khachatryan T, Shalev A, Hayes SW, Fish M, et al. Prediction of 
revascularization after myocardial perfusion SPECT by machine learning in a large population. J 
Nucl Cardiol. 2015; 22(5):877–84. [PubMed: 25480110] 

27*. Motwani M, Leslie WD, Goertzen AL, Otaki Y, Germano G, Berman DS, et al. Fully automated 
analysis of attenuation-corrected SPECT for the long-term prediction of acute myocardial 
infarction. J Nucl Cardiol. 2017; doi: 10.1007/s12350-017-0840-0

28. Sanghani RM, Doukky R. Fully automated analysis of perfusion data: The rise of the machines. J 
Nucl Cardiol. 2017

29. Slomka PJ, Nishina H, Berman DS, Kang X, Friedman JD, Hayes SW, et al. Automatic 
quantification of myocardial perfusion stress-rest change: a new measure of ischemia. J Nucl Med. 
2004; 45(2):183–91. [PubMed: 14960634] 

30. Slomka P, Hung GU, Germano G, Berman DS. Novel SPECT Technologies and Approaches in 
Cardiac Imaging. Cardiovasc Innov Appl. 2016; 2(1):31–46. [PubMed: 29034066] 

31. Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical 
therapy with or without percutaneous coronary intervention to reduce ischemic burden: results 
from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation 
(COURAGE) trial nuclear substudy. Circulation. 2008; 117(10):1283–91. [PubMed: 18268144] 

32. Fiechter M, Gebhard C, Ghadri JR, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Myocardial 
perfusion imaging with 13N-ammonia PET is a strong predictor for outcome. Int J Cardiol. 2013; 
167(3):1023–6. [PubMed: 22475847] 

33. Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron 
emission tomography measurement of adenosine-stimulated absolute myocardial blood flow 
versus relative myocardial tracer content for physiological assessment of coronary artery stenosis 
severity and location. JACC Cardiovasc Imaging. 2009; 2(6):751–8. [PubMed: 19520347] 

34. Ziadi MC, Dekemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, et al. Impaired myocardial 
flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in 
patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011; 58(7):740–8. [PubMed: 
21816311] 

Gomez et al. Page 9

Curr Cardiovasc Imaging Rep. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic 
value of 13N-ammonia myocardial perfusion positron emission tomography added value of 
coronary flow reserve. J Am Coll Cardiol. 2009; 54(2):150–6. [PubMed: 19573732] 

36. Fukushima K, Javadi MS, Higuchi T, Lautamaki R, Merrill J, Nekolla SG, et al. Prediction of 
short-term cardiovascular events using quantification of global myocardial flow reserve in patients 
referred for clinical 82Rb PET perfusion imaging. J Nucl Med. 2011; 52(5):726–32. [PubMed: 
21498538] 

37. Klein R, Hung GU, Wu TC, Huang WS, Li D, deKemp RA, et al. Feasibility and operator 
variability of myocardial blood flow and reserve measurements with (9)(9)mTc-sestamibi 
quantitative dynamic SPECT/CT imaging. J Nucl Cardiol. 2014; 21(6):1075–88. [PubMed: 
25280761] 

38*. Hsu B, Hu LH, Yang BH, Chen LC, Chen YK, Ting CH, et al. SPECT myocardial blood flow 
quantitation toward clinical use: a comparative study with 13N-Ammonia PET myocardial blood 
flow quantitation. Eur J Nucl Med Mol Imaging. 2017; 44(1):117–28. [PubMed: 27585576] 

39. Slomka PJ, Berman DS, Germano G. Absolute myocardial blood flow quantification with 
SPECT/CT: is it possible? J Nucl Cardiol. 2014; 21(6):1092–5. [PubMed: 25294433] 

40. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk 
assessment with noninvasive measures of coronary flow reserve. Circulation. 2011; 124(20):2215–
24. [PubMed: 22007073] 

41. Brodov Y, Fish M, Rubeaux M, Otaki Y, Gransar H, Lemley M, et al. Quantitation of left 
ventricular ejection fraction reserve from early gated regadenoson stress Tc-99m high-efficiency 
SPECT. J Nucl Cardiol. 2016; 23(6):1251–61. [PubMed: 27387521] 

42. Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, et al. Onset of left ventricular 
mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion 
SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical 
dyssynchrony. J Nucl Cardiol. 2005; 12(6):687–95. [PubMed: 16344231] 

43. Atchley AE, Kitzman DW, Whellan DJ, Iskandrian AE, Ellis SJ, Pagnanelli RA, et al. Myocardial 
perfusion, function, and dyssynchrony in patients with heart failure: baseline results from the 
single-photon emission computed tomography imaging ancillary study of the Heart Failure and A 
Controlled Trial Investigating Outcomes of Exercise TraiNing (HF-ACTION) Trial. Am Heart J. 
2009; 158(4 Suppl):S53–63. [PubMed: 19782789] 

44. Chen J, Garcia EV, Bax JJ, Iskandrian AE, Borges-Neto S, Soman P. SPECT myocardial perfusion 
imaging for the assessment of left ventricular mechanical dyssynchrony. J Nucl Cardiol. 2011; 
18(4):685–94. [PubMed: 21567281] 

45. Trimble MA, Velazquez EJ, Adams GL, Honeycutt EF, Pagnanelli RA, Barnhart HX, et al. 
Repeatability and reproducibility of phase analysis of gated single-photon emission computed 
tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med 
Commun. 2008; 29(4):374–81. [PubMed: 18317303] 

46. Aggarwal H, AlJaroudi WA, Mehta S, Mannon R, Heo J, Iskandrian AE, et al. The prognostic 
value of left ventricular mechanical dyssynchrony using gated myocardial perfusion imaging in 
patients with end-stage renal disease. J Nucl Cardiol. 2014; 21(4):739–46. [PubMed: 24858622] 

47. Pazhenkottil AP, Buechel RR, Husmann L, Nkoulou RN, Wolfrum M, Ghadri JR, et al. Long-term 
prognostic value of left ventricular dyssynchrony assessment by phase analysis from myocardial 
perfusion imaging. Heart. 2011; 97(1):33–7. [PubMed: 20962345] 

48. Brodov Y, Gransar H, Dey D, Shalev A, Germano G, Friedman JD, et al. Combined Quantitative 
Assessment of Myocardial Perfusion and Coronary Artery Calcium Score by Hybrid 82Rb 
PET/CT Improves Detection of Coronary Artery Disease. J Nucl Med. 2015; 56(9):1345–50. 
[PubMed: 26159582] 

49. Engbers EM, Timmer JR, Mouden M, Jager PL, Knollema S, Oostdijk AH, et al. Visual estimation 
of coronary calcium on computed tomography for attenuation correction. J Cardiovasc Comput 
Tomogr. 2016; 10(4):327–9. [PubMed: 27089854] 

50. Mylonas I, Kazmi M, Fuller L, deKemp RA, Yam Y, Chen L, et al. Measuring coronary artery 
calcification using positron emission tomography-computed tomography attenuation correction 
images. Eur Heart J Cardiovasc Imaging. 2012; 13(9):786–92. [PubMed: 22511812] 

Gomez et al. Page 10

Curr Cardiovasc Imaging Rep. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



51. Einstein AJ, Johnson LL, Bokhari S, Son J, Thompson RC, Bateman TM, et al. Agreement of 
visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in 
hybrid PET/CT and SPECT/CT with standard Agatston score. J Am Coll Cardiol. 2010; 56(23):
1914–21. [PubMed: 21109114] 

52*. Isgum I, de Vos BD, Wolterink JM, Dey D, Berman DS, Rubeaux M, et al. Automatic 
determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT. J Nucl 
Cardiol. 2017

53*. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine 
learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 
5-year multicentre prospective registry analysis. Eur Heart J. 2017; 38(7):500–7. [PubMed: 
27252451] 

54. Kang D, Dey D, Slomka PJ, Arsanjani R, Nakazato R, Ko H, et al. Structured learning algorithm 
for detection of nonobstructive and obstructive coronary plaque lesions from computed 
tomography angiography. J Med Imaging (Bellingham). 2015; 2(1):014003. [PubMed: 26158081] 

55*. Betancur J, Otaki Y, Motwani M, Fish M, Lemley M, Dey D, et al. Prognostic value of combined 
clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc 
Imaging. 2017 In Press. 

56. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann Appl Stat. 
2008; 2(3):841–60.

57. Chen Y, Jia Z, Mercola D, Xie X. A gradient boosting algorithm for survival analysis via direct 
optimization of concordance index. Comput Math Methods Med. 2013; 2013:873595. [PubMed: 
24348746] 

58*. Betancur J, Commandeur T, sharir T, Fish M, Ruddy TD, Kaufmann PA, et al. Analysis of raw 
polar maps from myocardial perfusion SPECT by gender-adjusted deep learning improves 
automatic prediction of obstructive coronary disease. Journal of Nuclear Cardiology. 2017; 24(4):
1492–3. Abstract 330-05. 

Gomez et al. Page 11

Curr Cardiovasc Imaging Rep. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Automatic Valve Plane Localization by Machine Learning
Two-class support vector machine (SVM) model trained from valve plane positioning 

verified by 2 experts is used to estimate the most likely valve plane localization in left 

ventricle. Reproduced from research originally published in JNM. Betancur J, Rubeaux M, 
Fuchs TA, Otaki Y, Arnson Y, Slipczuk L, et al. Automatic Valve Plane Localization in 
Myocardial Perfusion SPECT/CT by Machine Learning: Anatomic and Clinical Validation. J 
Nucl Med. 2017;58(6):961–7. © by the Society of Nuclear Medicine and Molecular 
Imaging, Inc. With permission.
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Figure 2. The Principle of Motion-Frozen Technique
Three-dimensional left ventricular contours are identified on images from different cardiac 

phases. End-systolic (ES – white) and end-diastolic (ED – red) frames are shown on the left. 

3D phase to phase motion vectors are derived by sampling epi- and endocardial surfaces. 3D 

motion vectors are shown on the right, superimposed on epicardial surface of the left 

ventricle. A non-linear image warping is then applied to warp all image phases to fit the ED 

phase. Reproduced from Motwani M, Berman DS, Germano G, Slomka P. Automated 
Quantitative Nuclear Cardiology Methods. Cardiol Clin. 2016;34(1):47–57. With 
permission.
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Figure 3. Dual Respiratory/Cardiac Motion Frozen Technique
Cardiac motion frozen processing separately in each respiratory phase (contoured red bins) 

to end-diastole phase (solid red bins). 2. Respiratory motion frozen processing of cardiac 

end-diastole bins (contoured blue bins) to end-inspiration bin (solid blue bin). 3. Final 

motion-free image in end-diastole/end-inspiration (solid green bin). ECG = 

electrocardiography. Reproduced from research originally published in JNM. Slomka PJ, 
Rubeaux M, Le Meunier L, Dey D, Lazewatsky JL, Pan T, et al. Dual-Gated Motion-Frozen 
Cardiac PET with Flurpiridaz F 18. J Nucl Med. 2015;56(12):1876–81. © by the Society of 
Nuclear Medicine and Molecular Imaging, Inc. With permission.
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Figure 4. Representative Case of Dual Cardiac and Respiratory Motion Frozen MPI
Short, vertical, and horizontal axis views of adenosine stress flurpiridaz F-18 images 

acquired in dual (cardiac and respiratory) motion frozen (MF) mode. One phase = 1 cardiac 

gate in end inspiration; cardiac MF no respiratory gating; ORG, optimal respiratory gating; 

dual MF = dual (cardiac/respiratory) MF. Reproduced from research originally published in 
JNM. Slomka PJ, Rubeaux M, Le Meunier L, Dey D, Lazewatsky JL, Pan T, et al. Dual-
Gated Motion-Frozen Cardiac PET with Flurpiridaz F 18. J Nucl Med. 2015;56(12):1876–
81. © by the Society of Nuclear Medicine and Molecular Imaging, Inc. With permission.
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Figure 5. Diagnostic Performance of Automated versus Visual Interpretation
Receiver operator characteristic curves comparing diagnostic performance between reads on 

per-patient basis (2 readers for detection of >70% diameter coronary stenosis). V, visual 

analysis; NC, non-attenuation corrected images; AC, attenuation corrected. Reproduced 
from research originally published in JNM. Arsanjani R, Xu Y, Hayes SW, Fish M, Lemley 
M, Jr., Gerlach J, et al. Comparison of fully automated computer analysis and visual scoring 
for detection of coronary artery disease from myocardial perfusion SPECT in a large 
population. J Nucl Med. 2013;54(2):221–8. © by the Society of Nuclear Medicine and 
Molecular Imaging, Inc. With permission.
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Figure 6. Survival Free of Acute Myocardial Infarction According to Automated Quantitative 
Analysis
Kaplan-Meier plots of survival free of acute myocardial infarction according to automated 

sTPD (A; B) and automated iTPD (C;D) for both non-AC and AC data. There was a 

stepwise increase in risk of acute myocardial infarction by sTPD quartile and by iTPD 

quartile for both AC and non-AC data (P<0.0001 for hazard ratio comparison across 

quartiles). Median (Lower - upper quartile) thresholds were: 5.4 (1.9 – 14.5) for non-AC 

sTPD; 7.1 (2.8 – 15.8) for AC sTPD; 1.0 (0 – 4.5) for non-AC iTPD; and 4.3 (2.0 – 7.8) for 

AC iTPD. AMI, acute myocardial infarction; sTPD, stress total perfusion deficit; iTPD, 

ischemic perfusion deficit; AC, attenuation corrected. Adapted from Motwani M, Leslie 
WD, Goertzen AL, Otaki Y, Germano G, Berman DS, et al. Fully automated analysis of 
attenuation-corrected SPECT for the long-term prediction of acute myocardial infarction. J 
Nucl Cardiol. 2017. DOI: 10.1007/s12350-017-0840-0. With permission
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Figure 7. Representative Phase Histograms of Left Ventricular Mechanical Contraction
A) Normal phase histogram: The X-axis represents the timing of one cardiac cycle (R-R 

interval) normalized in degrees. The Y-axis represents the percent of myocardium 

demonstrating the onset of mechanical contraction during any particular phase of the cardiac 

cycle. The color maps have 256 levels with the minimum level corresponding to black and 

the maximum level corresponding to white. B) Abnormal phase histogram showing a wide 

bandwidth indicating a delayed onset of myocardial contraction representing significant left 

ventricular mechanical dyssynchrony. Reproduced from Atchley AE, Kitzman DW, Whellan 
DJ, Iskandrian AE, Ellis SJ, Pagnanelli RA, et al. Myocardial perfusion, function, and 
dyssynchrony in patients with heart failure: baseline results from the single-photon emission 
computed tomography imaging ancillary study of the Heart Failure and A Controlled Trial 
Investigating Outcomes of Exercise TraiNing (HF-ACTION) Trial. Am Heart J. 2009;158(4 
Suppl):S53–63. With permission.
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Figure 8. Machine Learning for 3 Year MACE Prediction
Machine learning combining all variables using variable selection and LogitBoost algorithm 

(ML-combined) had a significantly higher AUC for MACE prediction than machine learning 

combining imaging data variables only (ML-imaging), and standard image analysis. ML, 

machine learning; AUC, area under the curve; MACE, major adverse cardiac events; ROC, 

receiver-operating characteristic; TPD, total perfusion deficit. *P < 0.01, **P < 0.001, in 

AUC comparison by Delong test. Reproduced from Betancur J, Otaki Y, Motwani M, Fish 
M, Lemley M, Dey D, et al. Prognostic value of combined clinical and myocardial perfusion 
imaging data using machine learning. JACC Cardiovasc Imaging. 2017;In Press. With 
permission.
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