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Abstract

Glutathione peroxidase 1 (GPX1) is a selenium-dependent enzyme that reduces intracellular 

hydrogen peroxide and lipid peroxides. While past research explored regulations of gene 

expression and biochemical function of this selenoperoxidase, GPX1 has recently been implicated 

in the onset and development of chronic diseases. Clinical data have shown associations of human 

GPX1 gene variants with elevated risks of diabetes. Knockout and overexpression of Gpx1 in mice 

may induce types 1 and 2 diabetes-like phenotypes, respectively. This review assembles the latest 

advances in this new field of selenium biology, and attempts to postulate signal and molecular 

mechanisms mediating the role of GPX1 in glucose and lipid metabolism-related diseases. 

Potential therapies by harnessing the beneficial effects of this ubiquitous redox-modulating 

enzyme are briefly discussed.
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Introduction

Diabetes resulted in a total of 1.6 million deaths in 2015 [1], and is projected to be the 

seventh leading cause of death by 2030 [2]. The prevalence of diabetes is rapidly rising not 

only in developed countries but also in middle- and low-income nations [3]. Overdosing or 

deprivation of dietary selenium (Se) is associated with increased risks of type 2 diabetes 

(T2D), following a U-shaped curve [4–6]. Although nutritional essentiality of Se and 

cellular glutathione peroxidase 1 (GPX1) were both identified in 1957 [7–9], GPX1 had not 

been known until 1972 as the very first selenoprotein and selenoperoxidase to help link these 

two important discoveries [7, 10–12]. However, a virtually exclusive focus on the redox-

modulating functions of GPX1 and the “undoubted” belief in its benefit, similar to that of 

other antioxidants, to insulin sensitivity and function have made the novel finding of T2D-

like phenotypes in the Gpx1-overexpressing mice initially counterintuitive [13–16]. 

Nevertheless, that metabolic paradox has prompted interests in potential roles of the redox 

enzymes such as GPX1 in glucose and lipid metabolism [10, 17–19]. Subsequently, a new 

research field has been created during the past decade or so [20–23] to explore the role and 

mechanism of GPX1 in regulating insulin synthesis, secretion, and sensitivity, glucose 

homeostasis, lipogenesis, and lipolysis and in the onset and progression of diabetes.

Diet-mediated GPX1 expression on glucose and lipid metabolism

Selenium deficiency

Dietary Se deficiency decreased GPX1 gene and protein expression in different tissues of 

several mammalian species [24–35]. While the deficiency did not affect body weights of 

mice [36], it decreased blood glucose concentration and hepatic concentrations of total 

cholesterol (TC), triglyceride (TG), and nonesterified free fatty acid (NEFA) in 5-month old 

mice [13, 15, 37], compared with the Se-adequate controls. Dietary Se deficiency decreased 

hepatic mRNA abundances of lipogenesis-related genes such as cytochrome P450, family 7, 

subfamily a, polypeptide 1 (Cyp7a1), sterol regulatory element binding transcription factor 

1a (Srebp1a) and 2 (Srebp2), and hepatic activities of glucokinase (Gk) and 

phosphoenolpyruvate carboxykinase (Pepck) in the muscle of mice [14, 15, 37]. Meanwhile, 

dietary Se deficiency enhanced pancreatic islet mRNA abundances of catalase (Cat), 
transcription factor C-fos (Cfos), hepatic nuclear factor 4, alpha (Hnf4α), forkhead box o1 
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(Foxo1), glucokinase (Gk1), insulin 1 (Ins1), and transformation related protein 53 (Trp53) 

in the 5-month old mice. In rats, dietary Se deficiency decreased Gpx activity in erythrocytes 

of dams on day 19 of gestation and in the liver of dams on day 14 postpartum, but elevated 

mRNA abundances of insulin receptor substrate 2 (Irs2) in the liver of dams on day 14 

postpartum. In pigs, dietary Se deficiency did not affect plasma glucose or insulin 

concentration, but decreased plasma concentration of TC [34, 38].

Because broiler chicks are fast growing and susceptible to dietary Se deficiency [25, 26, 39], 

and also contain much higher blood glucose concentrations than mammalian species, they 

may serve as a unique model to study roles of Se and GPX1 in glucose and insulin 

metabolism. Feeding chicks an Se-deficient diet for 15 weeks decreased TC and TG, but 

elevated insulin and glucose concentrations in their plasma [39]. While the Se deficiency 

enhanced mRNA abundances of forkhead box a 2 (FOXA2), glucagon (GCG), and insulin 

receptor substrate 1 (IRS1) in the liver [39], it decreased transcript numbers of 16 insulin-

related genes in three tissues. These genes include IRS2, insulin (INS), pancreatic and 

duodenal homeobox factor 1 (PDX1), protein tyrosine phosphatase, non-receptor type 1 

(PTPN1), and solute carrier family 2, facilitated glucose transporter member 2 (SLC2A2) in 

the liver; AKT serine/threonine kinase 1 (AKT1), B-Raf proto-oncogene, serine/threonine 

kinase (BRAF), FOXO1, FOXA2, insulin receptor (INSR), IRS1, IRS2, INS, neuronal 

differentiation 1 (NEUROD1), PTPN1, phosphoinositide 3-kinase (PI3K), SLC2A2, and 

uncoupling protein (UCP) in the muscle, and AKT1, FOXA2, Hnf1 homeobox a (HNF1A), 

HNF4α, INSR, and PDX1 in the pancreas. In summary, dietary Se deficiency dys-regulated 

glucose homeostasis and altered expression of many insulin- and lipogenesis-related genes 

in the liver, muscle, and pancreas of both mammalian and avian species.

Selenium supranutrition

Rats—Compared with those fed 0.3 mg Se/kg diet [33], dams of rats fed 3.0 mg Se/kg diet 

had greater Gpx activities in the erythrocytes on day 19 of gestation and in the liver on day 

14 postpartum. Supranutritional Se induced hyperinsulinemia, insulin resistance, and 

glucose intolerance in the dams at late gestation and/or day 14 postpartum as well as in the 

offspring at the age of 112 days old. These impairments concurred with decreased transcript 

and/or protein levels of insulin signaling proteins in the liver and muscle of dams and/or 

pups. Compared with the 0.3 mg Se/kg diet, the 3.0 mg Se/kg diet resulted in 50% decreases 

in transcripts of Akt2, Insr, and Irs1 and 36% decrease in the transcript of Foxo1 in the liver 

of the offspring. The decreased hepatic transcripts of Insr and Akt2 were verified by 

approximately 60% decreases in the respective proteins Insr and Akt. Although the 

transcripts of these genes in the muscle was not significantly altered by the high-Se diet, the 

treatment decreased the expression of Irs2 and phosphatidylglycerol phospholipase (Pgc1) in 

the muscle of dams on day 14 postpartum. Meanwhile, Foxo1 expression was decreased by 

both Se depletion and supranutrition.

Pigs—Compared with those fed 0.3 mg Se/kg diet [40], pigs fed 3.0 mg Se/kg diet had 

GPX activities in the liver and muscle enhanced by 21 and 57%, respectively. However, 

there were no significant differences in the transcript levels of GPX1 in the two tissues 

between the two diets. Pigs fed 1.0 mg Se/kg had 23–28% lower plasma TG and(or) TC 
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concentrations than did those fed 0.3 mg Se/kg. Pigs fed 3.0 mg Se/kg diet had doubled 

plasma insulin concentration at week 11 than pigs fed 0.3 mg Se/kg diet. Their TC and TG 

concentrations in the adipose tissue were 2.4-fold and 41% greater, respectively, than those 

fed 0.3 mg Se/kg. Likewise, hepatic concentrations of TC, TG, and NEFA in pigs fed 3.0 mg 

Se/kg diet were 40%, 2.3-fold, and 63% greater, respectively, than those fed 0.3 mg Se/kg. 

However, no such differences in the lipid profiles of the muscle tissue were seen between 

these two levels of dietary Se. Compared with those fed the 0.3 mg Se/kg diet, pig fed 3.0 

mg Se/kg diet showed up-regulations of SREBP1 (59%) and fatty acid synthase (FASN) 

(doubled) in the liver and peroxisome proliferator-activated receptor gamma (PPARG) and 

TRP53 (42–48%) in the muscle, and down-regulations of CYP7A1 (88%) in the liver and 

ACC1 (51%) and FASN (57%) in the muscle, respectively.

Chicks—In broiler chicks [41], a high Se (3.0 mg Se/kg) diet elevated plasma GPX activity 

by 37% at week 4 and muscle GPX activities by about 1.8-, 2.2- and 2.8-fold at week 2, 4, 

and 6, respectively, compared with the 0.3 mg Se/kg diet. Meanwhile, the high Se diet 

resulted in 38% higher GPX activity in the pancreas compared with that in the 0.3 mg Se/kg 

group at week 2 [41]. Broilers fed 3.0 mg Se/kg exhibited a lower fasting plasma glucose 

concentration, but higher plasma insulin concentration compared with those fed the 0.3 mg 

Se/kg at week 2. Plasma concentrations of TC and TG were also higher in broilers fed 3.0 

mg Se/kg than those fed 0.3 mg Se/kg. The 3.0 mg Se/kg diet increased muscle transcripts of 

FOXO1, HNF4α, IRS2, and PI3K, hepatic transcripts of GCG, HNF4α, and SLC2A2, and 

pancreatic transcripts of HNF4α, and IRS2 at week 6. In contrast, the 3.0 mg Se/kg diet 

downregulated insulin signaling-related genes of AKT1, FOXA2, INS, PI3K, and UCP in 

the pancreas and AKT1, GCG, and INSR in the muscle at the same time. Meanwhile, 

hepatic transcripts of GCG were elevated by the Se supranutrition and deficiency in broiler 

chicks. Pancreatic transcripts of AKT1, and FOXA2, muscle transcripts of AKT1, and INSR 
in the chicks were downregulated by the Se supranutrition and deficiency in the same 

direction. In contrast, muscle transcripts of FOXO1 and IRS2, hepatic transcript of SLC2A2, 

and pancreatic transcript of HNF4α were affected by the Se supranutrition and deficiency in 

opposite ways. Organic sources of Se from 2-hydroxy-4-methylselenobutanoic acid and Se-

enriched yeast seemed to be more effective in restoring hepatic GPX1 transcript and GPX 

activity in tissues than sodium selenite in broiler chicks [42]. However, differences of these 

Se forms in affecting glucose and lipid metabolism remain unclear.

Humans—Blood or plasma Se, instead of GPX(1) activity, has often been measure to 

assess body Se status in human population studies. A recent review [43] indicated that five 

out of eight cross-sectional studies had shown positive associations between serum/plasma 

Se and T2D or fasting circulating glucose. Among the five randomized controlled trials 

(RCTs) with Se supplementation, three trials, including the well-known Se and Vitamin E 

Cancer Prevention Trial [44], showed no effect, one showed lower fasting serum insulin and 

homeostasis model assessment of insulin resistance, and only one, the Nutritional Prevention 

of Cancer study conducted in the dermatology outpatients, showed an increased incidence of 

T2D [45]. But, Algotar et al. [46]failed to observe the same positive effect of Se on diabetes 

prevention at a later time. The Selenium and Celecoxib Trial for the prevention of colorectal 

adenoma recurrence suggested that Se supplementation might increase the risk of T2D in 
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older participants following removal of adenomas [47]. A recent case control study reported 

that high serum Se concentrations were associated with increased risks for diabetes mellitus, 

independent of central obesity and insulin resistance [48].

Higher risks of dyslipidemia were associated with higher circulating Se concentrations in the 

observation trials from all the three times of National Health and Nutrition Examination 

Survey conducted between 1988–2012 in US [49–51], as well as from the populations of 

Lebanon [52], Taiwan [53], Britain [54], Finland [55], and Spain [56, 57]. But results from 

the Se supplementation trials were inconsistent, similar to those for the glucose metabolism. 

Supplementing Se at 100 μg/day for 6 months increased the cord blood concentrations of TG 

in a small group of pregnant women (n = 34 for supplementation vs 32 for placebo) [58]. 

While supplementing antioxidants including Se increased for > 7 years the risk of 

dyslipidemia in women [59]. However, supplementing Se to the Britain [60] and Chinese 

[61] adults improved their blood lipid profiles. In addition, the 1988–94 US survey showed 

that higher levels of serum Apo B and Apo A1 were associated with the highest vs. the 

lowest serum Se concentrations [49]. Serum lipoprotein (A) concentrations were positively 

correlated with Se in a 140 adult male population [62]. Notably, those who performed the 

Spanish trial [56] supported a hypothesis that regulations of blood Se and lipid profiles 

shared common pathways. Overall, results on the associations of Se with glucose and lipid 

metabolism from the human studies are inconsistent or even conflicting. Large randomized 

controlled trials are needed to confirm the pro-diabetic or pro-dyslipidemic potential of 

excessive Se and GPX1.

Fat, Vitamin E, and other factors

High-fat intake—Although GPX1 mRNA, protein, and activity were highly responsive to 

dietary Se changes in different tissues of various species [25, 29, 30, 33–35, 42, 63], its 

mRNA was not changed by a high-fat diet in the heart, hypothalamus, kidney, liver, muscle, 

pancreas, perirenal adipose tissue (PAT), pituitary, subcutaneous adipose tissue (SAT), or 

thyroid [64, 65] of pigs. However, several other selenoprotein genes including DIO2, 

SELENOI, SELENOS, SELENOV, and TXNRD1 in the thyroid; SELENOF in the liver; 

SELENOO in the kidney; GPX4, GPX6, DIO1, and SELENOV in the muscle; GPX4 and 

SELENOM in the pituitary; and GPX3 in the hypothalamus were up-regulated by the high 

fat diet in pigs. Meanwhile, DIO1, SELENOH, SELENOI, SELENOK, SELENOM, 

SELENOW, and TXNRD1 in the pancreas; SELENOH, SELENOI, and TXNRD1 in the 

hypothalamus; SELENOI, SELENOM, and MSRB1 in the subcutaneous fat; SELENOH, 

SELENOK, SELENOP, SELENOV, and SELENOW in the perirenal fat; GPX3, GPX6, 
DIO3, and SELENOV in the liver; SELENOI, and TXNRD1 in the pituitary; SELENOM in 

the kidney were down-regulated by the high fat diet in these pigs.

Compared with the control, pigs fed the high fat diet had greater concentrations of serum 

TG, TC, low density lipoprotein and NEFA [64, 65]. The high fat diet up-regulated 5 

lipogenesis-related genes in 3 tissues. These genes included agouti signaling protein (ASIP), 

agouti related protein (AGRP), and resistin (RETN) in the skeletal muscle; uncoupling 

protein 3 (UCP3) in the thyroid; and uncoupling protein 2 (UCP2) in the pituitary. In 

contrast, 11 genes were downregulated in 6 tissues. These changes included AGRP in the 
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liver, kidney, and PAT; leptin receptor (LEPR) in the liver, kidney, and SAT; adiponectin 

receptor 2 (ADIPOR2) in the kidney, PAT, and SAT; and fatty acid binding protein 4 

(FABP4) in the PAT, pituitary, and hypothalamus. In addition, adiponectin (ADIPOQ) was 

downregulated in the PAT and SAT. Genes that were affected in single tissues include ASIP, 

fatty acid binding protein 3 (FABP3), RETN, and UCP2 in the liver; fatty acid binding 

protein 1 (FABP1) in the PAT; and FASN in the SAT. Apparently, these high fat diet–

mediated changes of lipogenesis-related gene expression were not directly related to GPX1 
mRNA or activity.

Vitamin E—Vitamin E has a close relationship with Se in regulating lipid metabolism [44, 

66, 67]. The observation that diabetes leads to high concentrations of organic peroxides, and 

cholesterol, and the fact that vitamin E protects fatty acids from oxidation or peroxidation 

implicate it as a possible inhibitor of diabetogenesis [68]. In fact, supplementing the diabetic 

group with vitamin E and Se for 5 weeks led to a significant increase in GPX activities in 

plasma [69] and decreases in plasma concentrations of malondialdehyde (MDA) and 

oxidized low-density lipoprotein (LDL) [69]. In contrast, vitamin E supplementation (all-

rac-α-tocopheryl acetate at 50 mg/kg) to a vitamin E deficient diet for chicks led to ~30–

50% decreases in transcripts of GPX1, SELENOI, TXNRD1, and TXNRD2 in the liver [25], 

despite no effect on the liver GPX1 activity. Notably, the same treatment in another study did 

not affect GPX1 protein, but decreased GPX4 protein and transcripts of SELENOF and 

SELENOW in the muscle of Se-adequate chicks [26]. The same treatment also elevated 

transcript of muscle SELENOM, regardless of the Se status of chicks.

Feeding young adult mice high levels of dietary vitamin E (all-rac-α-tocopheryl acetate at 

750 or 7,500 mg/kg) could not replace the protection by Gpx1 against the paraquat-induced 

lethality [70], although hepatic Gpx activities were elevated by ~40% in the Gpx1−/− mice 

and by 17~24% the wild-type mice compared with those fed 0 or 75 mg of all-rac-α-

tocopheryl acetate//kg. Contrary to the chick results, hepatic Gpx4 activities in both Gpx1−/− 

and wild-type mice showed dose-dependent increases (36 and 48%, respectively) in 

response to the increases in dietary vitamin E supplementation. Apparently, supplemental 

dietary vitamin E at the nutrient requirement and higher levels could affect the transcript, 

protein, and activity of several selenoproteins including Gpx4. However, its impacts may be 

species, tissue, and selenoprotein-dependent, and the functional implication for the 

interaction of Se and vitamin E remains unclear. Recent studies have illustrated the 

involvement of Gpx4 in the ferroptotic cell death that entails cellular iron accumulation and 

lipid peroxidation, and Gpx4−/− cells could be rescued from the cell death by vitamin E [71].

Other factors—Zinc finger protein 143 (ZNF143) transcription factor mediated cell 

survival through upregulation of the GPX1 activity at the mitochondrial respiratory 

dysfunction [72]. A novel upregulation of Gpx1 by knockout of regenerating islet-derived 3 

beta (Reg3β) aggravated acetaminophen-induced hepatic protein nitration, while the 

knockout enhanced Gpx1 activity via selenocysteine lyase upregulation [73]. Skeletal 

muscle Gpx1 expression in mice was altered by both exercise and dyslipidemia through 

changes in DNA methylation [74].
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Genetically-altered GPX1 expression on glucose and lipid metabolism

Gpx1 knockout

Compared with wild type mice, Gpx1−/− mice had lower pancreatic β-cell mass, 

hypoinsulinemia, mild hyperglycemia, and impaired ATP production and glucose-stimulated 

insulin secretion(GSIS) in islet [16] (Figure 1). The molecular mechanism was associated 

with decreased Pdx1 and elevated Ucp2 in pancreas [16]. Knockout of Gpx1, contrary to the 

overexpression of Gpx1, improved insulin sensitivity [16]. This was because appropriate 

amount of intracellular reactive oxygen species (ROS) is important to control the activity of 

protein phosphatases. Consistently, the improved insulin sensitivity in the Gpx1−/− mice 

were associated with elevated intracellular hydroperoxides and phosphorylation of p53 and 

p38-AMP-activated protein kinase (Mapk) in the islets and enhanced PI3K/Akt signaling 

and glucose uptake in the muscle. Meanwhile, Gpx1−/− mice were protected from the high-

fat diet-induced insulin resistance by a mechanism related to enhanced oxidation of the PI3K 

antagonist phosphatase and tensin homolog (Pten) [75].

Gpx1−/− mice showed decreased expression of gluconeogenic genes such as glucose-6- 

phosphatase (G6pc) and phosphoenolpyruvate carboxykinase (Pepck), increased glucose 

uptake by white gastric and diaphragm skeletal muscles through membrane docking of 

glucose transporter 4 (Glut4) upon Akt substrate of 160 kDa (As160) phosphorylation on 

Thr642 [pAS160(Thr642)], and enhanced insulin-induced oxidation β fibroblast cells [75]. 

In line with the elevated PI3K/Akt signaling in the Gpx1−/− muscle, the phosphorylation 

(Thr642) of the AS160, a Rab GTPase that regulates Glut4 docking on the plasma 

membrane for glucose uptake, was increased, whereas glycogen synthase Ser-640/641 

phosphorylation was reduced (a consequence of Akt phosphorylating and inhibiting 

glycogen synthase kinase 3). No significant change in insulin-induced PI3K/Akt signaling 

was seen in the liver or adipose tissue of the Gpx1−/− mice. In another study [76], Gpx1−/− 

mice fed an obesogenic high-fat diet for 12 weeks exhibited systemic oxidative stress and 

hyperglycemia, but had unaltered whole body insulin sensitivity, improved hepatic insulin 

signaling, and decreased whole body glucose production, hepatic steatosis and damage, 

plasma insulin, and glucose stimulated insulin secretion. The attenuated insulin secretion 

was associated with the decreased islet β cell Pdx1 and insulin production, elevated 

pancreatic Ptp (protein tyrosine phosphatase) oxidation, and accelerated Y701 

phosphorylation of signal transducer and activator of transcription 1 (Stat1).

In hepatocyte-specific Gpx1 knockout mice [77], insulin induced a combined change in the 

liver via the PI3K/Akt2 pathway in the postprandial state: decreased transcription of 

gluconeogenic genes of Pck1 and G6pc and increased transcription of Gk1 and other genes 

that promote glycogen storage or glycolysis. This combination coordinately repressed 

hepatic glucose production and prevented postprandial hyperglycaemia. In the fasting state, 

expression of G6pc and Pck1 was also decreased in the liver of these mice, accompanied by 

a 7.2-fold increase in the Gk1 transcript. Because Gk catalyzes the conversion of glucose to 

G6P and serves as the first step of glycolysis or glycogen synthesis, hepatic glycogen 

storage was elevated in these mice. In addition, the expression of pyruvate dehydrogenase 

kinase 4 (Pdk4) was decreased, whereas hepatocyte basal and insulin-induced H2O2 
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generations were exacerbated by the Gpx1 deficiency. Moreover, the insulin-induced 

phosphorylation of insulin receptor-Y1162/Y1163 and Akt-S473 was enhanced. These 

results were consistent with that the GPX1 deficiency repressed hepatic glucose production 

and promoted glucose storage and utilization without altering lipogenesis [18].

Gpx1 overexpression

GPX1 overproduction may be beneficial if diabetes or obese are developed. However, 

excessive GPX1 activity is actually deleterious to normal metabolism. Figure 1 illustrates 

molecular and biochemical mechanisms for the T2D-like phenotypes induced by Gpx1 
overexpression [Gpx1(OE)] in mice [13, 15, 37, 78]. The over-produced Gpx1 activity in the 

pancreatic islets enhanced β cell mass and insulin synthesis and secretion via modulations of 

key genes and proteins at the epigenetic, transcript, and/or protein levels. These effects led to 

hypersecretion of insulin and hyperinsulinemia. Meanwhile, Gpx1 overexpression also 

impaired insulin responsiveness in the liver and muscle and disturbed lipogenesis, 

glycolysis, and gluconeogenesis in these tissues. The attenuated phosphorylations of Insr 

and Akt in both liver and muscle after insulin stimulation were associated with over-

quenching intracellular ROS that are required for inhibiting protein phosphatases [13, 15, 

78, 79]. This subsequently contributed to insulin resistance in these mice. Dietary Se 

deficiency actually improved the T2D-like phenotypes in the Gpx1(OE) mice [37]. The 

improvement was mediated by reversing gene expression of key factors involved in insulin 

synthesis and secretion (Beta2, Cfos, Foxa2, Pregluc, Ins1, Trp53, and Sur1) to the wild type 

levels. Dietary Se deficiency also downregulated hepatic gene expression of two rate-

limiting enzymes for lipogenesis (Acc1 and Gk1), and lowered activities of hepatic Gk and 

muscle Pepck in these mice.

As discussed above, elevated GPX1 activity was associated with excessive dietary Se intakes 

and insulin resistance in various species [33, 34, 40, 41]. Because the Gpx1 overexpression 

induced insulin resistance via diminishing intracellular ROS, elevating other antioxidant 

enzymes or antioxidants may cause similar problems [68, 80]. Overall, the development of 

T2D-like phenotypes in the Gpx1(OE) mice offers a unique model for the study of redox 

control and insulin resistance [81, 82].

GPX1 on high-fat diet/diabetic-related atherosclerosis

Recent clinical studies have suggested a major protective role for GPX1 against 

atherosclerosis [83–85]. Lack of functional Gpx1 accelerated diabetes-associated 

atherosclerosis via upregulation of pro-inflammatory and pro-fibrotic pathway in ApoE-

deficient mice [86]. However, a specific deficiency in Gpx1 did not cause changes in 

biomarkers of oxidative damage or increased atherosclerosis in a murine model with the 

high fat diet-induced atherogenesis [87]. Thus, effects of Gpx1 and high fat diet in the 

presence and absence of ApoE deficiency were different. In ApoE-deficient mice, deficiency 

of Gpx1 accelerated the progression of atherosclerosis [88]. Likewise, lack of Gpx1 

accelerated atherosclerosis and upregulated proatherogenic pathways in diabetic ApoE/Gpx1 

double-knockout mice, thereby establishing Gpx1 as an important therapeutic target [89, 

90]. Ebselen reduced atherosclerotic lesions in most regions of the diabetic ApoE-deficient 

aorta, except for the aortic sinus, suggesting its effectiveness as a potential antiatherogenic 
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therapy of diabetic-macrovascular disease. Ebselen might elicit its effect via modulation of 

transcription factors such as NF-κB and AP-1 [89, 90].

Atherosclerotic lesions within the aortic sinus region, as well as arch, thoracic, and 

abdominal lesions, were significantly increased in diabetic ApoE/Gpx1 double-knockout 

mice aortas compared with diabetic ApoE-deficient mice aortas [86]. This was associated 

with increased staining for smooth muscle cells (SMCs) and macrophages, consistent with 

increased SMC migration and macrophage infiltration. Furthermore, a range of molecules 

implicated in the progression and development of atherosclerosis, including vascular cell 

adhesion molecule-1(VCAM1), vascular endothelial growth factor and connective tissue 

growth factor, cytokines, growth factors, and receptors for advanced glycation end products, 

were increased by the absence of Gpx1 [86]. Furthermore, plasmalogen enrichment via batyl 

alcohol supplementation attenuated atherosclerosis in ApoE and ApoE/Gpx1 double 

deficient mice, with a greater effect in the latter group [91]. Plasmalogen enrichment may 

represent a viable therapeutic strategy to prevent atherosclerosis and reduce cardiovascular 

disease risk, particularly under conditions of elevated oxidative stress and inflammation 

[91].

Subcellular location of GPX1 and its interaction with other GPX enzymes

Immunogold ultrastructural staining showed that GPX1 exists not only in cytosol but also in 

the mitochondria and nucleus [20, 92]. Cytosol GPX1 overexpression reversed the tumor 

cell growth inhibition caused by manganese-dependent superoxide dismutase 

overexpression, altered intracellular GSH, GSSG, and ROS [92], and attenuated degradation 

of the inhibitory subunit a of NF-κB [92]. The GPX1 gene codes for both the cytosolic and 

mitochondrial forms of the enzyme [93, 94]. Liver is highly dependent on GPX1 for its 

mitochondrial antioxidant defenses [95]. Knockout or overexpression of Gpx1 did not 

produce significant changes in the other forms of GPX, implying an independent expression 

of these selenoperoxidases [96, 97]. The relationship between Gpx1 and steroidogenesis was 

confirmed by the immunocytochemical localization of the enzyme in the rat adrenal cortical 

cells [22], and both cytosol- and mitochondrial-Gpx1 were modified by lipoperoxidative 

damage in those cells. It seemed that the pattern of Gpx1 staining was a sensitive and 

specific indicator of oxidative damage in the cells [98, 99].

Expression of GPX2 is mainly in the gastrointestinal epithelium, but is also localized in the 

epithelium lining of the lung, bladder, and breast[100]. This enzyme has been detected only 

in cytosol. Knockout of Gpx2 in mice induced an increase in Gpx1 expression that could 

only compensate partially for the loss of Gpx2 in the colon [101]. The Gpx2−/− mice were 

susceptible to allergic airway inflammation [102]. A double knockout of Gpx1 and Gpx2 
produced a worse impairment of the intestinal integrity, than the single knockout, resulting 

in spontaneous developments of ileocolitis [103] and colon cancer [104]. Both symptoms 

could be efficiently prevented by bringing back one allele of Gpx2 but not Gpx1 [105].

As the only extracellular isoform of the GPX family, GPX3 is detectable in the plasma and 

in extracellular body fluids such as chamber water of the eye, thyroid colloid lumen, and 

amniotic fluid [106]. Liver Se concentration and cytosolic GPX activity were not altered by 
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the knockout of Gpx3 [107]. Three forms of GPX4 proteins are expressed by the Gpx4 gene: 

a long form (lGPX4), a short form (sGPX4), and a nuclear form (nGPX4) [108]. The lGPX4 

has a mitochondrial signal at the N terminus, and is believed to be targeted to mitochondria 

[109]. The sGPX4 protein is synthesized using the second translation start codon and is 

believed to be the non-mitochondrial GPX4 protein found in cytoplasm, nucleus, and 

microsome. The nGPX4 protein is encoded from an alternative first exon called exon Ib and 

is expressed mainly in sperm nuclei. nGPX4 proteins are dispensable for both somatic 

functions and fertility [110]. Likewise, there was no change in the expression of GPXs in the 

liver of 1 day old Gpx4-deficient mice [111]. Moreover, GPX6 has been found only in the 

olfactory epithelium [112].

Polymorphisms of human GPX1 on glucose and lipid metabolism

There are a number of recognized single nucleotide polymorphisms (SNP) of GPX1 
associated with obesity and insulin resistance in humans (Table 1). A well-known missense 

mutation of rs1050450 (C to T substitution) results in the substitution of leucine for proline 

at codon 198 (or 200) of the GPX1 protein [85, 113]. A few studies have shown the leucine 

allele to be associated with outcomes of oxidative stress, central obesity and insulin 

resistance, with some sex-related differences [114, 115]. Male T allele (leucine) carriers had 

a higher metabolic syndrome prevalence, with higher waist-hip ratios, serum TG and insulin, 

homeostasis model assessment of β cell function, and systolic and diastolic blood pressures 

[115, 116]. Female T allele carriers showed higher body fat mass, serum insulin, and 

homeostasis model assessment of insulin resistance [114]. Nutritional supplementation of Se 

from Brazil nuts was associated with higher DNA damage in the leucine carriers [114]. The 

GPX1 Pro200Leu polymorphism (rs1050450) was associated with morbid obesity, 

independently of the presence of prediabetes or diabetes in women from central Mexico 

[117]. Carriers of the T allele also had higher levels of lipoperoxides and MDA in LDLs 

[118].

A combination of Pro198Leu SNP (rs1050450) with the copy number variant Ala5/Ala6 at 

codon 7–11 decreased the activity of the enzyme by 40% in vitro [85]. The same study 

demonstrated that the combination of two other SNPs (-602A/G and 2C/T) decreased the 

transcriptional activity of GPX1 by 25% [85]. These data suggest that the T allele was 

associated with lower GPX activity and a possible higher oxidative stress status, aggravating 

the obesity-associated phenotypes. The genotype distribution of GPX1 Pro198Leu variant in 

the Chinese population (the frequency of T allele is 14%) was different from that in the 

Swedes (the frequency of T allele is 9.0%) [119, 120]. Pro198Leu polymorphism of GPX1 
raised the risk of T2D in Han Chinese of Shanghai. The T allele was a risk factor of T2D but 

not of diabetic coronary heart disease [120]. Another GPX1 variant, T-allele of rs3448, was 

associated with kidney complications in T1D patients [21], which was consistent with the 

implication of GPX1 in the protection against renal oxidative stress in those patients [121].

Conclusion and perspective

Overall, this review highlights the dual role of GPX1 in glucose and lipid metabolism and 

the related human health implications. As the most abundant isoform of the GPX family, 
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GPX1 exerts its impacts via regulating gene expression, protein function, and enzyme 

activities of key factors involved in both macro- and micro-nutrient metabolism [97, 122, 

123]. The combined effects of the Gpx1 overexpression [14, 15, 20, 44, 124] in the insulin-

producing and insulin-responsive tissues lead to metabolic phenotypes similar to T2D [37, 

78, 79]. Meanwhile, the T1D-like phenotypes in the Gpx1−/− mice [16, 75] seem to be 

reciprocal. These two extremes underscore the importance to maintain an appropriate 

expression and activity of this selenoperoxidase for controlling redox balance and glucose 

and lipid metabolism [13, 17, 97, 124–126]. Excessive ROS accumulation, due to Gpx1 
deficiency, inhibits gene expression or protein production of key transcriptional factors like 

Pdx1, leading to lowered islet β cell mass, insulin synthesis, and insulin secretion [37, 78]. 

However, the physiological level of ROS is essential to control protein phosphatase activity 

for insulin signaling. Overly diminishing intracellular ROS by Gpx1 overexpression 

desensitizes insulin signaling [4, 21, 77, 123]. Along with the chronic hyperinsulinemia 

resultant from the dysregulated islet β cell mass, insulin synthesis, and insulin secretion, this 

desensitization leads to insulin resistance in the Gpx1(OE) mice [13, 79].

Illustrating the associations of GPX1 polymorphisms with risks of diabetes and obesity in 

different populations [113, 115–118] highlights GPX1 as a novel, key regulator of insulin 

physiology and energy metabolism. Diabetic patients with decreased GPX1 function, due to 

GPX1 polymorphism, had an increased risk for cardiovascular diseases [83–85]. The 

deficiency of GPX1 accelerated diabetic atherosclerosis in the ApoE-knockout mice [86], 

and the acceleration concurred with an increased nitrotyrosine formation and transcriptional 

changes of inflammatory and profibrotic factors [86]. Ebselen was shown to reduce diabetes-

associated atherosclerosis [89]. This well-known GPX1 mimic has also been successfully 

used to decrease oxidative injuries [89, 127], to prevent noise-induced hearing loss [128], 

and reduce neurotoxicity in a variety of animal models in which GPX1 deficiency caused 

opposite effects [129].

Ebselen has been shown to improve GSIS in islets of Gpx1−/− mice [127]. The rescue results 

from a coordinated transcriptional regulation of four key GSIS regulators via the PGC-1α-

mediated signaling pathway, and supports the notion that excessive ROS inhibits GSIS [130] 

and ebselen removes this inhibition by acting as a GPX mimetic to scavenge the elevated 

intracellular H2O2 due to the lack of Gpx1. Likewise, the SOD mimic, copper 

diisopropylsalicylate, that catalyzes H2O2 production from superoxide, also rescued the 

defected GSIS in the superoxide dismutase-1 (Sod1) knockout mouse pancreatic islets. This 

suggested that the lack or blocking of enzymatic production of H2O2 from superoxide in the 

Sod1−/− islets impaired GSIS. Because an adequate amount of H2O2 is required to initiate 

GSIS [131], the Sod1-deficient islets might not produce sufficient H2O2 or have appropriate 

ratios of H2O2 to superoxide to support GSIS. Thus, the SOD mimic treatment could have 

rescued GSIS by restoring H2O2 generation. However, this H2O2 restoring notion could not 

explain the positive effect of ebselen (supposed to decrease H2O2) on GSIS in the Sod1-

deficent islets. Meanwhile, the SOD mimic affected the gene expression of the Pgc-1α 
pathway in a different or just opposite way from that of ebselen in the same type of islets 

(double knockouts of Gpx1 and Sod1) [127]. These findings not only have illustrated that 

GPX1 and SOD1, as two important intracellular antioxidant enzymes, function 

distinguishably in regulating insulin secretion, but also underscored the ROS concentration- 
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or redox balance-dependent effects of their mimics. This complexity highlights the 

necessities and opportunities of discretional applications of various antioxidant enzyme 

mimics in treating insulin-related disorders [15].
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SREBPs sterol regulatory element-binding proteins

SUR1 sulfonylurea receptor 1

T1D type 1 diabetes

T2D type 2 diabetes
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Highlights

• Supranutrition of Se is associated with hyperglycemia and hyperinsulinemia

• Knockout of Gpx1 induces metabolic changes similar to type 1 diabetes

• Overexpression of Gpx1 produces type 2 diabetes-like phenotypes

• Human GPX1 polymorphism links to risks of diabetes and obesity
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Figure 1. 
Roles of glutathione peroxidase 1 (Gpx1) in insulin physiology, glucose, lipid, and protein 

metabolism. Overexpression of Gpx1 [Gpx1(OE)] induced hypertrophy of β cells, 

hyperinsulinemia, hyper secretion of insulin, hyperglycemia, hyperlipidemia, insulin 

resistance, and obesity. In contrast, knockout of Gpx1 (Gpx1−/−) led to hypotrophy of β-

cells, hypoinsulinemia, hyposecretion of insulin, and elevated insulin sensitivity. Lines 

ending with arrows, activation or increase; Lines ending with cross bars, inhibition or 

decrease; Dash with question mark, unknown function; T1D, type 1 diabetes; T2D, type 2 

diabetes;
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Table 1

Genetic variants in human GPX1 associated with diabetes/obesity-related phenotypes

Analyzed variant(dbSNP) Other designation Metabolic phenotype Reference

rs1050450 594C/T, Pro198Leu The CT/TT genotype had higher waist-hip ratios, triacylglycerol 
concentrations, homeostasis model assessment for β-cell function, and 
systolic and diastolic blood pressures in men

[115]

The CT/TT genotype had higher body fat mass, insulin and HOMA-IR in 
women

[115]

Leu carriers had higher lipoperoxides and MDA in LDL [118]

Leu carriers showed higher DNA damage after Se supplementation [114]

Leu carriers had higher lipoperoxides and MDA in LDL, lower GPX 
activity

[113]

Erythrocyte GPX activity was lowered with the T allele dose [113]

Pro198Leu The variant T allele was associated with a higher risk of developing 
diabetic peripheral neuropathy

[116]

Ala5/Ala6+ Pro198Leu Ala6/198Leu polymorphism had a 40% decrease in GPX1 activity [85]

-602A/G+2C/T 25% decrease in transcriptional activity [85]

Pro200Leu linked to morbid obesity in central Mexican women [117]

rs8179169 Arg5Pro Had an effect on erythrocyte Se, with lower concentrations in individuals 
with the GC genotype

[132]

rs3448 XT/CC The CT/TT allele was associated with higher plasma concentrations of 
isoprostane and advanced oxidation protein products

[21]

GPX1, glutathione peroxidase 1; HOMA-IR, homeostasis model assessment of insulin resistance; LDL, Low-density lipoprotein; MDA, 
malondialdehyde; Se, selenium.
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