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Abstract

Spectral computed tomography (CT) has been a promising technique in research and clinic 

because of its ability to produce improved energy resolution images with narrow energy bins. 

However, the narrow energy bin image is often affected by serious quantum noise because of the 

limited number of photons used in the corresponding energy bin. To address this problem, we 

present an iterative reconstruction method for spectral CT using nonlocal low-rank and sparse 

matrix decomposition (NLSMD), which exploits the self-similarity of patches that are collected in 

multi-energy images. Specifically, each set of patches can be decomposed into a low-rank 

component and a sparse component, and the low-rank component represents the stationary 

background over different energy bins, while the sparse component represents the rest of different 

spectral features in individual energy bins. Subsequently, an effective alternating optimization 

algorithm was developed to minimize the associated objective function. To validate and evaluate 

the NLSMD method, qualitative and quantitative studies were conducted by using simulated and 

real spectral CT data. Experimental results show that the NLSMD method improves spectral CT 

images in terms of noise reduction, artifacts suppression and resolution preservation.
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1. Introduction

Spectral CT, or multi-energy CT, has attracted increasing attention in recent years because of 

its ability in discriminating different materials. Dual energy CT is a simple realization of 

spectral CT that differentiates material by using two distinct beam energies, including a dual 

x-ray source (Graser et al., 2009), a fast kVp switching (Zou and Silver, 2008), a dual layer 

detector (Kim et al., 2015a), etc. Another approach to realize spectral CT is to use a photon 

counting detector (PCD) with energy discrimination capability (Taguchi and Iwanczyk, 

2013). In spectral CT with PCD, polychromatic x-ray photons can be sorted and counted in 

different energy bins according to the preset energy thresholds (Taguchi and Iwanczyk, 
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2013). As a result, multiple projection data with different energy information can be 

generated from a single scan without additional exposure. The selection of energy bins has a 

critical impact on noise and energy resolution of the multi-energy images (Leng et al., 
2011). Generally, the x-ray spectrum need to be divided into more energy bins for higher 

energy resolution. However, increasing the number of energy bins will lead to few available 

photons in each energy bin. According to the Poisson noise modeling, this implies higher 

noise level in the projection data and the image quality of spectral CT reconstructed using 

the filter back-projection (FBP) algorithm will be greatly degraded (Leng et al., 2011; Yu et 
al., 2016; Zeng et al., 2016b; Zhang et al., 2016; Li et al., 2015; Niu et al., 2016). Therefore, 

noise reduction in narrow energy bin image is very important for PCD-based spectral CT 

reconstruction.

Over the years, the sparsity-regularized methods (e.g., total variation (TV) (Sidky and Pan, 

2008; Chen et al., 2008; Liu et al., 2012; Tian et al., 2011; Zhang et al., 2017a), structure 

tensor TV (Lefkimmiatis et al., 2015), total generalized variation (Niu et al., 2014), and tight 

frame (Jia et al., 2011)) have been widely explored and have been instrumental for CT 

reconstruction. In each energy bin, the image can be independently reconstructed using these 

sparsity-regularized methods. For example, a statistical interior tomography method was 

employed to reconstruct each energy bin image with TV regularization (Xu et al., 2012a). A 

structure tensor TV regularization was incorporated into a penalized weighted least-squares 

(PWLS) principle for spectral CT reconstruction (Zeng et al., 2016a). An iterative 

reconstruction method based on tight frame was proposed for spectral breast CT using fewer 

projections while achieving greater image quality (Zhao et al., 2013). However, all the 

aforementioned methods only consider each energy bin individually and do not use the 

correlation between different energy bins. The images in different energy bins are highly 

correlated, as all projection data are obtained from the same object. The low-rank prior 

information is an effective constraint to exploit the correlation between different energy bins, 

and the nuclear norm regularization can be introduced to improve the performance of 

spectral CT reconstruction. Semerci et al. proposed a tensor-based nuclear norm 

regularization for spectral CT reconstruction, which models the multiple sets of images in 

different energy bin as a three-way tensor (Semerci et al., 2014). Rigie and La Rivière 

presented an iterative reconstruction method for jointly reconstructing spectral CT using the 

total nuclear variation, which couples different energy bins by encouraging the gradient of 

the corresponding images to point in one direction (Rigie and La Riviere, 2015). Gao et al. 
developed a PRISM (prior rank, intensity and sparsity model) method for spectral CT 

reconstruction, which utilizes the low-rank and sparse matrix decomposition to exploit the 

correlation between the different energy bin images (Gao et al., 2011). Li et al. extended 

multi-energy images from a matrix form to a tensor form to improve the PRISM method (Li 

et al., 2014). In addition, Kim et al. developed a patch-based low-rank regularization for 

sparse-view spectral CT reconstruction (Kim et al., 2015b).

Recently, nonlocal self-similarity using similar patches has been exploited to reduce noise in 

image reconstruction (Xu et al., 2012b; Zhao et al., 2012; Zhang et al., 2017b; Bian et al., 
2013; Ma et al., 2012b; Zhang et al., 2014b; Zhang et al., 2015; Zhang et al., 2014a; Kim et 
al., 2015b). For example, a patch-based dictionary learning was incorporated into a 

statistical iterative reconstruction for low-dose CT (Xu et al., 2012b). Later, a patch-based 
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dual-dictionary learning was proposed for spectral CT reconstruction, in which two 

dictionaries from different images was used (Zhao et al., 2012). More recently, the 

dictionary learning was extended from a vector form to a tensor form for spectral CT 

reconstruction (Zhang et al., 2017b). In addition, Zhang et al. explored the nonlocal mean-

based regularization under PWLS principle for low-dose CT reconstruction (Zhang et al., 
2014b; Zhang et al., 2015). Incorporating a high quality image into reconstruction, Zhang et 
al. proposed a prior image induced nonlocal regularization for statistical iterative 

reconstruction (Zhang et al., 2014a).

To incorporate the correlation in multi-energy images, we propose a nonlocal low-rank and 

sparse matrix decomposition (NLSMD) for spectral CT reconstruction. We group the similar 

patches in multi-energy images to form a matrix, then decompose it into the summation of a 

sparse matrix and a low-rank matrix. The sparse matrix represents the different intensity 

feature that is sparse under a sparse transform, while the low-rank matrix represents the rest 

of stationary background that is low-rank. The novelty of the NLSMD method is threefold. 

First, the proposed method works as a local low-rank and sparse matrix decomposition for 

similar patches, and reduce noise artifacts while preserving detail features such as edge and 

structure information. Second, there are usually less than two materials inside the small 

patches, which means that a relative low-rank structure. Third, an alternating minimization 

algorithm was adopted to solve the associated objection function. Qualitative and 

quantitative evaluation conducted with simulated and real PCD data clearly demonstrated 

that NLSMD method outperforms the existing robust principal component analysis (RPCA) 

method in terms of noise reduction, artifacts suppression and resolution preservation.

The remaining part of this paper is organized as follows. Section 2 develops the NLSMD 

based spectral CT reconstruction method. We also describe the experimental setup and 

quantitative evaluation metrics. Section 3 reports simulated and real PCD data experiments 

and results. Finally, section 4 gives the discussion and conclusion.

2. Materials and methods

2.1. Spectral CT imaging

In spectral CT with PCD, several projection data were acquired from polychromatic x-ray 

spectrum. The projection of each energy bin can be approximately formulated as a series of 

linear equations as follows:

yk = Axk, k = 1, 2, ⋯, K (1)

where A is the system or projection matrix with the size of M × N, yk=(yk,1, yk,2, ⋯ yk,M) is 

the projection data of the k th energy bin, xk= (xk,1, xk,2, ⋯, xk,N) denotes the k th energy bin 

image, and K is the number of energy bins. We define data sets of Y = y1
T, y2

T, ⋯, yK
T  and 

X = x1
T, x2

T, ⋯, xK
T , where T denotes the transpose operator. Using above notations, the Eq. 

(1) can be rewritten as Y = AX.
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To solve the problem (1), the cost function with a regularization/prior term R(X) is used as 

follows:

min
X ≥ 0

1
2 Y − AX F

2 + βR(X) (2)

where ‖·‖F denotes the Frobenious norm, β > 0 is a smoothing or penalty parameter that 

controls the relative contribution from the data fidelity term and regularization/prior term.

2.2. NLSMD for spectral CT reconstruction

In this study, we use the nonlocal low-rank and sparse matrix decomposition to exploit the 

self-similarity of the multi-energy images. The similar small patches are collected at the 

same position in multi-energy images, and are grouped into one matrix

V p = Rpx1, Rpx2, ⋯, Rp, xK ≜ Rp(X) (3)

where {Rpxk}(p= 1, 2, ⋯, P;k= 1,2, ⋯, K) is a patch extraction operator which is defined as 

a mapping form ℝN to ℝB, p and k are the indexes for a specific p patch in the kth energy 

bin image, B is the number of pixels within a patch of size B × B, and P is the number of 

patches. Since these patches have similar structures, thus they should locate in a low-

dimension subspace. Motived by this observation, we model the matrix Vp as: Vp = Lp + Sp, 

where Lp denotes a low-rank matrix, Sp denotes a sparse matrix. The matrices Lp and Sp can 

be recovered by solving the following minimization problem:

min
Lp, Sp

Lp ∗ + λ TS(Sp) 1 s . t . V p = Lp + Sp (4)

where ‖·‖* is the nuclear norm, ‖·‖1 is the ℓ1 norm, λ > 0 is a penalty parameter that balances 

the nuclear norm term and the ℓ1 norm term, TS denotes some proper transform so that the 

matrix Sp becomes more sparser. Instead of minimizing the constrained optimization 

problem (4), we rewrite it as the following unconstrained minimization problem:

min
Lp, Sp

1
2μ V p − Lp − Sp F

2 + Lp ∗ + λ TS(Sp) 1 . (5)

Here TS can be any sparsifying transform, for simplicity, TS is chosen to be discrete gradient 

transform.

Using the above NLSMD, we propose the following objective function for spectral CT 

reconstruction:
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1
2 Y − AX F

2 + ∑
p = 1

P 1
2μ V p − Lp − Sp F

2 + Lp ∗ + λ ∇Sp 1 (6)

where ∇ represents the discrete gradient transform, and the value of λ is set as suggested by 

(Candès et al., 2011):

λ = 1/ max (n1, n2) (7)

where n1 and n2 are the number of rows and columns of the matrix Vp.

2.3. Optimization algorithm

To solve the proposed objective function in Eq. (6), we alternatively minimize X, Lp and Sp 

as follows:

V p
(n) = Rp(X(n)) (8)

Lp
(n + 1), Sp

(n + 1) = arg min
L1, ⋯, LP, S1, ⋯, SP

∑
p = 1

P 1
2μ V p

(n) − Lp − Sp F
2 + Lp ∗ + λ ∇Sp 1 (9)

X(n + 1) = arg min
X

1
2 Y − AX F

2 + ∑
p = 1

P 1
2μ V p − Lp

(n + 1) − Sp
(n + 1)

F
2 . (10)

2.3.1. Minimization with respect to (Lp, Sp)—Note that the sub-problem (9) is 

independent to the data fidelity term, and it can be minimized patch by patch. Therefore, for 

a given V p
(n), the Eq. (9) can be solved by alternatively minimizing Lp and Sp, respectively. 

For a fixed Sp, Lp can be solved by minimizing

min
Lp

1
2μ V p

(n) − Sp − Lp F
2 + Lp ∗ . (11)

The solution of (11) is given by the singular value thresholding algorithm (Cai et al., 2010):

Lp
(n + 1) = ∑i max (σi − μ, 0)uivi

T (12)

Niu et al. Page 5

Inverse Probl. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where σi, ui, and vi are the singular values and vectors of V p
(n) − Sp. For a fixed Lp, Sp is 

solved by minimizing

min
Sp

1
2μ V p

(n) − Lp − Sp F
2 + λ ∇Sp 1 . (13)

The solution of (13) can be obtained using the Chambolle projection algorithm (Chambolle, 

2004). In the scheme of Chambolle algorithm, we solve the following constrained 

minimization problem:

min
Wi, j ≤ 1

V p
(n) − Lp − α divW

F
2

(14)

where Wi,j is the dual variable at the (i, j) th location, W is the concatenation of all Wi,j, α = 
λμ, and div is divergence operator. When the minimum W* of the problem (14) is obtained, 

the solution of (13) can be directly obtained as follows:

Sp
(n + 1) = V p

(n) − Lp − α divW∗ . (15)

The iterative scheme for the W* is given as follows:

W i, j
l + 1 =

W i, j
l + τ ∇(divW l − V p

(n)/α − Lp
(n)/α)

i, j

1 + τ ∇(divW l − V p
(n)/α − Lp

(n)/α)
i, j

(16)

where W i, j
l  is the lth iteration, τ > 0 is the step size used in the Chambolle projection 

algorithm. For each outer iteration, the number of Chambolle projection algorithm was fixed 

to 20.

2.3.2. Minimization with respect to X—Note that each patch is voxel-shifted from a 

previous patch, and each voxel in the multi-energy images is overlapped B times for the 

patch grouping. Hence, the inverse transform from the patch to the image domain can be 

formulated as X = (1/B)∑p = 1
P V p. With the definition 

X(n + 1) = (1/B)∑p = 1
P (Lp

(n + 1) + Sp
(n + 1)), we have

1
2 ∑

p = 1

P ∂ V p − Lp
(n + 1) − Sp

(n + 1)
F
2

∂V p
= ∑

p = 1

P
(V p − Lp

(n + 1) − Sp
(n + 1)) = B(X − X(n + 1)) . (17)
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Consequently, using (17), the solution of (10) can be derived from the following optimal 

condition

μAT AX + BX = μATY + BX(n + 1) . (18)

Here, the conjugate gradient (CG) algorithm is used to solve the linear system. Since the 

linear system is symmetric positive definite, CG algorithm can get an exact solution after a 

few iterations, e.g. 5 iterations.

2.4. Experimental data

2.4.1. Simulation data—Five monochromatic images (60, 70, 80, 90, and 100 keV) 

acquired by a GE Discovery CT750 CT scanner were used to simulate the multi-energy 

projection data. The x-ray spectrum of 140 kV (Fig. 1) was generated by the TASMICS 

method (Hernandez and Boone, 2014). Poisson noise is superimposed to the measurement 

by assuming 1.0 × 105 photons emitted from the x-ray source. The emitted photons were 

distributed to each energy bin with the weights calculated from the x-ray spectrum in Fig. 1. 

Using the previously developed simulation method in (Zeng et al., 2016b), the projection 

data of five energy bins were obtained in a fan-beam CT geometry. The distance from the x-

ray source to the detector arrays was 949 mm and the distance from the detector arrays to the 

rotation center is 408 mm. The number of detector elements is 888 and the space of each 

detector bin is 1.0 mm. To demonstrate sparse-view spectral CT reconstruction, only 88 

projection views of each energy bin were collected over a full scan range.

2.4.2. Ex vivo data—A lamb chop was scanned by MARS spectral CT with the 

Medipix3RX PCD. The distance from the source to the center of rotation is 131.8 mm and 

the distance from the detector arrays to the center of rotation is 48 mm. The x-ray tube was 

set at 50 kV with the current of 120 μA using four energy thresholds (15, 20, 25, and 30 

keV). More details about this dataset can be found in (Aamir et al., 2014). To demonstrate 

sparse-view reconstruction, we extracted 163 projection views from the full-view projection 

data in each energy bin.

2.5. Performance evaluation

2.5.1. Image reconstruction accuracy—Relative root mean square error (RRMSE) 

was employed to evaluate image reconstruction accuracy. The definition of RRMSE is as 

follows:

RRMSE =
∑n = 1

N x(n) − xref(n) 2

∑n = 1
N xref(n) 2 (19)

where x(n) and nref (n) represent the voxel value of reconstructed and reference images at 

pixel n, respectively, N is the total number of voxels in the image.
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2.5.2. Image similarity metric—The structural similarity (SSIM) (Zhou et al., 2004) is 

used to evaluate the similarity between the reconstructed and reference images. Given a 

region of interest (ROI), the mean, variance and covariance in the ROI is defined as follows:

x = 1
Q ∑

q = 1

Q
x(q), σ2 = 1

Q − 1 ∑
q = 1

Q
(x(q) − x)2 (20)

xref = 1
Q ∑

q = 1

Q
xref(q), σref

2 = 1
Q − 1 ∑

q = 1

Q
(xref(q) − xref)

2 (21)

Cov(x, xref) = 1
Q − 1 ∑

q = 1

Q
(x(q) − x)(xref(q) − xref) (22)

where x(q) denotes the voxel value of the reconstructed image and xref(q) denotes the voxel 

value of the reference image in the ROI, Q is the total number of voxels in the ROI. The 

SSIM can be calculated as follows:

SSIM =
2xxref(2Cov(x, xref) + c2)

x2 + xref
2 + c1 σ2 + σref

2 + c2
. (23)

where c1and c2 are two constants.

2.5.3. Noise-resolution tradeoff—To evaluate the resolution of the reconstructed image, 

the noise-resolution tradeoff was studied. The resolution is analyzed using the edge spread 

function (ESF) along the red line in Fig. 4(a). We assume that the standard deviation (SD) of 

the broadening Gaussian kernel is δ, and the ESF can be characterized by an error function 

(ER) parametrized by δ. The parameter δ is calculated by fitting the profile along the red 

line to an ER, and the full-width at half-maximum of the broadening Gaussian function is 

denoted as 2.35δ, that is, the resolution of the reconstructed image. The noise of the 

reconstructed image is quantified by the SD of a uniform region of size 20 × 20 in the 

background region as indicated by the pink square in Fig. 4(a). By changing the penalty 

parameter μ for NLSMD method, we obtained the noise-resolution tradeoff curve.

2.5.4. Material decomposition—In the image-domain material decomposition, the linear 

attenuation coefficient of a CT image can be approximately expressed as the linear 

combination of two basis materials (Szczykutowicz and Chen, 2010), that is,
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xH
xL

=
x1H x2H
x1L x2L

f 1
f 2

(24)

where xH/L denotes the high/low energy bin image, xij is the linear attenuation coefficient of 

basis material i (i= 1 or 2) at the energy bin j (j= H or L), and f1 and f2 represent the material 

decomposition images. Using the basis materials and the images at high (100 keV) and low 

(60 keV) energy bins, the material decomposition images can be obtained as follows:

f 1
f 2

= 1
x1Hx2L − x2Hx1L

x2L −x2H
−x1L x1H

xH
xL

. (25)

2.5.5. Comparison method—The performance of the NLSMD method was validated 

and evaluated by comparing it with the robust principal component analysis (RPCA) 

method. The RPCA method for spectral CT reconstruction can be formulated as follows:

min(XL, XS)
1

2μ A(XL + XS) − Y 2
2 + XL ∗ + λ ∇XS 1 (26)

where XL and XS are the low-rank component and sparse component of X, respectively, μ > 

0 is penalty parameter, λ is set as similar as Eq. (7). The parameter μ of the RPCA method 

was chosen manually to perform the best reconstruction result with minimal RRMSE value.

3. Results

3.1. Simulation study

3.1.1. Selection of the parameters in NLSMD method—There are two parameters to 

be determined in NLSMD method, that is, the patch size and penalty parameter μ. The 

accuracy of NLSMD reconstruction at 70 keV energy bin is quantified by the RRMSE 

shown on Fig. 2. For a fixed patch size, the RRMSE of the reconstructed image with various 

penalty parameters is shown in Fig. 3(a). It was found that the value of RRMSE initially 

decreases with the increase of μ, and thus, the reconstructed image retains some noise and 

artifacts. However, when μ > 10−5 the RRMSE is increased, the reconstructed image is 

overly smooth, which causes a loss in edges and fine structures. Thus, the optimal penalty 

parameter μ with the minimal RRMSE was used in this study. Meantime, for a fixed penalty 

parameter μ, the RRMSE of the reconstructed results for different patch sizes is shown in 

Fig. 3(b). Indeed, the value of RRMSE is lowest for the patch of size 6 × 6. In practice, the 

optimal patch size may change with reconstruction dimensions, but the patch size is set to 6 

× 6 for consistency and fairness.

3.1.2. Visual evaluation—The spectral CT images at 70 and 90 keV energy bins are 

shown in Figs. 4 and 5, respectively. The phantom images are depicted in Figs. 4(a) and 5(a). 
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The FBP results reconstructed from 88 projection views are illustrated in Figs. 4(b) and 5(b). 

The RPCA results reconstructed from 88 projection views are shown in Figs. 4(c) and 5(c). 

The NLSMD results reconstructed from 88 projection views are displayed in Figs. 4(d) and 

5(d). It can be observed that the FPB images contain serious noise and streak artifacts 

because of few available photons and insufficient angular sampling in narrow energy bin. 

The noise and streak artifacts have been effectively reduced in RPCA results, however, some 

streak artifacts still exist around the skull. We confirmed that the presented NLSMD method 

achieves the best performance in terms of artifacts reduction and structure preservation as 

indicated by the arrow in Figs. 4 and 5. The profiles of the RPCA and NLSMD results 

correspond to the blue line in Fig. 4(a) was plotted in Fig. 6. The reconstructed images using 

RPCA method produce underestimated values whereas NLSMD method can produce better 

matching results.

3.1.3. SSIM study—To further display the difference between the RPCA and NLSMD 

results, the zoomed ROI (indicated by the white rectangular in figure 4(a)) is shown in Fig. 

7. To quantitative evaluate the performance of NLSMD and RPCA methods with a degree of 

uncertainty, the experiments were repeated for 10 different instantiations of noise. The 

corresponding mean and standard deviation of SSIM at each energy bin are illustrated in 

Fig. 8. There is a 6.14% increase in average SSIM measurement for NLSMD method 

compared with RPCA method. Moreover, the standard deviations of SSIM measurement 

from NLSMD method is lower than that from RPCA method, suggesting the robustness of 

the NLSMD method. We confirmed that the structures in the image reconstructed by 

NLSMD method are produced with better appearance with less detail loss, especially for the 

small size structures.

3.1.4. Noise-resolution tradeoff—The noise-resolution tradeoff curves are displayed for 

70 and 90 keV energy bin images in Fig. 9. The noise level of NLSMD results is lower than 

that of RPCA results with matched spatial resolution. At the 1.8 mm spatial resolution level 

in two noise-resolution tradeoff curves, the average noise level of NLSMD results is 8.8% 

lower than that of RPCA results. The results confirm the expected advantages using the 

nonlocal self-similarity in the spectral CT reconstruction.

3.1.5. Material decomposition—In spectral CT, not only is the image quality important, 

but accurate material decomposition is also important. The material decomposition images 

produced using phantom, FPB, RPCA and NLSMD images are shown in Fig. 10. Figs. 10(a) 

and (e) display the tissue and bone images decomposed using phantom images. Figs. 10(b) 

and (f) show the tissue and bone images decomposed using FBP images. Figs. 10(c) and (g) 

represent the tissue and bone images decomposed using RPCA images. Figs. 10(d) and (h) 

depict the tissue and bone images decomposed using NLSMD images. We can observe that 

FBP results contain severe noise and artifacts. Although the RPCA results contain less noise 

and artifacts, many pixels from the boundary of tissue are wrongly categorized as containing 

bone. Comparing with the material decomposition images from phantom, NLSMD method 

produces more accurate material decomposition images. To better compare the NLSMD and 

RPCA methods for material decomposition, the corresponding material decomposition 

difference images are displayed in Fig. 11. Fig. 11(a) shows the difference image between 
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Fig. 10(a) and Fig. 10(c). Fig. 11(b) displays the difference image between Fig. 10(a) and 

Fig. 10(d). Fig. 11(c) represents the difference image between Fig. 10(e) and Fig. 10(g). Fig. 

11(d) depicts the difference image between Fig. 10(e) and Fig. 10(h). It can be observed that 

the difference images between NLSMD results and phantom are smaller than that obtained 

from RPCA results.

The zoomed details of material decomposition images are depicted in Fig. 12. It can be 

clearly observed from the left column in Fig. 12 that many pixels at the tissue gap between 

bones are incorrectly clarified as containing bone using RPCA method, as indicated by the 

red arrow. Furthermore, while a few pixels at the nasal cavity are wrongly decomposed as 

bone using RPCA method, the bone image produced using NLSDM method is correct, as 

indicated by the red arrow. To quantitatively validate the presented NLSMD method for 

material decomposition, the SSIM values of FBP, RPCA, and NLSMD results corresponding 

to Fig. 12 are shown in Fig. 13. These results illustrate that the NLSMD method outperforms 

RPCA method by incorporating the nonlocal self-similarity between multi-energy images.

3.2. Ex vivo data study

The images reconstructed from a real PCD data from MARS scanner are displayed in Fig. 

14. The first and second rows of Fig. 14 are the images at 20 keV and 25 keV energy bins, 

respectively. The FBP images reconstructed from 163-view projection are displayed in Figs. 

14(a) and (e). The FBP images reconstructed from full-view projection are represented in 

Figs. 14(b) and (f). We can observe that high levels of noise exists in FBP images 

reconstructed from both sparse-view and full-view projection data. The RPCA images 

reconstructed from 163-view projection are displayed in Figs. 14(c) and (g). The NLSMD 

images reconstructed from 163-view projection are displayed in Figs. 14(d) and (h). We can 

observe that the noise in both RPCA and NLSMD results was effectively removed. To 

further evaluate the performance of RPCA and NLSMD methods, eight ROIs were selected 

in the meat (the red squares in Fig. 14 (d)) and fat (the blue squares in Fig. 14 (d)) areas to 

calculate the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for each 

reconstruction results. The SNR and CNR were calculated as follows:

SNR = Mean value of meat ROIs
Average SD of meat ROIs (27)

CNR = Mean of meat ROIs ‐ Mean of fat ROIs
Average SD of meat ROIs . (28)

The averaged SNR and CNR at four energy bins of RPCA and NLSMD results are depicted 

in Fig. 15. From this figure, we observe that both the SNR and CNR value of NLSMD 

results are higher than that of RPCA results.
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4. Discussion and conclusion

In this paper, we proposed an iterative NLSDM method to improve image quality of spectral 

CT with narrow energy bins. In contrast to existing image reconstruction methods, the 

proposed NLSMD method utilizes nonlocal low-rank and sparse matrix decomposition to 

reconstruct spectral CT by explicitly exploring both the sparsity and correlation of different 

energy bin images. Thus, severe noise and artifacts caused by a limited number of photons 

and projections in narrow energy bin images can be efficiently suppressed, as depicted by 

simulated and real spectral datasets studies.

In the simulation study, the proposed NLSMD method outperforms the RPCA method for 

sparse-view spectral CT reconstruction in terms of reconstruction accuracy and noise-

resolution trade-off. For visual inspection, the NLSMD method can produce satisfactory 

results for spectral CT with narrow energy bins. The profile analysis depicted the further 

improvement in detailed edge and structure information preservation. The SSIM and noise-

resolution tradeoff studies shown that the gain by the use of the NLSMD reconstruction is 

noticeable compared with RPCA reconstruction. In addition, the NLSMD method was 

validated and evaluated by the real PCD data from MARS scanner (Aamir et al., 2014). The 

results show that NLSMD method outperforms the RPCA method on both visual inspection 

and quantitative evaluation.

Parameter selection plays an important role in iterative CT image reconstruction. There are 

four main tuning parameters for NLSDM method: the iteration number of the Chambolle 

projection algorithm, the iteration number of CG algorithm, μ and patch size. In this work, 

the iteration numbers of the Chambolle projection algorithm and CG algorithm were set to 

be identical for the simulated and real spectral datasets studies, and satisfactory results were 

obtained, which shown that these two parameters are suitable for spectral CT reconstruction 

with narrow energy bins. We validated the performance of NLSMD method by calculating 

the RRMSE with respect to different values of μ and patch size, as shown in Fig. 2. For the 

penalty parameter μ, it is the key for the success of NLSMD reconstruction. In the 

simulation study, we manually selected the parameter μ to obtain the best image quality of 

spectral CT, as indicated in Fig. 3(a). The optimal value of μ is case dependent, which is 

determined by the noise level of projection data. Regarding the selection of patch size, we 

studied the results reconstructed using different patch sizes with a fixed value of μ, and we 

found that the optimal patch size is 6 × 6, as displayed in Fig. 3(b). In this work, we choose 

the same penalty parameter for each patch to make it easy to implement in practice. If we 

minimize Lp and Sp patch by patch with different penalty parameters, the performance of the 

proposed algorithm could be further improved. However, this will make the optimization 

problem much more complicated as how to choose an optimal penalty parameter is still an 

open problem in iterative reconstructions. More effort should be focused on finding an 

automatic or semi-automatic technique to determine the optimal parameters, which will be 

an interesting topic in future research.

There are some potential limitations of the proposed NLSMD method in its current version. 

First, NLSMD method does not take noise statistical properties into account, which plays an 

important role in CT reconstruction with limited number of photons (Wang et al., 2006; 
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Zhang et al., 2014a; Niu et al., 2017; Wang et al., 2009; Ma et al., 2012a). Incorporating 

statistical noise modeling into NLSMD reconstruction for spectral CT with narrow energy 

bins is one of our future research. Second, computational time is a challenge in the practical 

application of NLSMD method. Nevertheless, the NLSMD reconstruction can be sped up by 

using dedicated multi-core CPU and graphics processing unit (GPU) hardware in an efficient 

and parallel fashion (Xu and Mueller, 2005; Li et al., 2005).
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Figure 1. 
X-ray spectrum of 140 kV with five energy bins.
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Figure 2. 
Surface plot of the RRMSE as a function of the patch size and the penalty parameter μ.
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Figure 3. 
Image reconstruction accuracy of NLSMD method with respect to different penalty 

parameters and patch sizes: (a) penalty parameter; (b) patch size.
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Figure 4. 
Spectral CT images at 70 keV energy bin: (a) Phantom; (b) FBP image reconstructed from 

88 projection views; (c) RPCA image reconstructed from 88 projection views; (d) NLSMD 

image reconstruction from 88 projection view.
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Figure 5. 
Spectral CT images at 90 keV energy bin: (a) Phantom; (b) FBP image reconstructed from 

88 projection views; (c) RPCA image reconstructed from 88 projection views; (d) NLSMD 

image reconstruction from 88 projection view.
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Figure 6. 
Horizon profiles that correspond to the blue line in Fig. 4(a) of reconstructed images of 

PRCA and NLSMD methods at different energy bins: (a) 70 keV energy bin; (b) 90 keV 

energy bin.
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Figure 7. 
Zoomed-in views of the ROI in images at 70 keV energy bin (first row) and 90 keV energy 

bin (second row).
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Figure 8. 
SSIM curves of RPCA and NLSMD results versus the different energy bins. Error bars 

denote standard deviations of the SSIM distribution for each energy bin with different 

instantiations of noise.
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Figure 9. 
Noise-resolution tradeoff curves of RPCA and NLSMD methods at two different energy 

levels: (a) 70 keV energy bin; (b) 90 keV energy bin.
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Figure 10. 
Material decomposition images from different results. Images (a) and (e) display the 

decomposed tissue and bone images from phantom, respectively. Images (b) and (f) display 

the decomposed tissue and bone images from FBP results, respectively. Images (c) and (g) 

display the decomposed tissue and bone images from RPCA results, respectively. Images (d) 

and (h) display the decomposed tissue and bone images from NLSMD results, respectively.
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Figure 11. 
Material decomposition difference images of RPCA and NLSMD results with respect to the 

phantom. Images (a) and (c) represent the tissue and bone material difference images 

between RPCA results and phantom, respectively. Images (b) and (d) represent the tissue 

and bone material difference images between NLSMD results and phantom, respectively.
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Figure 12. 
Zoomed details of the decomposed tissue (left column) and bone (right column) images. 

From top to bottom are phantom, FBP, RPCA, and NLSMD results.
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Figure 13. 
SSIM of the zoomed details of FBP, RPCA, and NLSMD results in Fig. 12.
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Figure 14. 
Spectral CT images at 20 keV (first row) and 25 keV (second row) energy bins. Figures (a) 

and (e) is the FBP results reconstructed from the 163-view projection. Figures (b) and (f) is 

the FBP results reconstructed from the full-view projection. Figures (c) and (g) is the RPCA 

results reconstructed from the 163-view projection. Figures (d) and (h) represent the results 

reconstructed by NLSMD method from the 163-view projection.
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Figure 15. 
SNR and CNR values of the RPCA and NLSMD results.
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