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Dereplication of microbial metabolites through
database search of mass spectra
Hosein Mohimani1,2, Alexey Gurevich3, Alexander Shlemov 3, Alla Mikheenko3, Anton Korobeynikov 3,4,
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Natural products have traditionally been rich sources for drug discovery. In order to clear the

road toward the discovery of unknown natural products, biologists need dereplication stra-

tegies that identify known ones. Here we report DEREPLICATOR+, an algorithm that

improves on the previous approaches for identifying peptidic natural products, and extends

them for identification of polyketides, terpenes, benzenoids, alkaloids, flavonoids, and other

classes of natural products. We show that DEREPLICATOR+ can search all spectra in the

recently launched Global Natural Products Social molecular network and identify an order of

magnitude more natural products than previous dereplication efforts. We further demon-

strate that DEREPLICATOR+ enables cross-validation of genome-mining and peptidoge-

nomics/glycogenomics results.
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S ince 1990s, there has been a decline in the pace of anti-
biotics discovery from natural sources1. However, natural
product discovery has recently gained attraction due to

multiple technological advances, exemplified by the discovery of
teixobactin2,3. Global Natural Products Social (GNPS) molecular
networking project4 is a recent mass spectrometry data repository
in the field of natural products. While thousands of laboratories
have contributed billion mass spectra, identifying spectra of
known natural products in this repository is a challenging pro-
blem. The first attempts to solve this problem date back to
1960s5–8, two decades before mass spectrometry-based database
search tools appeared in proteomics9,10. However, to date, com-
putational mass spectrometry of small molecules is regarded as a
less mature field than the proteomic counterpart11–18.

One of the main challenges in the field of natural product is the
high rate of re-discovery of known natural products. The process
of using the information about the chemical structure of a known
natural product to identify this compound in an experimental
sample (without having to repeat the entire isolation and
structure-determination process) is called dereplication. Devel-
opment of chemical structure databases such as PubChem (≈83
million compounds), ChemSpider (≈58 million compounds),
ChEMBL (2.1 million compounds), ChemBank (1.2 million
compounds), ChEBI (440,000 compounds), Dictionary of Natural
Products (≈300 thousand compounds), AntiMarin (≈60 thousand
compounds), KEGG (≈16 thousand compounds), MetaCy (≈10
thousand compounds), mzCloud (≈3 thousand compounds),
NuBBEDB (2500 compounds), MIBiG (≈1600 compounds),
DrugBank (1360 compounds with structural information), and
Norine (≈1000 compounds) has paved the way for development
of bioinformatics tools for natural product dereplication. Early
dereplication approaches were based on deriving the exact che-
mical formula using high-resolution precursor mass and search-
ing for compounds described by this formula in chemical
structure databases19–22. However, this approach often fails
because the number of possible formulas rapidly increases with
the molecular mass of metabolites and because existing chemical
databases contain many compounds with identical formulas.

Several strategies have been proposed for dereplicating spectra
of metabolites, including (i) combinatorial fragmentation strate-
gies that use systematic bond disconnection approach to break
bonds between heavy atoms23–28, (ii) the HighChem Mass
Frontier approach that predicts fragmentation based on standard
reactions and a library of fragmentation rules; (iii) approaches
based on learning the mapping between mass spectra and
molecular formula of the candidate compounds from reference
spectra to create predicted fragmentation trees and possible
structures against which mass spectra can be searched29,30; (iii)
approaches that use stochastic Markov modeling for simulating
mass spectra from molecular structures and matching them
against experimental spectra31; (iv) approaches that construct in
silico mass spectra by fragmenting peptides and lipids along
specific bonds32,33; (v) approaches that annotate the structural
motifs rather than the entire structure34; (vi) the ab initio
approaches that predict the likely fragmentation of a molecule by
computing its energetic landscape35.

Currently, the fast spectral library search programs36 search
over 1000 spectra against the entire NIST library per seconds.
However these approaches are unable to directly search chemical
structure libraries. Despite recent progress (CSI:FingerID29

increased metabolite identification rates fivefold as compared to
previous approaches), the existing tools for metabolite identifi-
cations are either limited to specific classes of molecules such as
peptides and lipids32,33, work best for identification of small
molecules (below 500 Da)29, or become prohibitively time-
consuming for searching large spectral datasets29. Recently, we

introduced DEREPLICATOR32 for searching spectral datasets
against the database of peptidic natural products (PNPs) that
include nonribosomal peptides (NRPs), and ribosomally synthe-
sized and post-translationally modified peptides (RiPPs). DERE-
PLICATOR constructs theoretical spectra of peptide natural
products by disconnecting all the bridges and 2-cuts representing
amide bonds, and measuring the masses of the connected com-
ponents. By applying spectral networks37, DEREPLICATOR
enabled identification of variants of known PNPs. While
DEREPLICATOR search of GNPS identified hundreds of pep-
tides and their variants, it is limited to dereplicating PNPs and
cannot identify other classes of natural products such as poly-
ketides and terpenes.

Here we describe DEREPLICATOR+ algorithm for derepli-
cating spectra against diverse metabolites. After searching nearly
two hundred million tandem mass spectra in the GNPS molecular
networking infrastructure, DEREPLICATOR+ identifies five
times more molecules than the previous approaches. DEREPLI-
CATOR+ enables high-throughput identification of variants of
known natural products by spectral networks.

Results
Outline of the DEREPLICATOR+ algorithm. Figure 1 and
Supplementary Figure 1 show the DEREPLICATOR+ pipeline
that includes the following steps described in the Methods sec-
tion: (i) constructing metabolite graphs from metabolite chemical
structures, (ii) generating fragmentation graphs, (iii) constructing
decoy fragmentation graphs, (iv) annotating target and decoy
fragmentation graphs by spectra and scoring metabolite-spectrum
matches (MSMs), (v) computing statistical significance of MSMs
and evaluating the false discovery rate (FDR), and (vi) enlarging
the set of MSMs by molecular networking (Fig. 1).

Datasets. To benchmark DEREPLICATOR+, we used the Anti-
Marin database (60,908 compounds and 29,491 unique com-
pounds) and the Dictionary of Natural Products (254,727
compounds and 83,889 unique compounds). Compounds are
flagged as duplicates if they have identical chemical structures.
We searched all spectra from the following reversed-phase liquid
chromatography high-resolution mass spectrometry datasets
specified in Supplementary Table 1 and Supplementary Note 1.
SpectraActiSeq (178,635 spectra from MSV000078604 and
473,135 spectra from MSV000078839) contains spectra obtained
from bacterial extracts of 36 strains of Actinomyces with pub-
lished draft genomes. The spectral dataset is partitioned into
36 subsets corresponding to these strains32,38. SpectraLibrary (5473
annotated spectra) contains a combination of spectral libraries
from the GNPS public library, the NIH natural products library,
the Food and Drug Administration natural products library,
MASSBANK, HMDB, and RESPECT, all available from GNPS.
SpectraLichen (926,864 spectra from MSV000078584) contains
spectra obtained from extracts of Peltigera sp39. Illumina paired
end reads (82,722,940) of length 250 bp obtained from the same
sample were assembled by metaSPAdes40. The total length of
contigs longer than 1000 bp in the assembled metagenome is 136
Mb. SpectraCyan (11,921,457 spectra from MSV000078568) con-
tains spectra from extracts of cyanobacterial strains, partitioned
into 317 datasets corresponding to individual collections41. Four
of these strains have their genomes available (Moorea bouillonii
PNG19MAY05, Moorea producens JHB22AUG96, M. producens
NAK12DEC93-3La, and M. producens PAL15AUG08). Spec-
traGNPS (248.1 million spectra) contains spectra from 555 GNPS
datasets with 77,045 samples (deposited by over 200 labs before
August 2017). SpectraFungi, SpectraActi, and SpectraPseudo refer to
subsets of SpectraGNPS containing spectra from Fungi,
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Actinomyces, and Pseudomonas, respectively. To identify the
spectra coming from media and contamination, several analyzed
samples (called blank samples) consisted only of media with no
bacteria cultured in them.

Discovering chalcomycin variants from Actinomyces spectra.
At 1% FDR (corresponding to the p value threshold 10−7 com-
puted by MS-DPR42), DEREPLICATOR identified 73 unique
compounds (166 MSMs) in SpectraActiSeq. At 0% FDR (corre-
sponding to the p value threshold 10−8), DEREPLICATOR
identified 66 unique compounds (148 MSMs). In contrast, at 1%
FDR (score threshold of 6), DEREPLICATOR+ identified 488
compounds and 8194 MSMs (1.2% of all spectra in SpectraActiSeq
dataset). At 0% FDR (score threshold of 9), it identified 154
compounds (2666 MSMs), a twofold increase as compared to
DEREPLICATOR.

DEREPLICATOR+ not only identified more unique com-
pounds at the same FDR, but also identified more spectra
per compounds (average of 2.2 spectra per compound for
DEREPLICATOR, versus 16.7 spectra per compound for

DEREPLICATOR+). This is partially because spectra from the
same compound often differ in the quality of fragmentation.
DEREPLICATOR is mainly limited to identification of the
highest quality spectra since it uses a rather restrictive
fragmentation model. DEREPLICATOR+ identifies spectra of
lower quality since it uses a more detailed fragmentation model.

Among 154 compounds identified by DEREPLICATOR+ at
0% FDR, ClassyFire43 classified 92 of them as peptides and amino
acids derivatives, 32 as lipids, 5 as benzenoids, and 6 as other
classes. Out of 154, 72 of these compounds have the known
Actinomyces origin according to AntiMarin (Supplementary
Data 1).

To analyze some of DEREPLICATOR+ identifications in more
detail, we selected a very stringent score threshold of 15 (0% FDR,
29 compounds) and removed four compounds that were present
in blank samples from the background media. Table 1 describes
24= 29−5 compounds (covering 19 PNPs, 2 polyketides (PKs), 2
terpenes, and 1 benzenoid) identified by DEREPLICATOR+.
These 24 metabolites form 15 metabolite families and reveal
additional 557 variants of these metabolites through molecular
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Fig. 1 DEREPLICATOR+ pipeline. The method consists of (i) constructing metabolite graphs from metabolites chemical structures, (ii) generating
fragmentation graphs, (iii) constructing decoy fragmentation graph for each metabolite (iv) annotating target and decoy fragmentation graphs by spectra
and scoring metabolite-spectrum matches (MSMs), (v) computing statistical significance of MSMs and evaluating FDR, and (vi) enlarging the set of MSMs
by molecular networking

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06082-8 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:4035 | DOI: 10.1038/s41467-018-06082-8 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


networks37,44. DEREPLICATOR missed 10 out of these 24
metabolites at 3% FDR (2 PKs, 2 terpenes, 1 benzenoid, and
5 short PNPs with <8 amide bonds). Supplementary Data 1
describes all the 488 identifications of DEREPLICATOR+ in
Actinomyces spectra at 1% FDR threshold.

In 17 out of 24 cases, the compounds had a known biosynthetic
gene cluster (BGC) reported in the MIBiG database, and in all
these cases we cross-validated DEREPLICATOR+ identifications
by searching their BGCs against the known genome of their
producers (BLAST search found very similar homologs).
Although the BGC is currently unknown for antibiotic
C35H56O13 (originally isolated from Streptomyces hirsutus)45, we
used C35H56O13 identification in Streptomyces Mg1 to derive its
BGC. Analysis of the PK gene clusters reported by antiSMASH in
the Streptomyces Mg1 genome led to assignment of antibiotic
C35H56O13 to a PK BGC in Streptomyces Mg1. Kersten et al.46

showed that this BGC is responsible for production of PK
chalcomycin. The antibiotic C35H56O13 is very similar to
chalcomycin (differing only in a single monomer methylation),
implying that this BGC is likely responsible for the production of
both chalcomycin and antibiotic C35H56O13. Analysis of the
number of peptide bonds in the compounds identified by
DEREPLICATOR and DEREPLICATOR+ revealed that DERE-
PLICATOR+ outperforms DEREPLICATOR in the identification
of compounds with a small number of peptide bonds (Fig. 2).

DEREPLICATOR+ analysis of the SpectraActiSeq dataset
identified 56 out of 207 compounds in the DNP annotated as
Actionmyces/Streptomyces (Supplementary Data 2). Supplemen-
tary Figure 2 shows a comparison between DEREPLICATOR p
values and DEREPLICATOR+ p values for 24 top identifications
in Table 1.

After running DEREPLICATOR, DEREPLICATOR-CN,
DEREPLICATOR-CN-CO, and DEREPLICATOR-G (defined in
Methods sections) on SpectraActiSeq with FDR threshold 3%, they
identified 75, 91, 404, and 496 compounds, respectively. In

contrast, DEREPLICATOR+ identifies 1024 compounds at this
FDR. DEREPLICATOR+ significantly improves on DEREPLI-
CATOR in the case of short peptides with small number of amide
bonds. As an example, DEREPLICATOR fails to identify the
antibiotic arylomycin A4, a branch-cyclic peptide with five amino
acids, at 3% FDR, while DEREPLICATOR+ discovered it at 0%
FDR with p value 3 × 10−15. Supplementary Figure 3 compares
arylomycin A4 annotation of DEREPLICATOR and DEREPLI-
CATOR+.

Supplementary Note 2, Supplementary Data 1, 3, and 4, and
Supplementary Figure 4 describe the performance of DEREPLI-
CATOR+ on different fragmentation methods (collision-induced
dissociation (CID) and higher-energy C-trap dissociation
(HCD)), identification of frequent mass spectrometry contami-
nants47, and results of searches of the larger databases.

The NIST spectral library search tool MSPepSearch identified
34, 12, and 12 compounds in searching SpectraActiSeq against
NIST17, LipidBlast and MoNA. At 1% FDR DEREPLICATOR+
recovered 27/34 identifications from NIST, 8/12 identifications
from LipidBlast, and 9/12 identifications from MoNA (Supple-
mentary Data 5). At this FDR threshold DEREPLICATOR+
identified 315 compounds, 272 of them absent from LipidBlast,
MoNA, and NIST search results.

Benchmarking DEREPLICATOR+ on spectral library. To
benchmark the accuracy of DEREPLICATOR+ in identification
of spectra from known compounds, we searched 5473 annotated
spectra from SpectraLibrary against a database of their 5473
chemical structures, plus 83,889 distinct chemical structures from
the DNP database. We removed 2697 duplicate compounds that
were shared between the spectral library and the DNP database,
resulting in 86,665 distinct compounds. By allowing a large
precursor mass tolerance of 0.5 Da, each spectrum is searched
against 1235 compounds on average.

Table 1 The list of top scoring 25 metabolites identified by DEREPLICATOR+in the search of the SpectraActiSeq dataset against
the AntiMarin database at the score threshold of 15

compound class CN CO DEREP+
p-value

DEREP
p-value

producer ref gene similarity Cmp

stenothricin-III peptide 21 4 9.10−22 9.10−14 S. roseosporous 63 BGC0000431(100%) 0
doricin peptide 16 4 3.10−27 2.10−10 S. pristinaespiralis 64 BGC0000952(97%) 74
arylomycin-A2 peptide 14 5 5.10−15 4.10−7 S. roseosporous 65 BGC0000306(88%) 26
WS-9326-A peptide 16 5 1.10−20 4.10−17 S. griesoflavus 66 BGC0001297(100%) 2
arylomycin-A4 peptide 14 5 3.10−15 2.10−9 S.roseosporous 65 BGC0000306(88%) 26
ostreogrycin-B peptide 16 3 1.10−17 7.10−8 S. pristinaespiralis 64 BGC0000952(97%) 74
SP-Chymostatin-B peptide 12 2 6.10−9 4.10−10 Streptomyces sp. E14 67 unknown 95
pristinamycin-IC peptide 16 3 1.10−15 2.10−9 S. pristinaespiralis 64 BGC0000952(97%) 0
salinamide-E peptide 13 7 9.10−13 0.002 Streptomyces CNH287 68 BGC0001230(100%) 0
antimycin-B1 benzenoid 5 8 3.10−7 5.10−6 Streptomyces albus 62 BGC0000958(86%) 15
virginiamycin-S1 peptide 13 3 2.10−23 9.10−15 S. pristinaespiralis 64 BGC0000952(97%) 74
ostreogrycin-A peptide 4 4 2.10−17 0.002 S. pristinaespiralis 64 BGC0000952(97%) 6
actinomycin-X2 peptide 24 4 5.10−19 3.10−10 Streptomyces CNS654 69 BGC0000296(71%) 2
A-21978-C2 peptide 30 7 8.10−13 3.10−9 S. roseosporous 70 BGC0000952(59%) 0
soyasaponin-I triterpene 1 21 1.10−12 1 S. hygroscopicus 71 unknown 53
C35H56O13 polyketide 2 18 3.10−10 1 S. Mg1 46 unknown 4
nocardamine peptide 12 1 4.10−15 3.10−8 S. Mg1 46 unknown 2
ostreogrycin-G peptide 4 4 3.10−22 0.001 S. pristinaespiralis 49 BGC0000952(97%) 111
virginiamycin-M1A peptide 4 4 6.10−17 0.02 S. pristinaespiralis 49 unknown 0
virginiamycin-S2 peptide 13 4 6.10−21 4.10−10 S. pristinaespiralis 49 BGC0000952(97%) 7
salinamide-A peptide 14 8 1.10−19 1.10−7 Streptomyces CNB091 68 BGC0001230(100%) 5
chalcomycin polyketide 1 18 1.10−9 1 S. Mg1 46 BGC0000047(64%) 3
soyasaponin-II triterpene 1 20 2.10−10 1 S. Tu6071 71 unknown 53
WA-3854-A2 peptide 4 5 1.10−8 6.10−7 S. ghanaensis 72 unknown 9

For each compound we show its classification by ClassyFire (class), a software tool for metabolite classification43, as well as the DEREPLICATOR+ p-value (DEREP+ p-value), and the DEREPLICATOR p-
value (DEREP p-value). DEREPLICATOR p-values are computed using MS-DPR method42. For DEREPLICATOR+, p-value computation is described in the METHOD section. In all cases, the compounds
have been reported in another Actinomyces species, and the corresponding references are shown. In 17 out of 24 cases, the compounds have known BGC, and in all these cases DEREPLICATOR+
identifications were validated by the BLAST search of the BGC. In each case, the number of compounds in the connected components of the molecular network (Cmp) for each identified metabolite is
also shown. While soyasaponin was first discovered in plants73, it was shown later that it is also produced by Streptomyces71. Number of nitrogen to carbon bonds (CN), and oxygen to carbon bonds
(CO) in the molecular structures are also shown. Supplementary Data 1 is an extended version of this table, including a comprehensive list of all the 488 identifications of DEREPLICATOR+ in SpectraActi
at 1% FDR
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DEREPLICATOR+ correctly identified 34% (1878) com-
pounds as the top rank prediction, while DEREPLICATOR-G
and DEREPLICATOR identified 30% (1647) and 17% (964)
compounds as top rank prediction. To break ties for matches with
the same score, we took a pessimistic approach, assigning the
lowest rank to the correct prediction. Since each spectrum was
compared with 1235 structures on average, a random predictor
would correctly identify only 5473/1235= 4.4 spectra on average.

We reanalyzed DEREPLICATOR+, DEREPLICATOR-G, and
DEREPLICATOR on SpectraLibrary, reducing the precursor mass
threshold from 0.5 Da to 0.02 Da. This reduced the search space
from 1235 candidate structures to only 24 candidate structures
per spectrum, and increased the number of correct identifications
to 44% (2414), 40% (2216), and 25% (1362) for DEREPLICATOR
+, DEREPLICATOR-G, and DEREPLICATOR, respectively
(Fig. 3 and Supplementary Data 6). DEREPLICATOR+ identified
32% more PNPs, and overall 77% more compounds than
DEREPLICATOR at 0.02 Da tolerance. MS-FINDER28 identified
20% of compounds from SpectraLibrary as top compounds, 27% as
top three, and 38% as top 10 compounds using a precursor and
product ion tolerance of 0.02 Da similar to what we used for
DEREPLICATOR+ (Supplementary Data 7).

We further observed a positive correlation between the success
rate of DEREPLICATOR+ in identifying the correct compound
as the top-scoring MSM, and the total number of oxygen–carbon
(O–C) and nitrogen–carbon (N–C) bonds in the structure. For
example, among compounds with 1–10 O–C/N–C bonds, 21%
were correctly identified as the top-scoring MSMs, while the
success rate increased to 38% for compounds with 11–20 O–C/
N–C bonds, and 55% for compounds with 21–30 O–C/N–C
bonds.

Among DEREPLICATOR+ identifications of spectra from
SpectraLibrary with DNP classification available (224 compounds),
28% (63) are classified as terpenes, 14% (32) are alkaloids, 13%
(29) as flavonoids, 13% (28) as peptides, 8% (18) as aliphatic
natural products, 8% (18) as simple aromatic natural products,
5% (11) as benzopyranoids, 4% (9) as steroids, 2% (5) as
carbohydrates, 2% (5) as oxygen heterocycles, 1% (2) as lignans,
1% (2) as polycyclic aromatic natural products, 0.5% (1) as PKs,
and 0.5% (1) as benzofuranoids (Supplementary Data 6).

At 3% FDR threshold, DEREPLICATOR+ identifies 3087 spec-
tra in SpectraLibrary, where for 1802 spectra the correct compound
is ranked one, for 812 spectra the rank is two or three, and for
473 spectra the rank is four or above. If we define success as the
prediction of the correct compound with rank 1,

DEREPLICATOR+ has a recall rate of 33% (1802 out of 5473)
and precision rate of 58% (1802 out of 3087). If we define success
as the prediction of the correct compound among top 3
identifications, DEREPLICATOR+ has a recall rate of 48%
(2614 out of 5473) and precision rate of 85% (2614 out of 3087).
DEPLICATOR+ failed to correctly identify 67% (3671 out of
5473) spectra in the SpectralLibrary dataset even though true-
positive structures were present in the database.

Supplementary Note 3 and Supplementary Data 6, 8, and 9
describe the performance of DEREPLICATOR+ on isomer
compounds, adducts, and negatively charges spectra.

Identifying heterocyst glycolipid from Lichen spectra. DERE-
PLICATOR+ identified 21 metabolites in the SpectraLichen dataset
at 1% FDR (Supplementary Data 10). One of these metabolites,
heterocyst glycolipid, was shown to be consistent with the genetic
capacity detected in the lichen39.

Identifying almiramides from Cyanobacteria spectra. DERE-
PLICATOR+ identified 791 distinct compounds (10,375 MSMs)
at 1% FDR corresponding to the score threshold of 6 (Supple-
mentary Data 11). DEREPLICATOR identified 64 PNPs at the p
value threshold of 10−7 and 1% FDR32.

Almiramide is a linear hybrid NRP-PK with a 2-methyloct-7-
enoic PK tail and amino acid sequence of Methyl-Val, Methyl-
Val, Val, Ala, and Methyl-Phe isolated from Lyngbya majuscula
PAB04NOV05-748. DEREPLICATOR+ run on SpectraCyan
identified almiramide with 0% FDR not only in PAB04NOV05-
7, but also in PAB4NOV05-1, PAP27OCT08-2, PAB9APR05-6,
and PAP29JUN07-2. DEREPLICATOR failed to identify this
NRP-PK at 1% FDR.

Among these datasets, metagenomics data for PAP27OCT08-2
is available. After assembling the short reads using metaSPAdes40

and genome mining using antiSMASH49, one of the NRPS-PKS
gene clusters is assigned as the putative almiramide biosynthetic
gene cluster based on the amino acid sequence and the PK genes
(Supplementary Figure 5 and Supplementary Table 2). Almir-
amides PK tail, 2-methyloct-7-enoic, is identical to the PK tail of
jamaicamide, which was shown to be synthesized by genes JamF–
JamL in the jamaicamide gene cluster50, and these genes are very
similar to genes in the almiramide gene cluster. Moreover
adenylation domains in this putative gene clusters encode for two
methylated phenylalaline, an alanine and a methylated alanine.
Although this computational analysis points to a putative BGC
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for almiramide, it would benefit from a follow-up experimental
validation.

Identifying spectra from GNPS dataset. DEREPLICATOR+
identified 410,539 spectra (0.2% of all spectra in SpectraGNPS)
representing 5336 compounds at 1% FDR and the score threshold
of 12 in this dataset (Supplementary Data 12). Sixty-seven com-
pounds (3106 spectra) were found in the decoy database at the
same FDR. DEREPLICATOR identified 41,403 spectra represent-
ing 974 compounds, while DEREPLICATOR-G identified
82,260 spectra representing 1417 compounds at 1% FDR. Figure 4
shows the number of compounds identified by DEREPLICATOR+
in SpectraGNPS at different score thresholds. Among these 5336
identifications, 643 (12%) have mass below 400, 2421 (45%) have
masses between 400 to 800, 1425 (26%) have masses between 800
to 1200Da, and 847 (15%) have masses above 1200Da (Supple-
mentary Figure 6).

After removing spectra with less than five peaks from
SpectraGNPS, MS-Cluster51 partitioned it into 1,578,409 clusters.
For 37,436 (2.3%) of those clusters, DEREPLICATOR+ identified
at least one of the spectra in the cluster at 1% FDR (111 clusters
have decoy identifications). SpectraGNPS forms 37,750 spectral
families in the spectral network37, and DEREPLICATOR+
identified at least one member among 18,561 (49%) of these
spectral families at 1% FDR (110 families have decoy
identifications).

ClassyFire classified all compounds found by DEREPLICATOR
as peptides. For DEREPLICATOR+ identifications, 2913 (55%)
were classified as peptides, 1595 (30%) as lipids, 272 (5%) as organic
oxygen compounds, 160 (3%) as organoheterocyclic compounds,
155 (3%) as PKs, and 133 (2.5%) as benzenoids. Figure 5 shows the
distribution of compounds from different classes in the DEREPLI-
CATOR identifications, DEREPLICATOR+ identifications, and the
entire AntiMarin.

Among 5336 DEREPLICATOR+ identifications in Spec-
traGNPS, 692 have class annotations in the DNP database. Among
them, 227 (32.8%) are terpenoids, 150 (21.6%) are aliphatic
natural products, 101 (14.5%) are alkaloids, 69 (9.9%) are
peptides, 39 (5.6%) are simple aromatic natural products, 31
(4.4%) are steroids, 21 (3.0%) are flavonoids, 14 (2.0%) are
benzopyranoids, 12 (1.7%) are lignans, 7 (1.0%) are oxygen
heterocycles, 7 (1.0%) are oxygen heterocycles, 5 (0.7%) are
carbohydrates, 5 (0.7%) are polypyrroles, and 3 (0.5%) are PKs.

To compare performance of DEREPLICATOR+, DEREPLI-
CATOR-G, and DEREPLICATOR on peptides, we classified all
antimarin compounds into five categories, (i) non-peptides with
three or less amino acids (79%), (ii) linear peptides (7%), (iii)

cyclic peptides (3%), (iv) branch-cyclic peptides (2%), and (v)
more complicated peptides (7%). Among 5336 DEREPLICATOR
+ identifications, 1981 are non-peptides, 1331 are linear, 807 are
cyclic, 706 are branch-cyclic, and 525 are peptides with more
complicated structures. Among 1417 identifications by DERE-
PLICATOR-G, 175 are non-peptide, 143 are linear peptides, 607
are cyclic peptides, 369 are branch-cyclic peptides, and 123 are
peptides with more complicate structures. Among 974 identifica-
tions by DEREPLICATOR, 133 are linear peptides, 487 are cyclic
peptides, 298 are branch-cyclic peptides, and 56 are peptides with
more complicate structures.

As an example of how DEREPLICATOR+ improves on
DEREPLICATOR on peptides, we analyzed antrimycin A52, a
peptide identified by DEREPLICATOR+ at 0% FDR in
actinobacteria Kitasatospora cystargynea RLe10
(MSV000080284), but missed by DEREPLICATOR at 3% FDR.
To distinguish between the effect of addition of O–C and
carbon–carbon (C–C) bonds to our model, and fragmentation
graph, we introduced a scoring DEREPLICATOR-PEP-FG, where
only N–C bonds up to depth three are fragmented. DEREPLI-
CATOR+, DEREPLICATOR-G, DEREPLICATOR-PEP-FG, and
DEREPLICATOR assigned scores 27, 8, 8, and 5 to the PSM
formed by antrimycin A. DEREPLICATOR-PEP-FG annotated
three additional internal ions as compared to DEREPLICATOR,
consistent with the previous annotations of the antrimycin A
spectra (Supplementary Figure 3)53 . MS-DPR42 assigned a p
value of 1 × 10−6 and 2 × 10−10 to the PSMs formed by
antrimycin using DEREPLICATOR and DEREPLICATOR-PEP-
FG scoring, respectively.

Figure 6 shows the fraction of DEREPLICATOR+ identifica-
tions at 1% FDR in SpectraCyan, SpectraActi, SpectraFungi,
SpectraPseudo, and SpectraGNPS produced by various microbial
sources. Majority of compounds identified in SpectraCyan,
SpectraActi, and SpectraFungi come from Cyanobacteria, Actino-
myces, and Fungi sources, respectively. In the case of SpectraP-
seudo, Pseudomonas is the second major source after Bacillus, due
to the presence of bacillus molecules in the growth media used for
this dataset.

Among all spectra in SpectraGNPS, 72.7% (230.1 million) are
from the time-of-flight (TOF) instruments, while 18.1% (57.5
million) are from the Orbitrap instruments. Among identifica-
tions in SpectraGNPS, 4.4 million (62.0%) are from the TOF
instruments and 2.3 million (32.8%) are from the Orbitrap
instruments (Supplementary Data 13).

Discussion
The GNPS molecular networking project has enabled searches of
mass spectra against spectral libraries to identify known natural
products and discover their variants. However, while spectra from
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GNPS represent a gold mine for future natural products dis-
covery, their interpretation remains challenging. Currently, the
GNPS spectral library, the most comprehensive spectral library of
natural products, has <10,000 compounds. The vast majority of
GNPS spectra have evaded all attempts to interpret them, indi-
cating that there exists a large dark matter of metabolomics4.

Currently, only 0.2% of spectra from GNPS are identified by
spectral library search. Many of the still unidentified spectra are
likely formed by known molecules present in chemical structure
databases such as PubChem. Identifying the spectra of the com-
pounds which are present in chemical structure libraries but
absent in spectral libraries requires the development of algorithms
for matching spectra of natural products against chemical
databases.

We recently developed DEREPLICATOR and VarQuest32,54

tools for identifying PNPs and their variants through database
search of mass spectra. However, these tools are not designed for
identification of other types of natural products such as PKs and
lipids. Generalizing them to other types of natural products
requires both generalizing from amide bonds to other types of
bonds that usually break during tandem mass spectrometry (e.g.,
C–O bonds and C–C bonds) and also handling the sequential
process of a compound fragmentation as a fragmentation graph.
Our results show that generalized bond breakage and the
sequential fragmentation are both crucial in enabling DEREPLI-
CATOR+ to identify 77% more compounds (consisting of non-
peptide metabolites and mixed peptide-PKs) that were missed by

DEREPLICATOR. Moreover, ≈33% of compounds identified by
DEREPLICATOR+ have either a single or no amide bond.

In contrast to existing database search tools in metabo-
lomics23–36, DEREPLICATOR+ is the first database search tool
for natural products that can (i) search the entire GNPS mole-
cular networking infrastructure against large databases of che-
mical structures, and (ii) identify variants of known metabolites
using molecular networking37,44. Similar to all the existing
metabolomics tools, DEREPLICATOR+ is not applicable to all
the classes of compounds. DEREPLICATOR+ greatly improves
on the existing tools for PNPs and enables identifying the
important class of peptides-PKs and PKs.

Currently DEREPLICATOR+ uses a simple shared peaks
scoring to match spectra against fragmentation graphs, and
computing FDR for the found identifications. This simple scoring
scheme results in a high false-negative rate. Meanwhile, DERE-
PLICATOR+ enables automatic collection of large metabolite
spectra libraries by searching billions of spectra, similar to those
in proteomics. This pave the path for machine learning methods
to improve scoring scheme and enhance the false-negative rates.

Methods
Overview of the DEREPLICATOR algorithm. DEREPLICATOR32 generates the
theoretical spectrum of a PNP by first constructing a peptide graph, where each
node is an amino acid and each edge is a peptide bond. Afterwards, it considers
various fragmentations of the peptide graph by removing each possible bridge or 2-
cut (each such removal breaks the peptide graph into two connected components).
DEREPLICATOR generates the theoretical spectrum of a peptide as the set of

Dereplicator Dereplicator+ AntiMarin
Peptides
Alkaloids and derivatives
Benzenoids
Lipid-like molecules
OrganoOxygen compounds
Organoheterocyclic compounds
Polyketides
Others

a b c

Fig. 5 The distribution of compounds from different classes in GNPS. a The distribution of compounds from different classes among 739 identifications
from DEREPLICATOR. b The distribution of compounds from different classes among 5336 identifications from DEREPLICATOR+. c The distribution of
compounds from different classes among all 60,908 AntiMarin compounds. All compounds were classified with ClassyFire43
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Fig. 6 The fractions of DEREPLICATOR+ identifications from various sources in SpectraCyan (112 compounds), SpectraActi (149 compounds), SpectraFungi
(138 compounds), and SpectraPseudo (40 compounds). Majority of compounds identified in SpectraCyan, SpectraActi, and SpectraFungi come from
Cyanobacteria, Actinomyces, and Fungi sources, respectively. In the case of SpectraPseudo, Pseudomonas is the second major source after Bacillus, due to
contamination. The fractions of compounds from different sources in SpectraGNPS (5336 compounds) and AntiMarin (60,908 compounds) are also shown
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masses of all resulting connected components, where the mass of a component is
defined as the total mass of its constituent amino acids. Afterwards, it compares
each experimental spectrum against the theoretical spectra of all PNPs in a data-
base and finds the best scoring PSM. The statistically significant PSMs (as defined
by their p values) reveal identified PNPs.

Outline of DEREPLICATOR+ algorithm. While DEREPLICATOR was shown to
accurately identify spectra of PNPs, this approach is not applicable to other types of
metabolites that go through multiple fragmentations at different bonds in a mass
spectrometer. To address this complication, DEREPLICATOR+ introduces the
concept of the fragmentation graph. Below, we describe various steps of the
DEREPLICATOR+ algorithm for identifying spectra of all metabolites.

Constructing metabolite graphs. Supplementary Tables 3 and 4 show prevalence
of different atoms and bonds in natural products from the AntiMarin database. In
addition to N–C bonds in peptides, metabolites often break at O–C and C–C
bonds. We thus refer to N–C, O–C, and C–C bonds as metabolite bonds. Dis-
connecting all metabolite bonds in a metabolite breaks it into connected compo-
nent that form the nodes of the metabolite graph labeled by their elemental
composition (the mass of the node is defined as the total mass of elements in the
connected component). Edges in the metabolite graph correspond to metabolite
bonds (Fig. 7). The theoretical spectrum of a metabolite graph is defined by the
masses of all connected subgraphs of the metabolite graph formed by disconnecting
bridges and 2-cuts, and the DEREPLICATOR-G score refers to the count of shared
peaks between the experimental spectrum and the theoretical spectrum of the
metabolite graph within a tolerance threshold. We further classify all 2-cuts into
feasible (formed by either C–N or C–O bonds) and infeasible (containing at least
one C–C bond).

Generating fragmentation graphs. Since metabolites often go through multiple
fragmentations at different bonds during tandem mass spectrometry, theoretical
spectra formed by all bridges and 2-cuts of the metabolite graphs poorly model real
spectra. We thus model a theoretical spectrum of a metabolite as a fragmentation
graph originally introduced for de novo sequencing of PNPs by multistage mass
spectrometry55. Note that our concept of the fragmentation graph (constructed
based on the chemical structure of a known metabolite) differs from the frag-
mentation trees introduced in Rasche et al.56, which are constructed based solely on
mass spectra to characterize chemical formula and potential substructure motifs of
the metabolites29. Constructing fragmentation graphs solely from structures has
computational advantages over the relatively slow fragmentation tree approach
since it allows one to precompute fragmentation graphs for all structures in a single
scan of a chemical database, thus enabling fast analysis of large spectral datasets.
The additional advantage of constructing fragmentation graphs from chemical
structures is that, in contrast to fragmentation trees56, this method can capture
substructures absent from the public substructure databases such as PubChem
CACTVS and Klekota–Roth57.

Disconnecting a bridge or a 2-cut in a graph G breaks it into connected
components that we call descendants of G. Given a metabolite graph G, its
fragmentation graph is defined as follows. The nodes of the graph are defined as all
possible connected subgraphs of G and the edges of the graph are defined as
directed edges connecting subgraphs to their descendants. We define the complete
metabolite as the root of the graph, and define the depth of each node in the graph
as the length of the shortest path from the root to this node (Fig. 8). Since mass
spectrometry experiments with conventional collision energies usually do not
produce many fragment ions corresponding to 3-cuts, we do not analyze 3-
connected metabolite graphs. Only 70 metabolite graphs arising from compounds
in AntiMarin (0.1%) are 3-connected. We further trim the fragmentation graph to
eliminate nodes that correspond to unrealistic fragmentation rules.

Given a parameter k, we use the following constraints to filter down the nodes
in the fragmentation graphs: (i) all nodes with depths exceeding k are removed
from the graph, (ii) only nodes with a path from the root consisting of maximum
one 2-cut fragmentation are retained in the graph, (iii) 2-cut fragmentations are
limited to feasible 2-cuts, and (iv) only nodes with a path from the root consisting
of maximum one C–C bond fragmentation are retained in the graph. We use
constraints (iii) and (iv) because, while the C–C bonds are common in natural
products, they are less likely to break as compared to the C–N and C–O bonds. We
evaluated the rationality of these rules by comparing 14 different fragmentation
models on the Spectralibrary dataset based on the total log likelihood of the known
MSMs in comparison to the null fragmentation model that assumes that all the
MSMs are random (Supplementary Note 4 and Supplementary Data 14). Our
results show that, the optimal value of k is 6 in condition (i), and that conditions
(ii)–(iv) represent rational rules to prune the fragmentation graph.

We constructed the fragmentation graph of heterocyst glycolipid58 with
chemical formula C32O8H64. When considering only constraint (i), this
fragmentation graph has 99 nodes at depth 1, 2721 nodes at depth 2, and 7216
nodes at depth 3. After trimming the graph with constraints (ii), (iii), and (iv), it
has 69 nodes at depth 1, 632 nodes at depth 2, and 1182 nodes at depth 3. Note that
there might be multiple nodes with identical masses and chemical formulas that are
produced by different bridges and 2-cuts in the fragmentation graph.

Generating decoy fragmentation graphs. Supplementary Figure 7 shows the
histogram of masses of all experimental peaks in the SpectraLichen dataset39, and
histogram of masses of all peaks from the theoretical spectra of metabolites in the
AntiMarin database. We normalize the histograms of masses of experimental peaks
to turn it into probability distributions and refer to the probability of an experi-
mental peak being in the interval [x, y] as F(x, y). Similarly to generating decoy
spectra for spectral library searches59, DEREPLICATOR+ generates a decoy
fragmentation graph for each target fragmentation graph. This is achieved by fixing
the decoy structure identical to the target, and proceeding in a breadth-first manner
by assigning a mass to each node in the decoy fragmentation graph as follows. The
mass of the root is equal to the total mass of the metabolite, and for each node v,
DEREPLICATOR+ samples mass(v) from the range [0,Mass(Parent(v))] of the
distribution of all theoretical peaks, where Parent(v) is parent of the node v. In
cases where a node has multiple parents in a graph, we consider the parent with
minimum Mass (Supplementary Figure 8). Because we use fragmentation graphs
from all AntiMarin compounds to learn the distribution from which we sample
decoy fragmentation graphs, it captures the masses common in natural products.

Annotating fragmentation graphs by spectra and scoring MSMs. Similar to
MS-Cluster and Molecular Networking approaches37,44, DEREPLICATOR+ pro-
cesses all spectra by retaining only six top intensity peaks in each window of size
50 Da. Given a spectrum, we annotate the nodes in a fragmentation graph in the
breadth-first manner, starting from nodes at depth 1 (the root is assumed to be
annotated). We say that a node is annotated by a spectrum, if (i) at least one of its
direct ancestors is annotated, and (ii) its mass is explained by a peak in the
spectrum. Given a metabolite M and spectrum S, we define score(M,S) as the
number of unique masses in S that annotate a node in the fragmentation graph of
M. We also define scorei(M,S) as the number of unique masses in S that annotate a
node at the depth i and lower in the fragmentation graph of M. Using a threshold
of 0.02 Da on ion detections for the spectrum of heterocyst glycolipid with 44
peaks, 2 peaks are annotated at depth 1, 3 peaks at depth 2, and 9 peaks at depth 3
(Fig. 9).

Computing the statistical significance of MSMs and evaluating FDR. We refer
to the set of all depth 1 nodes of the fragmentation graph of a metabolite M as
Children(root) and the number of peaks in S as |S|. Given an MSM formed by a
metabolite M and a spectrum S, we estimate its statistical significance with respect
to score1(M,S) based on the following probabilistic model for a random MSM.

All the nodes from Children(root) are annotated independently with the
probabilities as defined below. The score is calculated as the number of the
annotated peaks and the probability of the random event of peak annotation is
computed from the empirical distribution F of all experimental peaks shown in
Supplementary Figure 7 in the range from mass 0 to the precursor mass of the
spectrum S. The statistical significance of a match between metabolite M and
spectrum S is defined as the ratio of random MSM scores exceeding or equal to
score1(M,S).

The probability p that a random experimental peak sampled from range [0,
Mass(M)] of the experimental distribution annotates a theoretical peak m within
tolerance δ is computed as (Supplementary Figure 9):

p mð Þ ¼ F m� δ;mþ δð Þ: ð1Þ

Given |S| experimental peaks, the probability that at least one of them annotates a
theoretical peak m can be computed as:

q mð Þ ¼ 1� 1� p mð Þð ÞjSj ð2Þ

and the probability of having exactly s matches between metabolite graph M
and spectrum S has a Poisson binomial distribution (note that due to our
probability model definition the annotation events are independent):

Pðnumber of match ¼ sÞ
¼

X
all subsets I of peaks inChildren rootð Þ of size s

Y
mϵI

qðmÞ
Y

m=2Ið1� q mð ÞÞ: ð3Þ

Since there are |Children(root)| terms in the Poisson binomial distribution, it is
not feasible to compute it in a brute force manner for large theoretical spectra and
scores. However, the Poisson binomial distribution at value s is equal to the
coefficient of Zs in the following generating polynomial60:

Y
m2ChildrenðrootÞ ð1� q mð Þ þ q mð ÞZÞ ð4Þ

and this formula leads to an efficient approach for computing the p value of
score1.

This procedure can be generalized to scores at higher depths (scorei for i > 1) in
the case of fragmentation graphs with tree structures. For leaf node u with mass mu,
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Fig. 8 Generating the fragmentation graph. a DEREPLICATOR[32] generates the theoretical spectrum of a PNP by first constructing a peptide graph, where
each node is an amino acid and each edge is a peptide bond. Afterwards, it considers various fragmentations of the peptide graph by removing each
possible bridge and 2-cut (each such removal breaks the peptide graph into two connected components). DEREPLICATOR generates the theoretical
spectrum of a peptide as the set of masses of all resulting connected components, where the mass of a component is defined as the total mass of its
constituent amino acids. b DEREPLICATOR+ sequentially breaks the metabolite graph at multiple bridges and 2-cuts, and models a theoretical spectrum of
a metabolite as a fragmentation graph. Only a small subgraph of the fragmentation graph is shown
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we define the generating polynomial Hu as

Hu Zð Þ ¼ 1� q muð Þ þ q muð Þ � Z ð5Þ

and for non-leaf nodes, we define:

Hu Zð Þ ¼ 1� q muð Þ þ q muð Þ � Z �
Y

v2ChildrenðuÞ Hv Zð Þ: ð6Þ

Following this recursion, Hroot contains probability distribution of the score. In
general case of non-tree fragmentation graphs, the proposed recursion provides a
rough approximation in the considered probabilistic model due to statistical
dependence of annotation events in vertices sharing descenders. For unbiased
probability estimation Markov Chain Monte Carlo methods can be utilized.

In the case of heterocyst glycolipid discovered in SpectraLichen, the probability
that 2 or more out of 44 peaks in its spectrum are explained by children of the root
with a tolerance of 0.02 Da is 0.026. For a child of the root with mass 396.39 Da, the
probability that 3 or more of its children are annotated is 0.0003 Da. For a child of
this node with mass 378.38, the probability that 9 or more of its children are
annotated is 3 × 10−15.

Enlarging the set of MSMs using molecular networking. The concept of spectral
networks37 (also known as molecular networks44 in the field of natural products)
was introduced to reveal spectra of related peptides within a proteomic dataset
without knowing what these peptides are. While these networks were first intro-
duced for linear peptides, they were later generalized to cyclic peptides and
metabolites44,61. Nodes in a molecular network correspond to spectra, while edges

b

c

d

415.41

397.39

O

O

O

O

OO
O

OO

O

O

O

O

O

O O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

O

O

O

O

O

O

O
O O

O

O

O

OO
O

O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

OOO

O

O

O

O

O

O

O

O

O

241.25
213.22

113.06

127.07

144.07

157.08

347.18

365.19

383.20
491.26

527.28

509.27 539.29

145.08

127.07

329.15 459.23

175.08

477.23

361.37

335.36

279.30
251.26

181.19

125.13

100

In
te

ns
ity

In
te

ns
ity

200 300

MZ [Th]

400

700.37 (C35H56O14)

538.27 (C28H42O10)

382.20 (C20H30O7) 490.25 (C27H38O8) 476.24 (C26H36O8)

458.23 (C26H34O7)
328.16 (C20H24O4)

124.05 (C6H8O3)

364.18 (C20H28O6) 346.17 (C20H26O5) 126.06 (C7H10O2) 112.05 (C6H8O2) 156.07 (C8H12O3) 142.06 (C7H10O3)

526.27 (C27H42O10) 508.26 (C27H40O9) 144.08 (C7H12O3) 174.09 (C8H14O4)

500 600

200 300

MZ [Th]

400 500 600 700

111.11
97.10

167.17

360.37 (C26H48)

a

334.36 (C24H46) 250.26 (C18H34)

212.21 (C14OH28) 240.24 (C16OH32)

414.40 (C26O3H54) 396.39 (C26O2H52)

576.46 (C32O8H64)

O

O

O

O OO

O O O

O

O

O

O

OO

O

378.38 (C26OH50)

379.39

278.297 (C20H38) 180.18 (C13H24) 166.17 (C12H22) 124.12 (C9H16) 110.11 (C8H14) 96.09 (C7H12)

Fig. 9 Annotating the fragmentation graph. The MSM formed by the fragmentation graph of a heterocyst glycolipid, and b its spectrum. While only 2 and 3
peaks out of 44 peaks in heterocyst glycolipid mass spectra get annotated at depths 1 and 2, respectively (shown in red and green), 9 peaks get annotated
at depth 3 (shown in blue), resulting in a score of 2+ 3+ 9= 14. c The MSM formed by the fragmentation graph of c chalcomycin, and d its mass
spectrum. 5, 9, and 3 out of 42 peaks in chalcomycin spectrum are annotated at depth 1, 2, and 3, respectively, resulting in a score of 5+ 9+ 3= 17

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06082-8

10 NATURE COMMUNICATIONS |  (2018) 9:4035 | DOI: 10.1038/s41467-018-06082-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


connect spectra that are generated from related metabolites (e.g., metabolites dif-
fering by a single variation). The variations that are captured by molecular net-
works help to infer mutations, modifications (such as oxidation and acetylation), or
adducts (such as sodium and potassium).

DEREPLICATOR+ constructs the molecular network of all spectra and selects
connected components with at least one identified spectrum. Using the MSM
corresponding to this spectrum, it annotates variants of identified metabolites.
Supplementary Figure 10 shows the molecular network of the chalcolmycin family
identified by DEREPLICATOR+.

Versions of DEREPLICATOR+. To analyze the differences between DEREPLI-
CATOR and DEREPLICATOR+, we analyzed the SpectraActiSeq dataset using three
versions of DEREPLICATOR+ described below. DEREPLICATOR-CN is a ver-
sion of DEREPLICATOR, where all C–N bonds are cut rather than amide bonds
only. DEREPLICATOR-CN-CO is a version of DEREPLICATOR, where all C–N
and all C–O bonds are cut. In DEREPLICATOR-G all C–N, C–O, and C–C bonds
are cut. DEREPLICATOR+ differs with DEREPLICATOR-G in consideration of
depth 2 and depth 3 fragmentations in addition to depth 1.

Code availability. DEREPLICATOR+ is available as both a stand-alone tool
(http://mohimanilab.cbd.cmu.edu/software/) and a web application (http://gnps.
ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp).

Data availability
All datasets analyzed in this study are available through GNPS infrastructures with access
codes available in the Supplementary Table 1. All other data supporting the findings of
this study are available from the corresponding author upon reasonable request.
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