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Abstract

Learning in the Reproducing Kernel Hilbert Space (RKHS) has been widely used in many 

scientific disciplines. Because a RKHS can be very flexible, it is common to impose a 

regularization term in the optimization to prevent overfitting. Standard RKHS learning employs 

the squared norm penalty of the learning function. Despite its success, many challenges remain. In 

particular, one cannot directly use the squared norm penalty for variable selection or data 

extraction. Therefore, when there exists noise predictors, or the underlying function has a sparse 

representation in the dual space, the performance of standard RKHS learning can be suboptimal. 

In the literature, work has been proposed on how to perform variable selection in RKHS learning, 

and a data sparsity constraint was considered for data extraction. However, how to learn in a 

RKHS with both variable selection and data extraction simultaneously remains unclear. In this 

paper, we propose a unified RKHS learning method, namely, DOuble Sparsity Kernel (DOSK) 

learning, to overcome this challenge. An efficient algorithm is provided to solve the corresponding 

optimization problem. We prove that under certain conditions, our new method can asymptotically 

achieve variable selection consistency. Simulated and real data results demonstrate that DOSK is 

highly competitive among existing approaches for RKHS learning.
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1. INTRODUCTION

Recent advances in technology have enabled scientists to collect massive datasets with high 

dimensions. For example, in online movie evaluation systems, the data sets can contain 
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rating information from millions of users on thousands of movies. Extracting knowledge 

from such large data sets poses unprecedented challenges to existing learning techniques. To 

overcome new difficulties in mining big data sets, in the last few decades, many 

methodologies have been proposed in the machine learning literature. In this paper, we focus 

on supervised learning with one response variable. In particular, the learning goal is often to 

train a function using a training data set, such that for new observations, one can use this 

function to predict the unobserved responses. See Hastie et al. [20] for a comprehensive 

review of supervised learning techniques.

For many applications in supervised learning, appropriate variable selection is very 

important to the prediction performance of the estimated function. In particular, for real data 

sets, many predictors do not contain useful information with respect to the response. Hence, 

these redundant predictors should be excluded when we make further prediction. For 

instance, in classification problems, Fan and Lv [15] showed that prediction using all 

variables may behave similarly to random guessing, due to the noise accumulation. How to 

perform variable selection has drawn much attention in the literature. Traditional methods 

for variable selection include forward and backward selections, among others. Recently, 

model fitting using sparse regularization has become very popular in the learning 

framework. The corresponding optimization problems of these techniques are equivalent to 

minimizing objective functions in the loss + penalty form. The loss term measures the 

goodness of fit of the estimated function, and the penalty term aims to select important 

variables in the learning problem, which further controls the complexity of the function 

space to prevent overfitting.

For different learning tasks, one uses different loss functions. For example, in least squares 

regression, one uses the squared error loss, and in standard Support Vector Machines [SVM, 

9], we use the hinge loss. For the penalty term, the choice depends on the corresponding 

functional space. In particular, if the response depends on the predictors linearly, linear 

learning should be used. Otherwise, one can employ various nonlinear learning methods 

such as splines [12] in regression. In this paper, we focus on learning in the Reproducing 

Kernel Hilbert Space [RKHS, 4, 21]. This is a very general setting, and many nonlinear 

learning techniques can be regarded as special cases of RKHS learning. For example, it 

covers penalized linear regression, additive spline models with or without interactions, and 

the entire family of smoothing splines. RKHS learning has been extensively used in the 

literature, and has achieved great successes. See, for example, Schölkopf and Smola [32], 

Shawe-Taylor and Cristianini [33], and Hastie et al. [20].

For linear learning, variable selection with sparse regularization has been extensively 

studied. See, for example, Tibshirani [36], Fan and Li [14], Zou and Hastie [49], Wu et al. 
[42], Zhang [45], Fan and Lv [16], and the references therein. For RKHS learning, however, 

the problem of variable selection has received much less attention. In the literature, Guyon et 
al. [19] suggested an extension of variable selection from linear learning to kernel learning 

using the Recursive Feature Elimination (RFE) approach. Lin and Zhang [25] developed the 

Component Selection and Smoothing (COSSO), and proposed to use the sum of component 

norms as the sparse penalty, instead of the squared norm penalty in standard RKHS learning. 

Zhang et al. [46] proposed a structure selection method that can automatically determine 
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whether the signal for one predictor is linear or nonlinear. Recently, Allen [1] developed an 

interesting framework of variable selection in RKHS learning. In particular, Allen [1] 

imposed a weight on each predictor, and proposed to train the model with a sparse penalty 

on the weight vector. When a fitted weight is zero, the corresponding predictor is regarded as 

unimportant in the learning problem, and is removed from further analysis. Allen [1] 

provided the Kernel Iterative Feature Extraction (KNIFE) algorithm to solve the 

corresponding optimization.

Despite the current progress in variable selection for RKHS learning, many challenges 

remain. First, theoretical properties of sparse penalties in linear learning have been well 

studied in the literature. For example, Fan and Li [14] and Zou [48] proved the oracle 

property of their proposed methods, and Zhao and Yu [47] showed selection consistency for 

LASSO problems. In contrast, theoretical properties of existing variable selection 

approaches for RKHS learning are much less developed. In particular, it is desirable to 

explore conditions under which one can have consistency for kernel variable selection. 

Moreover, Allen [1] proposed to use the standard squared norm penalty on the learning 

function to avoid over-fitting, besides the sparse penalty on the variable weight vector. 

However, as Zhang et al. [44] pointed out, this approach uses all observations to represent 

the fitted function. This can lead to suboptimal prediction performance as the underlying 

function can be well approximated by a data sparse representation in the dual space [see 44, 

and Section 2.2 for more details]. Therefore, it can be beneficial to have a regularization 

method that can automatically select data points for RKHS learning. To circumvent this 

difficulty, Zhang et al. [44] proposed a data sparsity constraint for data extraction. However, 

Zhang et al. [44] did not consider the problem of kernel variable selection, and the data 

sparsity method can have suboptimal performance when there are noise covariates. 

Therefore, it is desirable to design a new method that can perform variable selection and 

data extraction simultaneously.

In this paper, we propose a new DOuble Sparsity Kernel (DOSK) learning method to fill this 

gap. We provide an efficient algorithm to solve the corresponding optimization problem. 

Through numerical examples, we show that our DOSK method can often select useful 

predictors accurately, and the sparsely represented functions can have very good prediction 

performance. Moreover, under some conditions, we prove that our DOSK method can enjoy 

many desirable statistical properties, including variable selection consistency.

The rest of the paper is organized as follows. In Section 2, we briefly introduce standard 

kernel learning methods, and discuss variable selection and data extraction for learning in a 

RKHS. Then, we propose our DOSK method, and develop our algorithm for the 

corresponding optimization problem. We establish some theoretical properties of DOSK, 

such as selection consistency, in Section 3. Simulated and real data examples are used to 

demonstrate the effectiveness of our new method in Section 4. We provide some discussions 

in Section 5. All technical proofs are collected in the appendix.
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2. METHODOLOGY

We first give a brief review of standard kernel learning in Section 2.1. Then we propose our 

DOSK method in Section 2.2. We discuss how to solve the corresponding optimization 

problem in Section 2.3.

2.1 Standard Learning in RKHS

Suppose each observation in the training data set (xi, yi); i = 1,…, n, is obtained from a fixed 

but unknown distribution P(X,Y), where X ∈ ℝp is a vector of predictors, and Y is the 

response. The learning goal is to find f(·) based on the training data set, so that for a new 

observation with only x available, the prediction of Y based on f(x) can be accurate. For 

example, in regression, one often uses f(x) to estimate the response Y, and in binary margin-

based classification where Y ∈ {+1, −1}, one can let sign{f(x)} be the predicted label for Y. 

For many learning problems, the goodness of fit of f can be measured by a loss function 

L{Y, f(X)}. For different learning tasks, one uses different loss functions. For instance, in 

standard regression problems where the goal is to estimate the conditional mean of Y with 

given x, it is common to use the squared error loss L{Y, f(X)} = {Y − f(X)}2. In 

classification problems, one can use the hinge loss L{Y, f(X)} = {1 − Y f(X)}+ for support 

vector machines [SVM, 9], and the deviance loss L{Y, f(X)} = log[1 + exp{−Y f(X)}] for 

logistic regression [24].

The optimization problem of a learning technique typically involves minimizing an objective 

function in the form of loss + penalty. In particular, the objective function can be written as

min
f ∈ ℱ

1
n ∑

i = 1

n
L{yi, f (xi)} + λJ( f ), (1)

where ℱ is the function space for learning. Here the penalty term J(f) regularizes f(·) in 

order to prevent overfitting, and the tuning parameter λ balances L(·,·) and J(f) with the aim 

to achieve a good prediction performance. The choice of the penalty term varies with the 

choice of ℱ. For example, in standard linear regression, one often assumes that the 

conditional mean of Y is a linear function of x, and it is common to use ℱ = {f : f(x) = xTβ 
+ β0; β ∈ ℝp, β0 ∈ ℝ}. There are many popular choices for J(f) in the linear learning 

literature. See, for example, Tibshirani [36], Fan and Li [14], Zou and Hastie [49], Zhang 

[45], among others. If a linear function cannot estimate the response well, one often 

considers a nonlinear function space ℱ. In this paper, we focus on learning in RKHS. For 

more details about RKHS, we refer the readers to [38], Shawe-Taylor and Cristianini [33], 

and the references therein.

For learning in a RKHS ℋ, it is common to use the squared norm penalty J( f ) = f ℋ
2 , 

where f ℋ is the norm of f in ℋ. In other words, (1) can be written as
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min
f ∈ ℋ

1
n ∑

i = 1

n
L{yi, f (xi)} + λ f ℋ

2 . (2)

Kimeldorf and Wahba [21] showed that under mild conditions on L, the estimated function f

from (2) has the f (x) = ∑i = 1
n αiK(xi, x), where K(·,·) is the kernel function associated with 

ℋ, xi’s are the observed predictor vectors in the training data set, and αi’s are the parameters 

to estimate. Moreover, define K to be the gram matrix with the (i, j)th element K(xi, xj); i, j = 

1,…, n, and α = (α1,…,αn)T. One can verify that the penalty f ℋ in (2) can be written as 

αTKα. Consequently, (2) is equivalent to the following problem,

min
α ∈ ℝn

1
n ∑

i = 1

n
L{yi, f (xi)} + λαTKα .

In practice, however, many commonly used kernel spaces, for example the well known 

Gaussian RKHS, do not include offsets or intercepts [29]. This can lead to suboptimal 

results for some learning problems. For instance, in quantile regression, if one is interested 

in estimating the 100τ% quantile of the response with τ close to 0 or 1, a regression function 

without an intercept can have inferior performance. Therefore, in this paper, we consider 

learning in RKHS with intercepts. In particular, in (1), we assume that f = f
∼ + b ∈ ℋ ⊕ ℝ, 

and let J(f) be the squared norm of f
∼

, where f
∼

 is the projection of f onto ℋ. The 

Representer’s Theorem [21] shows that under mild conditions, f (x) = ∑i = 1
n αiK(xi, x) + b , 

where b is the intercept term, and J( f ) = αTKα. Hence, for standard RKHS learning, the 

optimization problem (2) with an intercept in f can be written as

min
α ∈ ℝn, b ∈ ℝ

1
n ∑

i = 1

n
L{yi, ∑

j = 1

n
α jK(xi, x j) + b} + λαTKα . (3)

2.2 Double Sparsity Kernel Learning

Despite the success of standard kernel learning methods, many challenges remain. First, the 

standard squared norm penalty cannot perform automatic variable selection. When the 

underlying signal depends only on a small fraction of the predictors (note that the 

corresponding relationship can be nonlinear), learning with all predictors can lead to 

overfitting, and consequently unsatisfactory results. Second, the standard kernel learning 

method may lead to suboptimal performance when all the data observations are used without 

extraction. In this section, we first discuss some literatures on variable selection in Section 

2.2.1, and data extraction in Section 2.2.2. In Section 2.2.3, we present the proposed method 

which can perform variable selection and data extraction simulatenously.
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2.2.1 Kernel Variable Selection—In the literature, Zhang et al. [46] and Allen [1], 

among others, proposed different methods for variable section in RKHS learning. In 

particular, to perform variable selection in kernel learning, Allen [1] proposed the idea of 

variable weighted kernel learning as follows. For a weight vector w ∈ℝp and any x1, x2 ∈ 
ℝp, we define the variable weighted kernel function Kw(x1, x2) = K(w ⊙ x1, w ⊙ x2), where 

w ⊙ x denotes the element-wise product of vectors. In other words, the jth element of w, wj, 

represents the weight of the jth predictor of X in the kernel function. For any positive 

definite kernel function K, one can verify by Mercer’s Theorem that the newly defined 

variable weighted kernel Kw(·,·) naturally introduces a RKHS over the domain of X. For 

identifiability, we impose the constraint that wj ∈ [0, 1] for all j. In the variable weighted 

kernel function, if wj = 0, then the jth predictor of X has no impact on f or the prediction. 

Therefore, one can impose an L1 type penalty on the vector w to achieve variable selection 

in RKHS learning. In particular, Allen [1] proposed KNIFE for learning in a RKHS with 

variable selection, with the following optimization

min
α, b, w

[1
n ∑

i = 1

n
L{yi, ∑

j = 1

n
Kw(xi, x j)α j + b} + λ1 w 1 + λ2αTKwα], (4)

where λ1 and λ2 are tuning parameters, and w ∈ [0, 1]p. To better illustrate the variable 

weighted kernel function, we consider several commonly used RKHSs as examples. Define 

xik to be the kth element of xi. The linear variable weighted kernel is 

Kw(xi, x j) = ∑k = 1
p wk

2xikx jk, the polynomial variable weighted kernel is 

Kw(xi, x j) = {c + ∑k = 1
p wk

2(xikx jk)}
d
, with c ∈ ℝ and d ∈ℕ, the Gaussian variable weighted 

kernel is Kw(xi, x j) = exp{ − γ∑k = 1
p (wkxik − wkx jk)2} with γ ∈ ℝ+, and the Laplacian 

variable weighted kernel is Kw(xi, x j) = exp( − γ∑k = 1
p |wkxik − wkx jk|) with γ ∈ℝ+.

2.2.2 Kernel Data Extraction—Generally speaking, data extraction can have two 

different goals. One is to improve the model performance. The other is to downsize the data 

volume and reduce computational burden when the dataset is massive. In this paper, the 

major goal of data extraction is to improve model performance. In particular, this paper 

concentrates on data extraction under the kernel learning framework. The motivation of such 

a specific data extraction is based on the following observation. The kernel evaluation 

representation of the regression function is similar to the knot structure in smoothing splines, 

in the sense that each observation in the training data can be regarded as a “knot” in a 

multidimensional space. In particular, when we restrict the RKHS regression to the 

smoothing splines, the kernel evaluation representation is equivalent to the piecewise 

nonlinear function representation. With the regular squared norm penalty, the resulting 

estimator involves all the kernel evaluation functions. In some problems, having too many 

knots may yield suboptimal performance. Hence it is desirable to have a regularization 

method that can select the kernel evaluation functions automatically.
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Recently, Zhang et al. [44] showed that in some cases, using the squared norm penalty ⋅
ℋ

2

for learning in RKHS can lead to suboptimal results. In particular, in a given learning 

problem, let f*(x) be the minimizer of the conditional expected loss. In other words, f*(x) = 

E[L{Y, f(X)} | X = x] for any x (e.g., f*(x) is the conditional mean of Y(x) in standard 

regression). Zhang et al. [44] observed that if f*(x) can be well approximated by a function 

with a sparse representation in the RKHS (in other words, f*(·) can be well approximated by 

∑i = 1
n αiK(xi, ⋅ ) + b for only some nonzero αi), learning with the squared norm penalty can 

have the potential danger of overfitting. To overcome this difficulty, one can apply an L1 

penalty on the vector α for data selection of the estimated function. For RKHS learning 

problems, Zhang et al. [44] proposed the data sparsity constraint with the following 

optimization

min
α, b

[1
n ∑

i = 1

n
L{yi, ∑

j = 1

n
K(xi, x j)α j + b} + λ α 1], (5)

where K(·,·) is the standard kernel function and α 1 = ∑i = 1
n |αi|. Using the quantile 

regression as an example, Zhang et al. [44] showed that, in certain cases, learning with the 

data sparsity constraint in (5) can improve the prediction performance.

Besides the work mentioned above, there are some other works in the literature on data 

extraction to cope with big data. Specifically, methods have been proposed to implement the 

data extraction idea under the linear model framework to save the computational cost [27, 

39]. The main data extraction idea used in these papers is to carefully select a subset of data 

for modeling without losing much efficiency. These methods can boost the efficiency when 

compared to certain traditional sampling techniques (see [27] for an example under linear 

regression, and [39] under logistic regression). The final model is built using only a subset of 

the data. Thus, these methods are different from our proposed method below, which is 

trained using the whole dataset.

2.2.3 Kernel Double Sparsity—Although data extraction was used in Zhang et al. [44], 

their method does not consider variable selection. Hence, when there are noise predictors in 

x, the proposed approach can be suboptimal. We would like to point out that modeling data 

sparsity can be challenging for high-dimension data, especially when there are many noisy 

variables. One reason is that noisy variables can mislead the importance of each observation 

in the modeling process. Thus, it is desirable to develop a tool that can handle these two 

sparsities simultaneously. To our knowledge, not much work has been done on simultaneous 

data extraction and variable selection in the literature. To fill this gap, we propose our 

DOuble Sparsity Kernel learning (DOSK) method as follows
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min
α, b, w

[1
n ∑

i = 1

n
L{yi, ∑

j = 1

n
Kw(xi, x j)α j + b} + λ1 α 1 + λ2 w 1 + λ3αTKwα], (6)

with λi ≥ 0; i = 1, 2, 3, Kw(x1, x2) = K(w ⊙ x1, w ⊙ x2) as defined earlier with w ∈ [0, 1]p.

The framework of our DOSK (6) is very general, in the sense that it includes many existing 

approaches as special cases. In particular, when λ1 = λ2 = 0, (6) reduces to the standard 

squared norm penalized kernel learning (3). When λ1 = 0, (6) reduces to the KNIFE 

approach (4) proposed by Allen [1]. If λ2 = λ3 = 0, (6) becomes the data sparsity learning 

(5) in Zhang et al. [44]. Because DOSK is a general framework of RKHS learning, one can 

use various approaches to solve the optimization problem (6), based on the choice of the loss 

function L(·,·), w and λl ; l = 1, 2, 3. For example, in linear kernel learning with λ2 ≠ 0, one 

can verify that (6) is a biconvex problem with respect to (αT, b)T and w, and can be solved 

by the alternate convex search algorithm [18]. For more general DOSK problems, we 

propose a unified algorithm to solve (6) in Section 2.3.

Note that our method makes use of the whole dataset to build a model which only involves a 

small subset of data (those have non-zero αj). With many α’s being zero, our proposed 

model can save some computational burden during the prediction stage since the kernel 

evaluation for a new point is only needed for those selected training points with nonzero α’s.

Although we impose multiple penalties in (6), our DOSK method can circumvent the 

difficulty of over-penalization by choosing (λ1, λ2, λ3) carefully. In particular, in Section 3, 

we show that if the tuning parameters are chosen appropriately, our DOSK method can enjoy 

desirable theoretical properties.

2.3 Computational Algorithm for DOSK

The major difficulty of solving the optimization (6) is that even L is convex, the composite 

loss function L{y, ∑ j = 1
n Kw(x, x j)α j + b} may not be convex with respect to (wT, αT, b)T. 

Consequently, many existing algorithms for convex optimizations [10] cannot be used 

directly. On the other hand, one can verify that if the loss function L is convex, the 

optimization (6) is convex respect to (αT, b)T for a fixed w. Hence, a natural way to 

circumvent the difficulty of non-convex optimization is to update w and (αT, b)T recursively. 

This, however, cannot be done directly, as for a general kernel function K(·,·), 

L{y, ∑ j = 1
n Kw(x, x j)α j + b} is not biconvex with respect to w and (αT, b)T. One way to 

tackle this problem is that for fixed (αT, b)T, we can find a linear approximation of the 

variable weighted kernel function Kw in a small neighbourhood of (wT, αT, b)T [1]. Thus, to 

update w, one can employ the linear approximation of Kw to make the corresponding 

objective function convex. Note that in the literature, the idea of local linear approximation 

has been widely used to solve optimizations for many learning problems. See, for example, 

An and Tao [3], Zou and Li [50], Lee et al. [22], among others.

Chen et al. Page 8

Stat Interface. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To introduce our algorithm for DOSK, we need some further notation. Let the objective 

function in (6) be ϕ(α, b, w). Define an n × p matrix A(w), whose ith row is 

∑ j = 1
n α j∇wKw(xi, x j)

T, and an n × n matrix B(w) with the (i, j)th element B(i, j) = Kw(xi, 

xj) − ∇Kw (xi, xj)Tw. Here ∇wKw(xi, xj) is the gradient vector of Kw(xi, xj) with respect to w. 

By Taylor’s expansion, one can verify that for w1 and w2, we have

Kwα = A(w2)w1 + B(w2)α + o( w1 − w2 2) . (7)

Define cw2
(w1)w1 = A(w2)w1 + B(w2)α, which is a linear function of w1 . When w1 and w2 

are close, we can use c as the local linear approximation of Kwα in our DOSK optimization 

algorithm. In particular, we outline the general algorithm to solve (6) in Algorithm 1 below.

In the α and b steps in Algorithm 1, the corresponding objective functions are convex, 

therefore after updating the parameters, the value of ϕ decreases. On the other hand, in the w 
step, we replace the original objective function ϕ by its local linear approximation, and solve 

a quadratic programming problem. Denote the solution to this quadratic programming 

problem by w(QP). In Algorithm 1, the updated w(t) = w(QP) can have some distance from w(t

−1), hence the original ϕ function is not guaranteed to decrease. One possible way to 

overcome this difficulty is that in the w step, instead of having w(t) = w(QP), we can treat 

w(QP) − w(t−1) as a direction in which ϕ tends to decrease, and determine the appropriate step 

size by conducting a line search. In particular, we present the revised algorithm in Algorithm 

2.

In Algorithm 2, one can verify that after updating the parameters, the ϕ function value would 

not increase. This helps to guarantee that we can obtain a stationary point of the objective 

function using Algorithm 2. In particular, we have the following theorem.

Theorem 1—Suppose that the loss function L in (6) is a convex and continuously 

differentiable function, and the variable weighted kernel Kw is a convex or concave and 

continuously differentiable function of w. Then the solution from Algorithm 2 is a stationary 

point of the objective function.

Remark 1—Theorem 1 is valid for many loss functions, e.g., the squared error loss in 

standard regression, and the deviance loss in logistic regression. For many other loss 

functions that are not differentiable, such as the hinge loss in SVM, or the check loss 

function in quantile regression, one can consider an alternative continuous approximation to 

the loss function. For example, Wang et al. [40] proposed the hybrid huberized hinge loss for 

SVM. One can verify that the hybrid huberized loss meets the condition in Theorem 1, and 

the corresponding solution is a stationary point. Moreover, for many commonly used kernel 

functions, the assumptions on Kw in Theorem 1 are satisfied. For example, one can verify 

that the variable weighted kernel introduced by the Laplacian RKHS, or by the linear kernel 

when all elements in x are non-negative, is convex with respect to w.
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Algorithm 1

1. Initialize w(0), α(0) and b(0) with wj ∈ [0, 1] for 1 ≤ j ≤ p.

2. The α step: fix w(t−1) and b(t−1), and find α(t) = argminα ϕ(α, b(t−1), w(t−1)). The optimization problem is convex, 
and independent of the λ2‖w‖1. term in (6).

3.
The b step: fix w(t−1) and α(t), and find b(t) = argminb

1
n ∑i = 1

n L{yi, ∑ j = 1
n K

w(t − 1)(xi, x j)α j
(t) + b}. 

This is a convex optimization with one parameter, and can be solved by standard methods.

4.
The w step: fix b(t) and α(t), and define c

w(t − 1)(w) = A(w(t − 1))w + B(w(t − 1))α(t). Let {c
w(t − 1)(w)}

i
 be 

the ith element of c
w(t − 1)(w). Under the constraint w(t) ∈ [0, 1]p, solve the following standard quadratic 

programming problem 

w(t) = argminw
1
n ∑i = 1

n L[yi, {c
w(t − 1)(w)}

i
+ b(t)] + λ2 w 1 + λ3wT A(w(t − 1))α(t).

5. Repeat steps 2–4 until convergence.

Algorithm 2

1. Initialize w(0), α(0) and b(0) with wj ∈ [0, 1] for 1 ≤ j ≤ p.

2. The α step: fix w(t−1) and b(t−1), and find α(t) = argminα ϕ(α, b(t−1), w(t-1)). The optimization problem is convex, and 
independent of the λ2‖w‖1 term in (6).

3.
The b step: fix w(t−1) and α(t), and find b(t) = argminb∑i = 1

n L{yi, ∑ j = 1
n K

w(t − 1)(xi, x j)α j
(t) + b}. This 

is a convex optimization with one parameter, and can be solved by standard methods.

4.
The w step: fix b(t) and α(t), and define w(temp) = w(t−1).

(a) Define c
w(temp)(w) = A(w(temp))w + B(w(temp))α(t).

Let {c
w(temp)(w)}

i
 be the ith element of c

w(Temp)(w). Under the constraint w ∈ [0, 1]p, find 

w(QP) = argminw
1
n ∑i = 1

n L[yi, {c
w(temp)(w)}

i
+ b(t)] + λ2 w 1 + λ3wT A(w(temp))α(t)

(b) Define Δw = w(QP) − w(temp). Find the best step size s by

s = argminu ≥ 0ϕ(α(t), b(t), w(temp) + uΔw).
(c) Set w(temp) = w(temp) + sΔw.
(d) Repeat steps (a)–(c) until convergence, and set w(t) = w(temp).

5. Repeat steps 2-4 until convergence.

Remark 2—Algorithm 2 replaces the quadratic programming step in Algorithm 1 by the 

descent direction and line search method. This approach is guaranteed to decrease the 

objective function value at each iteration step, at the cost of a more complex computation. 

On the other hand, our numerical experience shows that Algorithm 1 almost always 

decreases the objective for commonly used kernels and loss functions. Therefore, we use 

Algorithm 1 in the numerical examples, whereas in each step we check if the objective 

function decreases. If not, we then employ the line search approach as in Algorithm 2 

instead.
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Remark 3—Since the objective function can be non-convex, it is possible that the 

numerical solution is just a stationary point, not the global minimum. To increase the chance 

of finding the optimal solution, we suggest to use multiple different starting points, compare 

the corresponding results, and choose the fitted model with the smallest objective function 

value.

3. STATISTICAL LEARNING THEORY

In this section, we explore the theoretical properties of the proposed DOSK method. In 

particular, we first study the convergence rate of the excess risk for various learning 

problems under certain conditions, and then show that DOSK can enjoy selection 

consistency for high dimensional learning problems. Moreover, we show that the expected 

loss using the estimated function f , E[L{y, f (X)}] can be well approximated by the empirical 

loss on the training data, in the sense that the corresponding difference converges to zero 

with a fast convergence rate.

Several standard assumptions on the data, kernel functions, and loss functions are required 

for the main theorem to hold. Details of these assumptions are left in Appendix 1. Now we 

present our main theorem, which studies the convergence rate of f  to f0, variable selection 

consistency, and the risk bound. Denote a ∨ b = max(a, b) for a, b ∈ ℝ.

Theorem 2

Suppose Assumptions 1-7 (see Appendix 1 for details) hold, and log(p)/ n 0 as n → ∞. 

If we choose λ1 = O{log(n)−1}, λ2 = O[{log p ∨ log n }/ n], and λ3 = o(λ1) in (6), we have 

that the corresponding global solution (wT, αT, b)T to (6) satisfies that

• Parametric Rate: f − f 0 2 = OP{log(n)/ n}, where 

f (x) = ∑ j = 1
n α jKw(x, x j) + b;

• Selection Consistency: with probability tending to 1 as n → ∞, 

sign(w j) = sign(w j
∗) for j = 1,…, p, where w j

∗ is the jth element of w*;

• Risk Bound: |E[L{Y , f (X)}] − n−1∑i = 1
n [L{yi, f (xi)}] | = OP[{log(p) ∨ log(n)}/ n], 

where f (x) = ∑ j = 1
n α jKw(x, x j) + b .

Theorem 2 contains three parts. The first part suggests that f  converges to f0 at a rate very 

close to the “parametric rate” OP(n−1/2). Comparing Theorem 2 with the theoretical results 

in Zhang et al. [44], one can see that the multiple penalties in (6) do not affect the 

performance of f , as long as the corresponding λ’s are appropriately selected. This helps to 

justify that our DOSK method can avoid the issue of over-penalization by carefully choosing 

the tuning parameters.

The second part of Theorem 2 shows that our DOSK method can enjoy the desirable 

asymptotic selection consistency at the global solution. In other words, if the sample size is 

large, one can often correctly identify the important and unimportant variables in the 
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learning problem. This can help researchers to obtain a better understanding of the 

relationship between predictors and the response, and provide a more interpretable model for 

future prediction.

The third part of Theorem 2 studies the prediction performance of the obtained f . In 

particular, since one uses the loss function L to measure the goodness of fit of f , it is 

desirable to obtain a bound for the expected loss E[L Y , f (X) ]. For example, in regression 

problems, E[L Y , f (X) ] indicates the average prediction error using f . In margin-based 

classification where the loss function L dominates the 0 − 1 loss function (which is further 

equivalent to the prediction error rate), E[L{Y , f (X)}] can be regarded as an upper bound of 

the future misclassification rate. The third part of Theorem 2 shows that under the 

assumptions specified above, the empirical measurement n−1∑i = 1
n [L{yi, f (xi)}] converges 

to its expectation E[L{Y , f (X)}] at the rate OP[{log(p) ∨ log(n)}/ n]. This empirical loss can 

provide valuable information on the prediction performance of f .

As a remark, we would like to point out that our theorem can be generalized to the case of 

local solutions, provided that similar conditions about the underlying relationship and loss 

function (those in Assumptions 4-6 of Appendix 1) are met. For example, the convexity of 

local solutions can be stated in an analogous manner as in Assumption 5, and the 

corresponding signal strength can be measured by the partial derivatives as in Assumption 6.

4. NUMERICAL ANALYSIS

In this section, we use regression and classification as examples of learning techniques, and 

explore the numerical performance of our proposed DOSK method using simulated and real 

data sets. In Section 4.1, we study the empirical prediction behavior of DOSK using 

synthetic data sets, and in Section 4.2, we examine the performance of DOSK in real data 

applications. We compare our method with some existing approaches in the literature. In 

particular, for regression problems, we compare our DOSK method with the standard linear 

ridge regression, LASSO, standard L2 kernel learning as in (3), COSSO and KNIFE. 

Moreover, we implement the Sure Independence Screening (SIS) and Recursive Feature 

Elimination (RFE) methods with L2 kernel learning. Notice here the generalization of SIS 

from linear learning to kernel learning is analogous to the approach discussed in Guyon et 
al. [19]. We employ the squared error loss function for all regression techniques. For 

classification methods, we use the SVM hinge loss for DOSK, and compare with the 

standard kernel SVM, kernel SIS SVM, kernel RFE SVM and KNIFE SVM.

In all numerical examples, we select the tuning parameters as follows. For our DOSK 

method, because there are three tuning parameters λ1-λ3 and potential kernel parameters 

(such as the γ parameter in the Gaussian kernel), we fix λ3 = 0.5, and let other parameters 

be selected from a set of candidates. In particular, we let λ1 vary in {0,0.25, 0.5}, and let λ2 

vary in {2i; i = −3, −2,…, 2, 3}. As we will show in Section 4.1 that the selection of λ3, the 

tuning parameter for the quadratic kernel regularization term, does not appear to play an 

essential role in maximizing the prediction accuracy of DOSK as long as its value is taken 

within a certain range. For the kernel parameters, because we use the Gaussian and 
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Laplacian kernels (whose kernel functions are discussed in Section 2.2) in our analysis, we 

let the parameter γ vary in {0.1, 0.2, …, 0.9, 1}, a candidate set whose range always covers 

1/2σ2 where σ is the median of the Euclidean distances between each pair of the 

observations. In our experience, this tuning procedure works reasonably well for the 

numerical examples in this paper. For real applications, one can perform finer tuning 

procedures using a larger candidate set of tuning parameters. For other existing approaches 

except SIS and RFE, the tuning parameters are chosen in an analogous manner. The best set 

of tuning parameters that minimizes the prediction error in five fold cross validations on the 

training data set is then selected, and we report the corresponding prediction errors on a 

separate testing data set. Here the prediction error for regression examples is measured by 

the Mean Prediction Error [MPE, 20], 1
n ∑i = 1

n { f (xi) − yi}
2. The error measure for 

classification problems is the misclassification rate (MCR), 1
n ∑i = 1

n I[yi ≠ sign{ f (xi)}], 

where I(·) is the indicator function.

4.1 Simulated Examples

In this section, we conduct four simulated examples to demonstrate the performance of our 

DOSK method. The first two examples are regression problems, and the last two are 

classification problems. In each example, we let the responses depend only on several 

predictors, and we add noise covariates in the date sets. We denote by p0 the number of noise 

predictors. To assess various methods, we repeat each example 50 times and report the 

average prediction errors on the training and testing data sets. Furthermore, for all the 

methods that perform variable selection, we report the True Positive (TP) rates and False 

Negative (FN) rates of predictors to compare the corresponding performance on variable 

selection.

Regression Example 1—For this example, the response depends only on one predictor. 

In particular, we have yi = 10sin(xi1)I(0 < xi1 < 2π) + εi, where xi1 is the first predictor of 

the ith observation. Here xij follows a uniform distribution within [−2π, 4π] for j = 1,⋯, 1 + 

p0, and the error term ε is generated from the standard normal distribution. In this example, 

we let p0 = 2 and p0 = 8, and choose the size of the training data set to be 50 and 100. The 

size of the testing set is 10 times larger than that of the training set. We use the Laplacian 

kernel in this example.

The numerical results for Regression Example 1 are reported in Table 1. One can see that the 

ridge regression and LASSO perform poorly using linear learning, as the underlying 

function f0 is highly nonlinear. Note that the standard kernel learning method with the L2 

penalty has very small prediction error rates on the training data sets. This shows that the 

corresponding models can fit the training observations very well. However, the errors on the 

testing data set are very large. This suggests that without appropriate variable selection, the 

performance of standard kernel learning can be greatly undermined by overfitting. 

Moreover, the SIS and RFE approaches can also have overfitting issues, which are partly due 

to their large FN rates. Compared to these methods, KNIFE and our DOSK work 

competitively. Note that the prediction error of COSSO is also good with a large sample size 

(n = 100). However, the corresponding variation is significantly larger than that of KNIFE or 
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DOSK. This suggests that decomposing the nonlinear function into a sum of orthogonal 

components can be instable for some kernels. Furthermore, as the underlying function can 

be well approximated by functions that have sparse presentations, our DOSK method works 

better than KNIFE. This is similar to the findings in Zhang et al. [44]. To demonstrate the 

effect of data selection, in Figure 1, we plot the fitted regression function f  from our DOSK 

method in a typical replicate, and the underlying function f0 as a comparison. Moreover, we 

plot all the training observations, and highlight the selected ones, whose corresponding α j’s 

are non-zero. One can see that because we are using the Laplacian kernel which has a 

singularity at 0 and smooth elsewhere, the data sparsity penalty tends to choose the 

observations that are closer to the “sharp turns” of f0 for representation. This helps to build a 

model that is smooth when the curvature of f0 is small, thus prevents overfitting from using 

all observations in the kernel function representation.

Regression Example 2—In this example, the response Y depends on 4 predictors. In 

particular,

yi = 10 ∑
j = 1

4
exp( − xi j

2 ) + εi,

where the error term follows standard normal distribution, and xij follows a uniform 

distribution in [−6, 6] for j = 1,…, 4. The number of noise covariates and sizes of the 

training and testing data sets are the same as in Regression Example 1. We use the Gaussian 

kernel in this example. The prediction performance and variable selection results for 

Regression Example 2 are reported in Table 2, and one can draw similar conclusions as in 

Regression Example 1.

As to the tuning parameter selection, we fix λ3 = 0.5 to save the computational time. Note 

that there are three tuning parameters λ1, λ2, λ3 in (6) for the proposed DOSK. Based on 

our numerical experiments, the performance of DOSK is not sensitive to the choice of λ3, 

the tuning parameter for the quadratic penalty term. For illustration, we draw four contour 

plots of the mean prediction errors for Regression Example 2 when p0 = 8 in Figure 2. In 

particular, we set λ3 as {0, 0.25, 0.5, 1} respectively for each plot and calculate the optimal 

prediction error among all combinations of λ1 and λ2 with τ being 1/2σ2, where σ is the 

median of the pairwise Euclidean distances for the simulated samples. From the results, one 

can observe that the best (λ1, λ2) combination is almost always near the coordinate (0.5, 

0.5) for all these λ3 values. Because we fix λ3 to be 0.5 in DOSK, KNIFE and DOSK have 

the identical number of parameters to be tuned in practice. This choice appears to work well 

in all the experiments we tried. As a consequence, these two methods need similar time in 

finding the best λ’s.

Classification Example 1—In this example, we consider a binary classification problem, 

where the prior probabilities pr(Y = +1) = pr(Y = −1) = 1/2. The posterior probabilities pr(Y 
= +1 | X = x) depend on two predictors. In particular, the distribution of x.1 and x.2 for the 

first class is N{(0, 0)T, I2}, where x.j represents the jth predictor, and I2 is the 2 × 2 identity 
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matrix. For the second class, the distribution of x.1 and x.2 is proportional to the restricted 

joint normal distribution N{(0, 0)T, I2} |9 < (x .1
2 + x .2

2 ) < 16. To illustrate the marginal 

distribution of x.1 and x.2, we plot the first two covariates for a typical sample in Figure 3. In 

this example, we let p0 = 0, 4, 8, and add independent noise variables following N (0, 0.1) in 

the data set. The number of observations in the training data set is 200, and in the testing 

2000. Note that a similar example was previously used in Hastie et al. [20]. The Gaussian 

kernel is used.

The simulation results are reported in Table 3. One can see that when there are no noise 

predictors, all the methods can provide similar classification performance, with our DOSK 

method being slightly better. When the number of noise covariates increases, the prediction 

performance of L2 kernel SVM, SIS and RFE deteriorates. On the other hand, the KNIFE 

method and our DOSK work competitively. Moreover, in this example, the classification 

boundary (x .1
2 + x .2

2 = 9) is relatively simple (see Figure 3 for an illustration). Hence, 

functions with sparse representations in the dual space can separate the two classes well. 

Consequently, our DOSK method works better than the KNIFE approach. In terms of 

variable selection, KNIFE and DOSK both perform very well, and are significantly better 

than the other methods.

Classification Example 2—We consider a similar example as in Classification Example 

1. In particular, we let the classification signal depend on 4 predictors. For the first class, the 

distribution of x.1 to x.4 is N{(0, 0,0,0)T, I4}. The corresponding distribution of the second 

class is proportional to N{(0,0, 0, 0)T, I4} | 9 < ∑ j = 1
4 x ⋅ j

2 < 16. We let p0 = 0,4, 8 in this 

example. The classification results are reported in Table 4, and one can draw a similar 

conclusion as that of Classification Example 1.

Next, we would like to discuss the computational complexity and the compare the runtime of 

DOSK with other methods. According to Algorithm 1, the linear approximation in the w 
step simplifies the original non-convex optimization problem into a quadratic programming 

program with linear constraints. Similar to KNIFE, the order of the computational cost per 

iteration of DOSK should be equivalent to that of the kernel regression using the quadratic 

loss. Similarly, the computational cost of DOSK would perform the same as the standard 

SVM using the hinge loss. In practice, the actual runtime of DOSK can depend on the 

number of iterations used before convergence. Therefore, a proper starting point w(0) can 

save the computational time significantly.

In order to assess the actual runtime performance of DOSK, we use the same four simulated 

examples above and fix the noise dimension as p0 = 8. We also include two real data 

applications: the CPUs and Ecoli datasets. To have a general idea of the runtime in finding 

the best tuning parameters, we record the average time (in seconds) that each method takes 

for each tuning parameter value combination. For regression examples, the linear ridge and 

LASSO are implemented by the R package glmnet. The L2 Kernel method is also 

implemented by glmnet but includes some extra kernel matrix calculation. SIS, RFE and 

COSSO are implemented by the corresponding R packages SIS, caret, and COSSO 

respectively. KNIFE and DOSK are implemented using R entirely. For classification 
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examples, L2 Kernel, SIS and RFE are all primarily fitted by the R package e1071 with 

some extra matrix calculation. KNIFE and DOSK are implemented by a R wrapper of the 

Matlab package CVX to conduct the two quadratic programmings in each iteration. As to 

the stopping criterion, we always use the default settings when there is a corresponding R 

package. For KNIFE and DOSK, we set the maximum iteration number to be 300 and the 

stopping rule as when the L2-norm of the objective function change is less than 0.001. The 

average runtime of all the methods for each tuning parameter set is listed in Table 6.

Based on the results in Table 6, it is not surprising to see that the linear ridge and LASSO 

take much less time than all the other methods since the core of the package glmnet contains 

a set of Fortran subroutines, which is much faster than the corresponding R code. The L2 

kernel method, SIS, and RFE are slower not only because they have higher complexity but 

also due to the extra matrix calculation in R. Similar arguments can also be made for these 

methods in classification, which are implemented by the libsvm C++ code. The results of 

COSSO heavily depend on the selection of the knots number. As to KNIFE and DOSK, they 

perform almost equivalently in terms of computational time under both the regression and 

classification examples. This comparison result is consistent with our previous discussion on 

the comparable computational complexity.

To assess how the computational time increases as the sample size and variable dimension 

become larger, we extend the classification Example 2 by ranging the sample size n ∈ {200, 

400, 800,1000} and variable dimension p ∈ {10, 50, 200, 500,1000, 2000}. The average run 

time results are summarized in Table 5. Although the computational time increases when n 
and p increase as expected, the proposed DOSK can still be implemented relatively 

efficiently when n and p are not too large. For very large datasets such as the case of n = 

1600, and p = 2000, it can still take a long time to train the DOSK model. However, the 

computing efficiency can be further improved by replacing some core parts of our R code 

with C++ implementation.

4.2 Real Data Applications

In this section, we apply our DOSK method to four real data sets and explore the 

corresponding prediction performance. In particular, the first two real data sets are about 

regression problems, and the last two are for classification applications. In addition, we 

apply the method to a microarray dataset to assess its performance under high-dimensional 

settings.

4.2.1 Regression Examples: Ozone and CPUs Data—We consider the ozone 

pollution data in Los Angels [11], and the Central Processing Units (CPUs) performance 

prediction data [13] as our regression applications. The ozone data set includes 330 

observations, and each observation contains the daily measurement of ozone reading (the 

response) in 1976. Furthermore, 8 predictors that have potential impact on the ozone 

readings are also available, such as temperature, inversion base height, etc. The CPUs 

performance data set can be found in the UCI machine learning Repository [5]. The 

corresponding response variable contains 209 different CPUs’ published relative 

performance on a benchmark mix. The data set also includes 7 predictors, such as the cache 
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size, minimum main memory, and cycle time, among others, which may be useful in 

predicting a computer’s performance.

Before the analysis, we standardize the data sets, such that the range of each predictor is in 

[0, 1]. Because we do not have separate training and testing data sets, for each replicate we 

randomly split the data into two equal parts, and use one for training and the other for 

testing. We choose the best tuning parameters in a similar way as in the simulated examples, 

by 5-fold cross validations on the training sets. The Laplacian kernel is used for both 

examples. We compare our DOSK method with LASSO, standard L2 kernel learning, SIS 

regression with L2 kernel learning, RFE with L2 kernel learning, COSSO and KNIFE.

The average prediction errors in 50 replicates are summarized in Table 7. For the ozone data, 

the DOSK method performs better than the existing approaches in terms of the average 

prediction error. For the CPUs data, one can see that the standard L2 kernel learning may 

have a potential overfitting issue, which is similar to the simulation results. In terms of 

variable selection, we report the predictors that are selected more than 45 times out of the 50 

replicates. In the CPUs data set, each method selects a small subset of the predictors in the 

models. In particular, SIS tends to fit a model with minimum main memory and maximum 

main memory. The RFE and LASSO approaches select maximum main memory, cache size, 

and maximum number of channels as the important variables. For COSSO, KNIFE and our 

DOSK methods, the maximum main memory and cache size are the selected variables. This 

is consistent with the insights given in Ein-Dor and Feldmesser [13]. In other words, to 

specify the performance of a computer, only a few components are necessary. Interestingly, 

LASSO works slightly better than SIS, RFE, or the COSSO methods in prediction. One 

possible explanation is that the response is not highly nonlinear in this example, and kernel 

learning methods without stable variable selection can lead to suboptimal results. In contrast, 

KNIFE performs competitively, while our DOSK enjoys the best accuracy. This suggests 

that variable weighted kernel learning can provide stable selection performance for real 

applications.

4.2.2 Classification Examples: Wisconsin Breast Cancer Data and Ecoli Data
—For classification applications, we use the diagnostic Wisconsin breast cancer data set [35] 

and the Ecoli data set [31] for illustrations. These two data sets can also be found in the UCI 

machine learning Repository. The breast cancer data set has diagnosis results (malignant or 

benign) for 569 patients. The data also contain 30 predictors computed from a digitized 

image of a fine needle aspirate of a breast bass, such as mean distances from center to points 

on the perimeter, standard deviation of gray-scale values, etc. The Ecoli data set has 8 

categories of proteins, and we use two categories, namely, cytoplasmic proteins and inner 

membrane proteins without signal sequence, for a demonstration in our analysis. The total 

number of samples of these two classes is 220, and the data set includes 7 predictors, such as 

different measures of signal protein sequence recognition, consensus sequence score, amino 

acid content in certain outer proteins, among others.

We use DOSK with the SVM hinge loss, and compare our method with standard L2 kernel 

SVM, SIS, RFE and KNIFE. Similar to the regression examples, we standardize all the 

predictors before our analysis. Furthermore, we randomly split the data sets into two equal 

Chen et al. Page 17

Stat Interface. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parts, and use one for training (5 fold cross validations to select the best tuning parameters) 

and the other for testing. We report the average prediction error rates for various methods in 

Table 8, and one can see that the standard kernel SVM with the L2 norm penalty can have a 

potential overfitting issue on these two data sets, which is consistent with the simulation 

results. Compared with other methods, our DOSK performs competitively.

4.2.3 A High-dimensional Classification Example: Microarray Data—We use a 

microarray example [2] to show the performance of DOSK under a high dimensional setting. 

This dataset was also studied in [1]. The microarray data contain 62 tissue samples, with 22 

normal and 40 tumor samples, as well as 2000 genes that have the highest variances across 

the samples. We applied the standard linear SVM with the L2 − norm penalty, logistic 

regression with the L1−norm penalty, KNIFE, and DOSK for comparison. Both KNIFE and 

DOSK are fit with the linear kernel.

To assess the impact of variable dimension on the selected methods, we pick six subsets of 

the 2000 genes and let the number of genes vary within {10, 50, 200, 500, 1000, 2000}. To 

obtain these subsets, we sort the genes using recursive feature elimination (RFE), and 

choose the corresponding number of the top genes at each time. To evaluate the model 

performance, we conduct a 5-fold crossvalidation with 100 replications for each subset, and 

report the validation misclassification rates across all methods. The results are presented in 

Table 9.

From Table 9, DOSK and KNIFE perform similarly when the number of genes is small 

(such as p = 10), and both methods keep all the variables in the final model. In this case, 

DOSK tends to retain all the observations in the model possibly due to the lack of 

information to distinguish the important ones. When the subset has an intermediate number 

of genes (such as p = 200), the advantage of DOSK becomes more clear as the data set 

contains more information for the data sparsity to further improve the model performance. 

The advantage of double sparsity, when compared to KNIFE, indicates that the variable 

importance can be measured more precisely when noisy data points are removed or 

significantly underweighted. When the number of genes becomes very large (such as p = 

1000), KNIFE and DOSK perform similarly again. In contrast to KNIFE and DOSK, the 

results of standard SVM with the L2−norm penalty do not improve as much when the 

number of genes increases. This can indicate the importance of variable selection. The 

logistic regression with the L1−norm penalty can produce competitive results when the 

number of genes is relatively large.

5. DISCUSSION

In this paper, we propose a new DOSK method in kernel learning that can perform variable 

selection and data extraction simultaneously. We show that under certain conditions, the new 

DOSK method can achieve selection consistency, and the estimated function can converge to 

the underlying function with a fast rate. We also develop an efficient algorithm to solve the 

corresponding optimization, which is guaranteed to converge to a local optimum. Numerical 

results show that our DOSK method is highly competitive among existing approaches.
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As a remark, our DOSK method can be generalized to alleviate the computational burden for 

applications with massive data sets. Without loss of generality, take regression as an 

example. Suppose one needs to estimate a nonlinear underlying function, and the data set 

contains many observations and predictors. To perform kernel regression with such big data 

can be computationally inefficient. One way to circumvent this difficulty is to split the 

predictors into several parts or divide the observations into several subsets, learn on each 

part individually, and then combine the results. In particular, each time one can perform our 

DOSK method on one piece of the data set. Because our DOSK method can have double 

sparsity in predictors and dual variables, for each sub-regression, it is possible to find a 

sparsely represented function that only involves a subset of observations and predictors. 

Then we can combine the selected observations and predictors to train for a global estimator. 

One can see that this approach can greatly reduce the computational time for problems with 

massive data sets. Further research can be pursued in this direction.
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APPENDIX 1: TECHNICAL ASSUMPTIONS FOR THEOREM 2

To state our theory, we first introduce some technical assumptions, and provide detailed 

discussions on why these conditions are needed. We also discuss some cases where these 

conditions are met. We would like to point out that most of the assumptions in this paper are 

mild and reasonable, which can be satisfied or checked for various real applications.

To begin with, we need to present some further notation. Let w∗ = (w(1)
T , w(0)

T )T be the 

underlying variable weight vector, where elements in w(1) are non-zero, and elements in w(0) 

are zero. In other words, the predictors in x that correspond to w(0) are noise covariates. 

Accordingly, one can define x∗ = (x(1)
T , x(0)

T )T, such that predictors in x(1) contain useful 

information for the learning problem. In this paper, we focus on the case that the number of 

useful predictors is finite (i.e., |w(1)| < ∞). Furthermore, with a little abuse of notation, we 

let f ℋ = f
∼

ℋ, where f
∼

 is the projection of f onto ℋ.

We impose our first assumption on the distribution of X and X(1), where X and X(1) 

correspond to the p dimension random vector and the vector containing important variables.

Assumption 1

Every element in X ranges in [0, 1]. Furthermore, the distribution of X(1) is absolutely 

continuous with respect to the Lebesgue measure, where the corresponding Radon-Nikodym 

derivative is bounded away from 0.
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In Assumption 1, we restrict our consideration on X ∈ [0, 1]p. One can verify that our theory 

can be naturally generalized to the case where the elements in X are uniformly bounded. We 

defer the discussion on the second part of Assumption 1 until after Assumption 4.

In the next assumption, we impose some constraints on the kernel function K(·,·).

Assumption 2

The kernel function K(·,·) is separable and sup K(·,·) < ∞. Furthermore, the kernel function 

K
w∗(x, ⋅ ) is Lipshcitz with respect to x(1), i.e. the useful variable vector, in terms of the L2 

norm.

The first part of Assumption 2 is very mild, and has been frequently used in the literature. 

See, for example, Steinwart and Scovel [34], [8], Zhang et al. [44], among others. It suggests 

that the corresponding RKHS ℋ is not too complex, in the sense that its diameter would not 

be infinity. The second part is used to ensure that the best learning function using n 
observations can converge to the underlying function in a fast rate. See the proof of Lemma 

2 for more details. This assumption is valid for many commonly used kernel functions such 

as the Gaussian kernel and the polynomial kernel.

In Assumption 3, we assume that L can be treated as a univariate function. This is a very 

mild condition, and is valid for many learning problems. For example, in standard least 

squares regression, we have L(u) = u2 where u = (f−y), and in logistic regression, L(u) = 

log{1 + exp(−u)} where u = yf and y ∈ {+1, −1}.

Assumption 3

The loss function L(u) has a second order derivative with 0 < L″(u) < ∞ for every u.

Assumption 3 is needed to ensure that the expected loss function is strictly convex around 

the underlying optimal solution. Moreover, the second order differentiability helps to control 

the convergence rate of the estimated function f  to the best function. See the discussion of 

Assumption 5 for more details.

Next, we consider assumptions on the function f(x). Recall that the learning goal is to obtain 

f (x) from the training data set for good prediction performance. Therefore, we consider the 

“best” function f0, in the sense that its corresponding expected loss E[L{Y, f0(X)}] is the 

minimum among all possible E[L{Y, f(X)}]. Consequently, f0 can have the best prediction 

performance under mild conditions. For instance, in classification, f0 can achieve the 

minimal classification error rate, given that the loss function L is Fisher consistent [26]. We 

will prove that under certain conditions on f0, the estimated function f  would converge to f0 

with a desirable convergence rate.
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Assumption 4

The underlying function f0 has a sparse representation in the RKHS. In particular, there exist 

γ1, …, γm, z1, …, zm, and b0 such that f 0(x) = ∑ j = 1
m γ jKw∗(z j, x) + b0. Here m is a fixed 

integer, γj ≠ 0, and zj ∈ [0, 1]p for j = 1, …, m.

As a remark, we note that some RKHSs are very rich, in the sense that many functions can 

be well approximated by f ∈ ℋ. For example, Steinwart and Scovel [34] proved that all step 

functions can be approximated by f in the Gaussian RKHS arbitrarily well under mild 

conditions, and this result can be generalized to the case of continuous functions. However, 

if f0 does not have a sparse representation in the RKHS, the function in ℋ that approximates 

f0 well may have an infinite norm. When f  approaches f0 as n → ∞, f ℋ would be 

unbounded. Consequently, the variation of f  due to the randomness of the sample can be 

very large. In the literature, Bartlett et al. [6], among others, pointed out that large variation 

of f  can lead to suboptimal prediction performance. Assumption 4 ensures that the 

underlying function f0 has a finite norm in the RKHS. In the proof of Theorem 2, we show 

that with an appropriate λ1, the data selection can provide a sparsely represented function f
whose norm can be bounded away from infinity. This is crucial to prove the convergence of 

f  to f0, which further leads to the selection consistency of our DOSK method.

The next assumption ensures that in the updating scheme, f  would converge to the global 

solution, once we are at a point that is close enough. To state this assumption, we first 

introduce some further notation. Define ‖·‖*,2 to be the restricted L2 norm with respect to the 

partition of w. In particular, ‖x – z‖*,2 = ‖x(1) – z(1)‖2. For any n ≫ m, we define (αn
∗, bn

∗) as 

follows. Notice that the empirical loss function value does not change if we switch the order 

of the pairs (xi, yi) and (xj, yj) for i ≠ j. Hence, without loss of generality, we can assume that 

xj is the observation that is closest to zj in terms of the ‖·‖*,2 norm among the training data 

set {(xi, yi); i = 1, …, n}, for j = 1, …, m. When n ≫ m, we can assume that each xj is 

distinct (in other words, xj would not be closest to zu and zv simultaneously, compared to 

other observations). Next, define (αn
∗, bn

∗) such that αn
∗ = (γ1, …, γm, 0, …, 0)T with length n, 

bn
∗ = b0, and let f

αn
∗, bn

∗(x) = ∑i = 1
n α j

∗K
w∗(xi, x) + bn

∗. The definition of (αn
∗, bn

∗) helps to show 

that the approximation error of the DOSK method under Assumption 4 converges to 0 very 

quickly. See the proof of Lemma 4 in the appendix for more discussions.

Before stating Assumption 5, we would like to discuss the second part of Assumption 1, 

which ensures that with large enough n, the underlying function can be well approximated 

by the sparsely represented function f
αn

∗, bn
∗(x) from our training data. In particular, 

Assumption 1 guarantees that as n → ∞, f
αn

∗, bn
∗(x)

can approach f0(x) with a rate very close to OP(n−1) in terms of the ‖·‖2 norm. See Lemma 2 

and the corresponding proof for more discussions.
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Assumption 5

For any p and n ≫ m, there exists a neighborhood 𝒩 of (w∗)T, (αn
∗)T, bn

∗ T
, such that in 𝒩, 

the expected loss function E ∑i = 1
n L{Y i, f (Xi)}  is strictly convex with respect to (wT, αT, 

b)T.

Assumption 5 is necessary for our theory, because if the loss function is not strictly convex, 

a small perturbation in the training data set can lead to a significant change of f . See, for 

example, the discussion on a similar issue for quantile regression using the check loss 

function in Li and Zhu [23]. Consequently, the convergence rate of f  to f0 can be difficult to 

obtain. To our knowledge, there has been no theoretical result on selection consistency that 

does not rely on the assumption or fact of local convexity. Notice that Assumption 3 is 

important to the validity of Assumption 5, because if L is not strictly convex, it is likely that 

the expected loss function is not convex even if the kernel function is locally convex. For 

instance, if we use the hinge loss L(u) = [1−u]+ which is piecewise linear, Assumption 5 

cannot be satisfied.

Next, we impose constraints on the signal strength in the learning problem. For variables 

weighted learning, the jth predictor provides useful information if and only if the weight wj 

is positive. Variable selection consistency means that sign(ŵj) = sign(wj) for all j with a high 

probability, where sign(0) = 0. The next assumption is an important part of sufficient 

conditions for variable selection consistency.

Assumption 6

For any wj in w(1), 
∂E[L{Y , f 0(X)}]

∂w j
|
w j = 0, wi = wi

∗, i ≠ j
< 0, and for any wj in w(0), 

∂E[L{Y , f 0(X)}]
∂w j

|
w j = 0, wi = wi

∗, i ≠ j
≥ 0. Here wi

∗ is the ith element of w*.

In Assumption 6, we measure the signal strength of wj by its partial derivative with respect 

to the expected loss function evaluated at w* (except the jth weight is at zero). In the 

literature, there are many existing assumptions on the signal strength that are (essentially) 

similar to Assumption 6. For example, one can verify that for regular linear regression with 

the squared error loss, Assumption 6 reduces to that the non-zero coefficients are bounded 

away from zero. This is analogous to the assumptions considered in Fan and Peng [17] and 

Fan and Lv [16], among others. Furthermore, we require the partial derivatives with respect 

to the noise covariates are non-negative.

In the last assumption, we focus on regression problems, where Y = f0(X) + ε(X) with (X) 

being the random error term. Notice that we include both the homoscedastic and the 

heteroscedastic cases here, as ε can have different distributions for different X. If the 

distribution of ε has a very heavy tail, there is a large probability that we observe a yi that is 

very far away from f0(xi). This outlier can lead to severely biased estimation f . Assumption 

7 aims to control the probability of an extreme yi, which can help to bound the magnitude of 
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the estimated b . Recall that if a random variable U is sub-Gaussian with parameter s, then 

pr(|U| > u) ≤ 2 exp(−u2/s) for large enough u.

Assumption 7

In a regression problem, the error term ε(X) follows a sub-Gaussian distribution with a 

universal parameter s < ∞ for any X.

Assumption 7 is very general, as many distributions are sub-Gaussian. For example, in linear 

regression, we often assume that ε ∼ N(0, σ2) with a finite σ. This is a homoscedastic case 

of Assumption 7, and normal random variables are known to be sub-Gaussian. Furthermore, 

all random variables with bounded ranges are sub-Gaussian, and distributions with small 

kurtosis are sub-Gaussian.

APPENDIX 2: TECHNICAL PROOFS OF LEMMAS AND THEOREMS

Proof of Theorem 1

Because the objective function ϕ is lower bounded by zero, to prove convergence, it suffices 

to prove that for each step of updating, the objective function value is non-increasing. To this 

end, we will show that ϕ is non-increasing for Steps 2–4 in Algorithm 2. First, notice that for 

fixed w, the corresponding objective functions in the α step and the b step are convex. 

Hence, ϕ is non-increasing for Steps 2 and 3. We will focus on Step 4 next.

Without loss of generality, suppose that ∇wϕ(α(t), b(t), w(t−1)) ≠ 0 (otherwise, the algorithm 

has already converged). We will prove that the directional derivative along Δw is negative, 

with which one can verify that after Step 4, the objective function value would decrease. To 

this end, observe that Step 4(a) can be regarded as to minimize ψ(w) = h{g(w)}, where h(·) 

is a convex and continuously differentiable function and g(·) is a convex or concave and 

continuously differentiable function of w. Since both h and g are continuously differentiable, 

they are locally Lipshcitz continuous, and so is ψ. Furthermore, because h and g are convex 

or concave, there exists an open neighborhood of w(t−1), 𝒩(w(t − 1)), in which h and g are 

monotonic [7]. Therefore, in 𝒩(w(t − 1)), ψ(·) is monotonic.

Next, we prove that along the direction defined by Δw, ψ() is monotonically deceasing in 

𝒩(w(t − 1)). To this end, first notice that Step 4 computes a descent direction of 

ψ∼
w(t − 1)(w) = h{g(w(t − 1)) + ∇g(w(t − 1))T(w − w(t − 1))}. Because the objective function of 

w(QP) is quadratic, thus strictly convex, ψ∼
w(t − 1)(w) is strictly decreasing along Δw within 

𝒩(w(t − 1)). Next, by similar arguments as in the proof of Proposition 1 in Allen [1], one can 

verify that ψ(·) is monotonically deceasing along Δw within 𝒩(w(t − 1)), and this completes 

the proof. ■

Proof of Theorem 2, Part I (Parametric Rate)

Before we present our proof, we first give some lemmas.
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Lemma 1

Suppose Assumptions 1–7 are valid. With λ1, λ2 and λ3 as in Theorem 2, we have that 

α 1 = OP{log(n)} and b 1 = OP{log(n)}.

Proof of Lemma 1

With α = 0 and b = 0, we have ϕ(0, 0, w) = 1
n ∑i = 1

n L(yi, 0) E{L(Y , 0)} as n → ∞, which is 

a constant. On the other hand, α and b  are (part of) the solution to the objective function in 

(6). Hence,

λ1 α 1 ≤ 1
n ∑

i = 1

n
L{yi, ∑

i = 1

n
Kw(xi, x j)α j + b} + λ1 α 1 + λ2 w 1 + λ3αTKwα ≤ ϕ(0, 0, w) .

Consequently, we have α 1 = OP{log(n)}. For |b |, in regression, because the fitted function f

cannot be uniformly larger or smaller than the observed responses, we have that |b | is at most 

OP( α 1), which is OP{log(n)} (notice that we have assumed that the error term in regression 

are bounded for now). For classification problems, similar arguments hold ( f  cannot be 

uniformly positive or negative, otherwise the classification problem is of less interest), and 

|b | = OP{log(n)}. This completes the proof. □

Lemma 2

Suppose Assumptions 1–7 are valid. We have that f
αn

∗, bn
∗ − f 0

2
= OP{log(n)/n}.

Proof of Lemma 2

Notice that γj’s are constants, and the kernel function K
w∗ is Lipshcitz by Assumption 2. 

Hence, we have

| f
αn

∗, bn
∗( ⋅ ) − f 0( ⋅ ) | = | ∑

j = 1

m
γ j{K

w∗(x j, ⋅ ) − K
w∗(z j, ⋅ )}| = OP(max

j
x j − z j 2),

and the goal is to prove that ‖xj − zj‖2 = OP {log(n)/n} for all j. To this end, note that pr(‖xj − 

zj‖2 > d) = (1 − Pd)n, where d is a small positive number, and 

Pd = pr( z − z j 2 ≤ d) = ∫
z − z j 2 ≤ d

dP. Using Assumption 1, one can verify that we can 

choose d = 2 log(n)/n, such that pr(‖xj − zj‖2 > d) = OP (n−2). By the Borel–Cantelli Lemma, 

we have ‖xj − zj‖2 = OP {log(n)/n} holds. This completes the proof. □

The next lemma generalizes some theoretical results from the margin-based classifier 

literature to broader ranges of learning problems. In particular, in Zhang and Liu [43], it was 
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shown that the convergence rate of excess risks for margin-based classifiers is related to the 

convergence rate of the estimated learning function. In Lemma 3, we extend the discussion 

to more general situations, in which one uses differentiable loss functions to measure the 

goodness of fit of f .

Lemma 3

Suppose Assumptions 1–7 are valid. Moreover, consider a loss function ℓ{u(f, y)} that is 

second order differentiable with respect to u, where u(f, y) is a function of the response y 

and the learning function f. Assume that u has the second order derivative with respect to f, 
and the two second order derivatives are both bounded. Then we have that, if the function f* 

minimizes E(ℓ),

|E[𝓁{u(Y , f )}] − E[𝓁{u(Y , f ∗)}] | = O{( f − f ∗
2)2},

and if f* is not the minimizer of E(ℓ),

|E[𝓁{u(Y , f )}] − E[𝓁{u(Y , f ∗)}] | = O{( f − f ∗
2)} .

Proof of Lemma 3

This proof is analogous to that of Theorems 5 and 6 in Zhang and Liu [43]. Hence, for 

brevity, we only list the key steps. The first step is to introduce the idea of Bregman 

divergence. In particular, for a convex differentiable function g(·), its Bregman divergence dg 

is defined as dg(f1, f2) = g(f2) − g(f1) – g′(f1)(f1 − f2). Then, one can prove that the 

conditional excess risk E[ℓ{u(Y, f)}] − E[ℓ{u(Y, f*)}] |X=x equals to the Bregman divergence 

dℓ{f*(x), f(x)}. See the proof of Theorem 4 in Zhang and Liu [43 for more details. 

Combining this result with Assumption 3, we can show, in a similar manner as in the proof 

of Theorems 5 and 6 in Zhang and Liu [43], that the claim of Lemma 3 holds. □

We are ready to prove Theorem 2. The proof follows a similar line as that of Theorem 1 in 

Zhang et al. [44]. Therefore, we only list out the key steps here. The first step is to 

decompose the excess risk into two parts, the estimation error and the approximation error. 

In particular, let fλ be the best prediction function with respect to the penalized loss function 

for fixed λ = (λ1, λ2, λ3), i.e., fλ = arginff[E{L(Y, f)} + λ1‖α‖1 + λ2‖w‖1 + λ3αTKwα]. 

The estimation error is defined as E{L(Y , f )} − E{L(Y , f λ)}, and the approximation error is 

defined to be E{L}(Y, fλ)} – E{L(Y, f0)}.

Next, consider the function space f  lies in, and denote it by ℱλ. Define gf(·) = s−1{L(·, f) − 

L(·, fλ)}, where s is chosen such that the L2·diameter of 𝒢 = {g f : f ∈ ℱλ} is 1. Using 

Lemma 1, one can verify that s = OP{log(n)}. From Lemma 2 in Zhang et al. [44], we have 

that the upper bound of the L2 entropy number of 𝒢, log[N{η, 𝒢, L2(TX)}], is of the order OP 

(η−2) [see, for example, 37, for introduction of the entropy numbers]. Here TX is the 
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empirical measure of a training set, and the L2 norm is 

f L2(TX) = {n−1∑i = 1
n | f (xi, yi)|

2}
1/2

. Consequently, one can obtain that the estimation error 

is of the order OP{log(n)/ n}, by similar arguments as in the proof of Theorem 1 in Zhang et 

al. [44]. Therefore, by Lemma 3, f − f λ 2 = OP{log(n)/ n}.

On the other hand, to derive the bound for the approximation error, one can use Assumption 

1, Lemmas 2 and 3. In particular, we have that E[L{Y, fλ(X)}] − E[L{Y, f0(X)}] converges 

at a rate faster than that of f
αn

∗, bn
∗ − f 0

2

2, which is OP[{log(n)/n}2] = OP{log2 (n)/(n2)}. 

Thus, by Lemma 3, we have that ||fλ − f0||2 = OP{log(n)/n}. Consequently, one has that 

f − f 0 2 ≤ f − f λ 2 + f λ − f 0 2 = OP{log(n)/ n}. This completes the proof.■

Proof of Theorem 2, Part II (Selection Consistency)

In the proof, we first assume that for regression problems, the distribution of the error has a 

bounded range. We will consider the more general case of sub-Gaussian distributions later.

The next lemma, Lemma 4, is an important intermediate step to the proof of Selection 

Consistency. With Lemma 4, we can prove that the difference between f  and the best 

function f0, in terms of the difference in their expected partial derivatives with respect to wj, 

is converging at the rate at least OP{log(n)/ n}. This further leads to the fact that the 

proposed λ2 in Theorem 2 can correctly select the important variables x(1) and discard the 

noise x(0). Consequently, we can have the desired selection consistency for our DOSK 

method.

Lemma 4

Suppose Assumptions 1-7 are valid. With λ1, λ2 and λ3 as in Theorem 2, we have that for 
any j = 1,. …, p,

[
∂E[L{Y , f (X)}] − ∂E[L{Y , f 0(X)}]

∂w j
]

w j = 0, w j = w j
∗, i ≠ j

= OP{log(n)
n

} .

Proof of Lemma 4

The proof follows a similar line as that of Theorem 2 and Lemma 3. □

We are ready to present the proof to Selection Consistency.

First, we prove that for any j,
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[
∂[1

n ∑i = 1
n L{yi, f (xi)}]

∂w j
−

∂E[L{Y , f 0(X)}]
∂w j

]
w j = 0, w j = w j

∗, i ≠ j

= OP{log(n) ∨ log(p)
n

} .

(8)

To this end, observe that

[
∂[1

n ∑i = 1
n L{yi, f (xi)}]

∂w j
−

∂E[L{Y , f 0(X)}]
∂w j

]

≤ [
∂[1

n ∑i = 1
n L{yi, f (xi)}]

∂w j
− ∂E[L{Y , f (X)}]

∂w j
] + [∂E[L{Y , f (X)}]

∂w j
−

∂E[L{Y , f 0(X)}]
∂w j

] .

(9)

As Lemma 4 bounds the second term on the RHS of (9), we proceed to show that the first 

term converges at the rate OP {log(n) ∨ log(p)}/ n . To this end, we need to introduce the 

Rademacher complexity [30]. In particular, let σi; i = 1,…, n, be i.i.d: random variables, 

each taking the value 1 with probability 1/2, and −1 with probability 1/2. Let the set of 

training observations (xi, yi); i = 1, …, n, which are i.i.d: from P, be denoted by S. Define 

the function class ℋn λ  as ℋn λ = { f : f = argminα, b, wϕ λ }, where ϕ (λ) is the objective 

function in (6). With S fixed, we define the empirical Rademacher complexity of the 

function class ℋn λ  as

Rn{ℋn(λ)} = Eσ{ sup
f ∈ ℋn(λ)

1
n ∑

i = 1

n
σi f xi },

where Eσ represents the expectation with respect to σ = (σ1, …, σn). Furthermore, denote 

the Rademacher complexity of ℋn λ  by

Rn{ℋn(λ)} = ESRn{ℋn(λ)},

where ES is the expectation with respect to the distribution of the sample S.

To bound the first term on the RHS of (9), we have the following lemma.

Chen et al. Page 27

Stat Interface. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lemma 5

Suppose Assumptions 1-7 are valid. With λ1, λ2 and λ3 as in Theorem 2, we have that, for 

any j = 1, …,p, with probability at least 1 – δ,

[
∂ 1

n ∑i = 1
n L{yi, f (xi)}

∂w j
−

∂E L{Y , f (X)}
∂w j

] ≤ C1Rn{ℋn(λ)} + Tn δ ≤ C1Rn{ℋn(λ)} + 3Tn δ/2 ,

where Tn(δ) = C2{n−1log(n)log(1/δ)}1/2, and C1, C2 are universal constants that are 

independent of n.

The proof to Lemma 5 is quite standard in the literature of Rademacher complexity. To 

bound the LHS of (10) by C1Rn{ℋn λ } + Tn δ , one can use the McDiarmid inequality [28] 

and the symmetrization technique [37]. To bound C1Rn{ℋn λ } by C1Rn{ℋn λ } + 2Tn δ/2 , 

one can again use the McDiarmid inequality. See the proof of Lemma 3 in Zhang et al. [44] 

for more details. Notice that there are two main differences between the proof of Lemma 3 

in Zhang et al. [44] and that of Lemma 5. First, in Zhang et al. [44], the Rademacher 

complexity was defined on the function class {L · ,   f : f ∈ ℋn λ }. By Talagrand’s Lemma 

[Lemma 4.2 in 30], the Rademacher complexity of {L · ,   f : f ∈ ℋn λ } can be further 

bounded by that of ℋn λ , if the loss function L is Lipshcitz. Second, the maximum changes 

in the LHS of (10) if we replace one xi or yi can be bounded by C3 log(n)/n (this is a direct 

result from Lemma 1) with C3 being another constant, instead of O(n−1) as in Zhang et al. 
[44].

The rest of the proof is analogous to that of Lemma 3 in Zhang et al. [44], and we omit the 

details here. □

The next step is to bound the empirical Rademacher complexity of ℋn(λ). To this end, 

notice that

Eσ{ sup
f ∈ ℋn(λ)

1
n ∑

i = 1

n
σi f (xi)} ≤ Eσ{ sup

f ∈ ℋn(λ)
1
n ∑

i = 1

n
σi f

∼(xi)} + Eσ{ sup
f ∈ ℋn(λ)

1
n ∑

i = 1

n
σib} . (10)

Hence, we proceed to bound the two terms on the RHS of (10). Notice that by Lemma 1, the 

first term is equivalent to Eσ{sup
f
∼ ℋ = OP{log(n)}

1
n ∑i = 1

n σi f
∼(xi)} and the second term is 

equivalent to Eσ(sup|b| = OP{log(n)}
1
n ∑i = 1

n σib). For the first term, one can use Theorem 5.5 

in Mohri et al. [30] to obtain that, with Assumption 2 valid, the corresponding empirical 

Rademacher complexity is of the order OP{log(n)/ n}|. For the second term, notice that the 

distribution of Rademacher variables is similar to the binomial distribution. Therefore, we 

have that for large n, the distribution of sup|b| = OP{log(n)}
1
n ∑i = 1

n σib can be approximated by 
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that of |Z|, where {C n/log(n)} Z ~ N (0, 1), with C a universal constant. Hence, one can 

verify that

Eσ{ sup
|b|OP{log(n)}

1
n ∑

i = 1

n
σib} = E( |Z | ) = OP{log(n)/ n} .

Then we have Eσ{sup f ∈ ℋn(λ)
1
n ∑i = 1

n σi f (xi)} = OP{log(n)/ n}.

Next, choose δ = 2p−1n−2. One has that Tn(δ /2) = OP[n−1 log(n){log(p) ˅ log(n)}]1/2. 

Consequently, with probability at least 2n−2, (10) holds true for all the predictors. 

Combining this with Lemma 4 and the Borel–Cantelli Lemma, we have that (8) is proved.

We now need to show that 1
n ∑i = 1

n L{yi, ∑ j = 1
n Kw{xi, x j)α j + b}, as a function of (wT, αT, 

b)T, is strictly convex in a small neighborhood around ((w*)T, (αn
∗)T, (bn

∗)T. Because we have 

shown that f
αn

∗, bn
∗(x) converges to f0 in a rate faster than that of f  to f0, this guarantees that 

once we arrive at a temporary point around ((w*)T, (αn
∗)T, (bn

∗)T, the proposed algorithm in 

Section 2.3 would ensure that the solution f  converges to the best function f0. To this end, 

observe that in Assumption 5, we assume that E[1
n ∑i = 1

n L{Y i, f (Xi)}] is strictly convex. 

Hence, it suffices to prove that 

sup
(wT , αT , b)T ∈ 𝒩

| 1
n ∑i = 1

n L{yi, ∑ j = 1
n Kw{xi, x j)α j + b} − E[1

n ∑i = 1
n L{Y i, f (Xi)}] | 0

almost surely. Note that when 𝒩 is sufficiently small, we have sup f ∈ 𝒩 |P f | < ∞. Moreover, 

by Lemma 1 and similar arguments as in the proof of Theorem 1 in Zhang et al. [44], one 

can have that the L2 entropy of { f : f ∈ 𝒩} is log[N{ε, 𝒩, L2(Pn)}] = O[log{log(n)}], where Pn 

is the empirical measure of the training set. For any M < ∞, define fM = f · I(f ≤ M), and 

𝒩M = { f M : f ∈ 𝒩}. One has that log[N{ε, 𝒩M, L2(Pn)}] = O[log{log(n)}]. Therefore, by 

Theorem 6.2 in Wellner [41], we have that 𝒩 is a P-Glivenko–Cantelli class. One can then 

verify that this conclusion leads to that for n large, 1
n ∑i = 1

n L{yi, ∑ j = 1
n Kw(xi, x j)α j + b}

Now we have that, by Assumption 6, the partial derivative of the empirical L loss with 

respect to each wj is such that

∂[1
n ∑i = 1

n L{yi, f (xi)}]
∂w j

|
w j = 0, wi = wi

∗, i ≠ j
⪯ OP{{log(p) ∨ log(n)}

n
},

for wj ∈ w(0), and
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[
∂[1

n ∑i = 1
n L{yi, f (xi)}]

∂w j
−

∂E[L{Y , f 0(X)}]
∂w j

] |
w j = 0, wi = wi

∗, i ≠ j
⪯ OP{{log(p) ∨ log(n)}

n
},

for wj ∈ w(1). Because the objective function is locally convex, at the optimal point (w, α, b), 
selection consistency is equivalent to that λ2 → 0 at a rate no faster than 

OP{{log(p) ∨ log(n)}
n } [according to the soft thresholding rule in 36]. Hence, we have proven 

the selection consistency for the DOSK method under the assumption that the distribution of 

the error has a bounded range.

Lastly, we need to finish the proof by considering the general case that the distribution of the 

error in regression is sub-Gaussian. This can be done by showing that with a high 

probability, the actual errors would be bounded in a range. Then we can prove that the 

corresponding partial derivatives etc. converge at the same rate, because the probability of 

sub-Gaussian random variables being significantly away from 0 converges to zero very fast, 

as the bound increases.

Without loss of generality, we assume that ε(X) follows a common sub-Gaussian 

distribution with c.d.f. Φε. The generalization of this assumption to the heteroscedastic case 

is straightforward, because we are only concerned with the tail probability pr(ε(X)| > t). 

Next, define t∗ = Φε
−1(0.5 + 0.5(1 − δ/2)1/n), where δ is a small positive number. It can be 

verified that with probability at least 1 − δ/2, all the errors εi; i = 1,…, n, are in [−t*, t*]. 

Since Φε is the c.d.f. of a sub-Gaussian distribution with a fixed parameter, t* diverges at a 

rate slower than O{log(n)}. One can check that the RHS of (9) can be bounded similarly as 

in the corresponding proofs, and this completes the proof. ■

Proof of Theorem 2, Part III (Risk Bound)

The proof of this theorem is analogous to that of Lemma 5 and the second half of Selection 

Consistency (Part II of Theorem 2) (i.e., obtaining the bound on the empirical Rademacher 

complexity of ℋn(λ), as well as the convergence rate of Tn(δ/2)). Therefore we omit the 

details here. ■
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Figure 1. 
Plot of the underlying f0 (solid) and fitted f  by DOSK (dashed) when n = 100 and p0 = 2. 

Observations with non-zero α j’s are highlighted in red. One can see that the data sparsity 

penalty tends to choose observations that are closer to 0, π/2, 3π/2 and 2π for the function 

representation.
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Figure 2. 
Contour plots of the mean prediction errors of DOSK for Regression Example 2 where p0 = 

8. Here λ3 is set as {0, 0.25, 0.5, 1} for the four panels and the kernel bandwidth τ = 1/2σ2, 

where σ is the median of the pairwise Euclidean distances of the simulated samples.
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Figure 3. 
Plot of the underlying classification boundary (solid circle) and estimated boundary by 

DOSK (dashed circle) when n = 200 and p0 = 8. Observations with non-zero α j’s are 

highlighted in green.
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Table 5

Average runtime (in second) of DOSK for the extended Class-2 example with different combinations of the 

number of samples (#Obs) and variables (#Var) per tuning parameter combination.

#Var/#Obs 200 400 800 1600

10 12.3 53.8 103.8 518.2

50 39.6 71.3 192.5 604.3

200 54.1 189.2 398.2 1460.747

500 216.8 526.1 972.2 3351.2

1000 509.6 832.2 1851.4 8381.2

2000 1056.1 1881.3 3056.3 18972.5
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Table 7

Results in terms of the mean prediction error (MPE) for the ozone and CPUs data sets.

Ozone CPUs

Methods Train MPE Test MPE Train MPE Test MPE

L2 Kernel 12.51 (1.27) 17.37 (1.68) 0.01 (0.002) 0.40 (0.24)

LASSO 19.34 (1.36) 20.80 (1.69) 0.11 (0.04) 0.21 (0.09)

SIS 18.72 (1.61) 21.47 (1.78) 0.11 (0.03) 0.33 (0.21)

RFE 13.89 (1.44) 18.37 (1.73) 0.02 (0.01) 0.35 (0.20)

COSSO 17.56 (2.14) 20.45 (1.96) 0.12 (0.07) 0.28 (0.12)

KNIFE 11.03 (1.09) 17.08 (1.90) 0.10 (0.01) 0.17 (0.08)

DOSK 11.21 (1.41) 16.92 (1.65) 0.09 (0.02) 0.16 (0.10)
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Table 8

Results in terms of the Mis-Classification Rate (MCR, in percentages) for the breast cancer and Ecoli data 

sets.

Breast Cancer Ecoli

Methods Train MCR Test MCR Train MCR Test MCR

L2 Kernel 0.39 (0.24) 7.78 (1.42) 0.22 (0.33) 13.24 (4.42)

SIS 1.27 (0.73) 4.20 (1.09) 0.95 (0.68) 2.13 (1.21)

RFE 1.33 (0.56) 4.26 (1.00) 0.95 (0.68) 2.13 (1.25)

KNIFE 1.77 (0.54) 4.04 (0.78) 1.69 (0.81) 2.26 (1.27)

DOSK 2.40 (0.60) 3.97 (1.11) 1.52 (1.02) 1.95 (1.02)
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Table 9

Average validation misclassification rates with standard deviations (in parenthesis) on 5-fold cross validation 

of 100 replicates for the gene expression data. All methods use the linear kernel, and the best ones are in bold.

# Genes SVM L1 Logistic KNIFE DOSK

10 0.116 (0.004) 0.129 (0.003) 0.092 (0.004) 0.091 (0.004)

50 0.082 (0.005) 0.090 (0.004) 0.079 (0.007) 0.071 (0.006)

200 0.077 (0.004) 0.069 (0.003) 0.059 (0.006) 0.047 (0.004)

500 0.062 (0.005) 0.048 (0.003) 0.041 (0.005) 0.036 (0.004)

1000 0.075 (0.005) 0.044 (0.003) 0.038 (0.004) 0.035 (0.003)

2000 0.065 (0.005) 0.042 (0.004) 0.034 (0.005) 0.032 (0.004)
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