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Bridging of membrane surfaces by 
annexin A2
David Grill1, Anna L. L. Matos1, Wilke C. de Vries2, Sergej Kudruk1, Milena Heflik1, 
Wolfgang Dörner3, Henning D. Mootz3, Bart Jan Ravoo   2, Hans-Joachim Galla3 & 
Volker Gerke1

The protein-mediated formation of membrane contacts is a crucial event in many cellular processes 
ranging from the establishment of organelle contacts to the docking of vesicles to a target membrane. 
Annexins are Ca2+ regulated membrane-binding proteins implicated in providing such membrane 
contacts; however, the molecular basis of membrane bridging by annexins is not fully understood. We 
addressed this central question using annexin A2 (AnxA2) that functions in secretory vesicle exocytosis 
possibly by providing membrane bridges. By quantitatively analyzing membrane contact formation 
using a novel assay based on quartz crystal microbalance recordings, we show that monomeric AnxA2 
can bridge membrane surfaces Ca2+ dependently. However, this activity depends on an oxidative 
crosslink involving a cysteine residue in the N-terminal domain and thus formation of disulfide-linked 
dimers. Alkylated AnxA2 in which this cysteine residue has been modified and AnxA2 mutants lacking 
the N-terminal domain are not capable of bridging membrane surfaces. In contrast, a heterotetrameric 
complex comprising two membrane binding AnxA2 subunits linked by a S100A10 dimer can provide 
membrane contacts irrespective of oxidation status. Thus, monomeric AnxA2 only contains one lipid 
binding site and AnxA2-mediated linking of membrane surfaces under non-oxidative intracellular 
conditions most likely requires AnxA2-S100 complex formation.

Cellular membranes consist of a patchwork of lipids and proteins that have an essential function in compart-
mentalization and barrier formation as well as in trafficking and chemical and/or physical signal transduction 
events1. Dynamic membrane processes are driven by basic physical and chemical properties of membrane lipids 
and those of embedded as well as associated proteins1–3. Peripheral membrane binding proteins can interact with 
specific lipids, they can induce or assist membrane domain formation and they can link membrane surfaces to 
cytosolic proteins or to other membrane surfaces in the course of membrane contact formation and membrane 
fusion. Examples of such membrane-associated proteins are Bin/Amphiphysin/Rvs/ (BAR)4, pleckstrin homology 
(PH)- and C2 domain-containing proteins, and also the Ca2+ regulated annexins (Anx)5.

All annexins are characterized by a conserved C-terminal core domain that forms a unique membrane bind-
ing module. It comprises segments of 70 amino acids that are repeated four or eight times and harbor Ca2+ 
dependent binding sites for acidic phospholipids6,7. The variable N-terminal domains of annexins are accessible 
for interaction with cytosolic factors in their membrane-bound state and in some cases such interaction partners 
are small dimeric EF-hand type Ca2+ binding proteins of the S100 family. Based on their unique structure and 
lipid binding properties annexins have been linked to many membrane-related events, in particular exo- and 
endocytotic membrane trafficking steps, membrane microdomain formation, membrane-cytoskeleton linkages 
and membrane fusion5–7.

Annexin A2 (AnxA2) is one member of the annexin family that has been shown to function in the dynamic 
organization of membrane microdomains, the formation of membrane-cytoskeleton and membrane-membrane 
contacts. It can exist in two physical states, as monomeric AnxA2 that is predominantly localized cytosolically and 
on early endosomes8 and as a heterotetrameric (AnxA2)2-(S100A10)2 complex (A2t) that is present in the subplas-
malemmal region9. In this heterotetramer, amphipathic alpha-helices formed by the first 14 residues of each of the 
AnxA2 subunits bind to two identical sites in the S100A10 dimer, thus resulting in a highly symmetrical entity, 
in which two AnxA2 monomers are connected via a central S100A10 dimer. As a consequence of this structural 
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organization, the A2t complex harbors two membrane-binding annexin core modules that are most likely capable 
of directly linking/bridging two membrane surfaces10,11. Such membrane linkage is thought to underlie the func-
tion of A2t in supporting exocytotic fusions of chromaffin granules and endothelial Weibel-Palade bodies with 
the plasma membrane12,13. However, the view that only heterotetrameric AnxA2-S100A10 complexes can link 
membrane surface is challenged by reports describing liposome and chromaffine granule aggregations that were 
induced by monomeric AnxA214. Such property of monomeric AnxA2 could be explained by two lipid binding 
sites per molecule or by direct protein interactions of two AnxA2 molecules bound to opposing membranes.

To characterize the molecular basis of the AnxA2-mediated linking/bridging of membrane surfaces and to 
address the central question whether monomeric AnxA2 can bridge membranes, we employed purified pro-
teins and model membranes of defined lipid composition. Specifically, we developed a novel approach based 
on solid supported lipid bilayers (SLBs) and online monitoring of protein and vesicle binding kinetics by quartz 
crystal microbalance with dissipation (QCM-D) to analyze the membrane bridging capacity of different AnxA2 
derivatives. We show that monomeric AnxA2 can link membrane surfaces, however only when undergoing 
disulfide-mediated dimer formation. Under reducing conditions most likely met in the cytoplasm of cells, forma-
tion of the heterotetrameric AnxA2-S100A10 complex or reported interactions with other S100 proteins such as 
S100A415 or S100A1116 are probably required for membrane bridging.

Results and Discussion
A novel QCM-D based assay to analyze protein-mediated membrane bridging.  To directly mon-
itor the membrane bridging/linking properties of AnxA2, we used a controllable system consisting of defined 
model bilayer membranes and recombinantly expressed proteins. Monomeric wild-type (WT) AnxA2 and genet-
ically modified mutants lacking the N-terminal 14 or 32 amino acids were expressed as authentic, non-tagged 
proteins employing a bacterial system that faithfully executed the posttranslational N-terminal modification seen 
in mammalian AnxA2, i.e. removal of the starting methionine and acetylation of the serine residue that follows 
the methionine17. This N-terminal modification is crucially required for efficient binding of the S100A10 dimer 
and thus a prerequisite for reconstitution of the heterotetrameric AnxA2-S100A10 complex from its purified sub-
units. The truncations were chosen to either remove the amphipathic helix representing the S100A10 binding site 
(AnxA2 Δ14) or the entire N-terminal domain (AnxA2 Δ32). To measure the membrane bridging/linking capa-
bility of the recombinantly expressed and purified AnxA2 derivatives we developed a quantitative read-out sys-
tem based on the quartz crystal microbalance with dissipation (QCM-D) technique18. This experimental strategy 
is depicted schematically in Fig. 1A. First, solid-supported lipid bilayers (SLBs) of defined lipid composition were 
formed on the quartz sensor (step 1)19,20 and then subjected to protein (AnxA2) binding (step 2). Here, the actual 
lipid and protein binding can be recorded online due to a change in the relative oscillation frequency of the quartz 
crystal that is proportional to the change in absorbed mass. Next, liposomes of defined lipid composition (LUVs) 
were added to the SLB-bound annexin (step 3) and protein binding to the second membrane surface presented by 
the LUVs was again monitored online by a change in relative oscillation frequency of the quartz crystal. Finally, 
all Ca2+-dependently bound protein and any LUVs attached via this protein were removed by Ca2+ chelation with 
ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) (step 4).

In QCM-D recordings, the correlation of negative resonance frequency shift (ΔF = F(t) − F0) with the 
adsorbed mass is linear for a rigid adsorbed layer as given by the Sauerbrey equation21:

Δ = −
ΔF C m
Af

q

However, it becomes non-linear with increasing viscoelasticity of the system. This is reflected by a change in the 
dissipation (ΔD = D(t) − D0) that can be taken as indicator for viscoelastic properties of the adlayer and thus 
the adsorbed mass during the QCM-D measurements. The dissipation (D) of the system is defined as follows:

π π τ
= =D

E
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D describes the sum of all mechanisms that dissipate energy in this oscillatory system with Edissipated representing 
the energy dissipating during one oscillation period and Estored the stored energy in the system22,23.

The time dependent monitoring of the formation of SLB membranes consisting of POPC/POPS/cholesterol 
(60:20:20) is presented in Fig. 1 B (step 1), revealing the characteristic frequency drop and thereafter, the estab-
lishment of a stable frequency shift of ΔF3 = −29.2+/− 0.2 Hz and a dissipation shift of ΔD3 = 0.45+ /− 0.09 *  
10−6 that has been observed before for a cholesterol-containing artificial SLB membrane24. This drop followed 
by stable frequency and dissipation shifts reflects the initial adsorption of SUVs and their subsequent fusion to 
form a stable bilayer. Addition of LUVs (diameter of 200 nm) of the same lipid composition did not cause any 
change in the frequency and dissipation shifts (step 3). This control experiment was carried out in the absence of 
any membrane-bridging protein and indicates that no adsorption of LUVs to the SLB occurs. Next, we included 
an addition of the AnxA2-S100A10 heterotetramer (A2t) in step 2 of the experimental setup (Fig. 1C). This 
complex contains two membrane binding AnxA2 moieties and has been shown to bridge membrane surfaces by 
cryo-electron microscopy25. Addition of 50 nM A2t in the presence of 250 µM Ca2+ yielded frequency and dissi-
pation shifts of ΔF3 = −67.5+ /− 0.05 Hz and ΔD3 = 1.38+ /− 0.02 * 10−6 (step 2) that are in line with previously 
reported values26 and indicative of high affinity protein adsorption to the SLB. After a steady state equilibrium 
was reached, LUVs were added in Ca2+-containing HBS buffer (step 3) leading to an additional frequency shift 
of ΔF3 = −279.1+ /− 0.1 Hz with a distinct dissipation shift of ΔD3 = 24.8+ /− 0.06 * 10−6. The marked fre-
quency and dissipation changes clearly indicate the immobilization of a viscoelastic mass, i.e. the adsorption of 
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Figure 1.  (A) Schematic model of the sequential lipid and protein additions in the quartz crystal microbalance 
with dissipation (QCM-D) setup. (1) Solid supported lipid bilayer (SLB) formation following SUV adsorption 
and rupture, (2) addition and adsorption of protein derivatives in the presence of 250 µM Ca2+ (the AnxA2 
derivates used are depicted in the inset), (3) application of second membrane surface presented in the form of 
LUVs, (4) removal of all Ca2+-dependently bound protein and/or lipid by perfusion with EGTA-containing 
buffer. Inset: Schematic representation of the AnxA2 derivatives used in this study: (i) WT AnxA2, (ii) alkylated 
AnxA2, deletion mutants (iii) AnxA2 Δ32 and (iv) AnxA2 Δ14, and (v) the heterotetrameric (AnxA2)2-
(S100A10)2 complex (A2t). (B) Addition of LUVs to a SLB layer in the absence of protein. Shown are QCM-D 
recordings, frequency (i) and dissipation changes (ii), revealing the formation of an SLB layer following SUV 
addition and rupture (step 1) and the absence of any frequency or dissipation shift upon addition of the second 
vesicle population in the form of LUVs (step 3). (C) Membrane bridging/linking by the heterotetrameric 
A2t complex. Time dependent frequency (i) and dissipation (ii) monitoring of SLB formation (step 1), 
Ca2+ (250 µM) dependent binding of A2t to the SLB layer containing negatively charged phospholipids and 
cholesterol (step 2), interaction with a secondary vesicle population (LUVs) in the presence of 250 µM Ca2+ 
(step 3) and complete reversibility of the protein and LUV adsorption by addition of Ca2+ chelating EGTA 
buffer (step 4). Models depicting the respective experimental setup are shown below the QCM-D recordings 
(iii). Shown are representative examples of typical experiments carried out at least n = 20 (B) or n = 12 (C) 
independent times with at least three different protein batches and vesicle preparations.
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buffer-filled LUVs via A2t serving as a bridge between the two membranes. Addition of 2 mM EGTA-containing 
buffer (step 4) resulted in a rapid increase in frequency and decrease in dissipation with the values reaching those 
observed for the SLB alone (step 1), thus showing that all Ca2+-dependently adsorbed protein and any LUVs 
bound via the adsorbed protein had been released. The same complete desorption upon EGTA chelation was 
observed for all other AnxA2 derivates used in this study (see below). Together these data indicate that A2t bound 
to the SLB can interact with a second membrane surface presented by the added LUVs and thus identify A2t as a 
membrane bridging/linking entity.

Membrane bridging capacity of different monomeric AnxA2 derivatives.  To analyze whether 
monomeric AnxA2 is also capable of bridging/linking membrane surfaces and to identify structural features of 
the protein required to mediate this activity, we employed different chemically or genetically modified AnxA2 
derivatives represented schematically in Fig. 1A. Proper folding of recombinantly expressed and purified WT 
AnxA2 and the chemically or genetically modified derivates was verified by employing far-UV circular dichro-
ism (CD) spectroscopy. Far-UV CD was performed in presence and absence of Ca2+ to verify that the differ-
ent AnxA2 derivatives show the minor Ca2+ induced changes in mean residue ellipticity observed before for 
authentic AnxA2 purified from porcine tissue27. Recombinantly expressed WT AnxA2 as well as the modified 
derivatives used here show a far-UV CD dominated by α-helical secondary structure elements (Fig. 2). This is 
in line with the far-UV CD spectra of recombinantly expressed WT AnxA2 and different other AnxA2 mutants 
characterized before and the crystal structure of AnxA2 that shows a high α-helical content28–30. Moreover, the 
far-UV CD spectra reveal a small reduction of mean residue ellipticity at 222 nm in the presence of Ca2+, which 
has also been shown for AnxA2 purified from mammalian tissue27.

Using the above established setup, QCM-D measurements were first carried out with the inclusion of mono-
meric WT AnxA2 (Fig. 3A). The recordings show a behavior similar to that observed for A2t, albeit with lower 
and slower frequency and dissipation shifts for both, the initial protein binding to the SLB (step 2) and the sub-
sequent adsorption of LUVs (step 3). These data suggest that monomeric AnxA2 can bridge/link membrane sur-
faces with the lower shifts probably due to a lower mass of AnxA2 as compared to A2t and/or a reduced number 
of secondary membrane binding sites.

As all known Ca2+-regulated membrane binding sites in annexins reside in the C-terminal core domain, we 
next analyzed an AnxA2 mutant (AnxA2 Δ32) lacking the unique N-terminal region and thus consisting only 
of the AnxA2 core domain (Fig. 3B). In contrast to monomeric WT AnxA2, this mutant, following binding to 
the SLB (Fig. 3B, step 2), produced no detectable frequency and dissipation shifts when the second membrane 

Figure 2.  (A) Far-UV circular dichroism (CD) of WT AnxA2 (A), AnxA2 Δ14 (B) and alkylated AnxA2 (C) 
in the presence of EGTA (1 mM, black) or Ca2+ (1 mM, red). Measurements were performed at 25 °C in HBS 
(10 mM HEPES, 150 mM NaCl, pH 7.8 at 25 °C). Temperature denatured AnxA2 (green) served as unfolded 
control in the CD experiment. Each spectrum is an average of ten scans.
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surface was offered with the administration of LUVs (Fig. 3B, step 3). Thus it appears that the N-terminal part of 
monomeric AnxA2 plays an important role in the bridging/linking of two membrane surfaces presented by the 
SLB and secondary vesicles. To further dissect the function of this N-terminal domain we generated and charac-
terized another AnxA2 derivate that only lacked the first 14 residues known to form an amphipathic alpha-helix 
(AnxA2 Δ14; see above for far-UV CD spectroscopy). When employed in our QCM-D setup, this mutant showed 
a behavior similar to that of AnxA2 Δ32, i.e. a Ca2+-dependent adsorption to the SLB layer but no significant 
binding of LUVs (Fig. 3C). A minor and transient change in frequency and dissipation was observed upon appli-
cation of the second membrane surface in the form of LUVs. This could reflect the presence of a low affinity 
membrane binding or protein interaction site in the region encompassing residues 15–32 that was removed in 
the AnxA2 Δ32 construct. Indirect evidence for a possible membrane interaction of the N-terminal domain of 
AnxA2 was indeed obtained previously by fluorescence quenching experiments involving fluorophore-labeled 
AnxA2. However, this interaction was observed at low pH and had not been mapped to a particular sequence 
in the N-terminal domain31. In any case, the frequency and dissipation shifts observed in our QCM-D record-
ings do not reflect any stable interaction as they are reverted within a few minutes of incubation (Fig. 3C, step 
3). Together, these data suggest that residues 1–14 of AnxA2 are involved in mediating the binding of a sec-
ond membrane surface, either by containing a second stable membrane binding site or by providing a site for 
protein-protein interaction and thus the formation of AnxA2 dimers.

Membrane bridging/linking by monomeric AnxA2 is oxidation-dependent.  Within the 14 
N-terminal residues of AnxA2, a cysteine is present at position 9. Therefore, we reasoned that the thiol group of 
this cysteine could potentially form a disulfide link with a neighbouring AnxA2 under oxidative conditions. This 
in turn would result in an AnxA2 dimer capable of bridging/linking membranes. To analyze a potential effect of 
AnxA2 oxidation on its membrane bridging ability, we carried out QCM-D recording with monomeric AnxA2 
preparations that were kept at oxidizing conditions for different periods of time. Figure 4A shows that the time of 
incubation of the purified protein in the absence of reducing agents correlates with the extent of frequency and 
dissipation shifts occurring upon LUV addition and thus with the membrane bridging/linking capacity of the 
protein.

Figure 3.  Time resolved frequency (i) and dissipation (ii) monitoring of the Ca2+ dependent and reversible 
lipid binding and membrane bridging/linking by WT AnxA2 (A) and the N-terminal deletion mutants AnxA2 
Δ 32 (B) and AnxA2 Δ14 (C) in the QCM-D setup. Numbers illustrate the sequential addition of lipids and 
proteins: Step 1, SLB formation by SUV adsorption and rupture; step 2, adsorption of the respective AnxA2 
derivative; step 3, secondary vesicle application in the form of LUVs; step 4, release of all Ca2+-dependently 
bound material by chelation with EGTA. Models representing the respective experimental setup are shown 
below the QCM-D recordings (iii). Shown are representative examples of typical experiments carried out n = 12 
independent times with at least three different protein batches and vesicle preparations.
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To directly address the role of potential disulfide formation through Cys-9, we aimed to chemically modify this 
residue by 2-iodoacetamide alkylation thereby rendering it inaccessible to cysteine crosslink. In addition to Cys-9, 
AnxA2 harbors three cysteine residues (Cys-133, Cys-262 and Cys-335) that are located in the core domain of the 
protein and are most likely inaccessible for chemical modification in the native protein. Thus 2-iodoacetamide 
treatment of the folded protein is likely to result in a single modification at Cys-9 in the N-terminal part32. To 
achieve this single modification we modified our purification protocol and included a 2-iodoacetamide treat-
ment. This resulted in an efficient inhibition of oxidation-induced dimerization of the protein as revealed by 
SDS-PAGE under non-reducing conditions (Fig. 4B). In contrast, oxidative dimers of non-alkylated AnxA2 that 
increase upon storage of the protein under oxidizing conditions are readily observed in this SDS-PAGE (Fig. 4B). 
Furthermore, this analysis reveals that the N-terminal truncation mutants, AnxA2 Δ32 and AnxA2 Δ14, remain 
monomeric under oxidizing conditions further supporting the unique accessibility of Cys-9 as compared to the 
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Figure 4.  Disulfide-based dimerization of AnxA2 affects membrane bridging/linking. (A) Frequency and 
dissipation shifts monitored in the QCM-D setup depicted in Fig. 1 that are induced by WT AnxA2 following 
incubation of the protein at non-reducing conditions for different periods of time [week: 1 (black), 3 (blue) 
and 5 (red)]. (B) SDS-PAGE analysis of different AnxA2 derivates under non-reducing conditions: 1, alkylated 
WT AnxA2; 2, WT AnxA2 (oxidation state after 1 week); 3, AnxA2 Δ32; 4, WT AnxA2 (oxidation state after 5 
weeks); 5, AnxA2 Δ14. PageRuler™ Plus Prestained Protein Ladder was used as a molecular weight marker. (C) 
Mass analyses of non-modified WT AnxA2 (black graph) and the alkylated derivative (blue graph). (D) Time-
resolved frequency (i) and dissipation (ii) monitoring of the reversible, Ca2+ dependent binding of alkylated 
AnxA2. A model representing the respective experimental setup is shown below the QCM-D recordings (iii). 
Shown are representative examples of a typical experiment carried out n = 8 independent times with two 
different protein batches and vesicle preparations.
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core domain cysteines. To further verify that 2-iodoacetamide treatment results in the modification of only one 
cysteine residue, we performed electrospray ionization mass spectrometry (ESI-MS) of WT and alkylated AnxA2. 
The deconvoluted spectrum of WT AnxA2 (Fig. 4C, upper panel) shows a major peak at 38548.7867 Da (monoi-
sotopic), which is in good agreement with the expected monoisotopic mass of acetylated AnxA2 of 38548.7903 Da 
(deviation 0.09 ppm). The reaction with iodoacetamide led to a species with a major peak at 38605.9904 Da 
(Fig. 4C, lower panel), which corresponds to mono-alkylated and acetylated AnxA2 (theoretical monoisotopic 
mass of 38605.8118 Da, deviation 4.6 ppm). No double-alkylated species were observed. Thus, 2-iodoacetamide 
treatment can modify AnxA2 at a single cysteine residue within the N-terminal 14 residues, identifying Cys-9 
as the only possible site. To probe if the alkylation of Cys-9 has any influence on the interaction of AnxA2 with 
negatively charged phospholipids, we first carried out liposome co-sedimentation assays. No qualitative differ-
ences were observed when liposome binding of alkylated AnxA2 was compared to that of the non-alkylated 
protein with both derivatives showing a Ca2+-dependent interaction (Figs S1 and S2, Supporting Information). 
Furthermore, we also performed a quantitative QCM-D-based analysis of the lipid binding of alkylated AnxA2 
using SLBs containing negatively charged phospholipids and cholesterol (Fig. S3, Supporting Information). This 
analysis revealed interaction parameters indicative of cooperative binding characterized by a molar dissociation 
constants of Kd = 27.6+ /− 1.3 and a Hill coefficient of nHill = 1.96+ /− 0.11 (R2 = 0.996). These values are in 
complete agreement with those obtained earlier for non-modified WT AnxA226. Based on these equivalent lipid 
binding parameters we next employed the mono-alkylated AnxA2 in our QCM-D-based membrane bridging/
linking assay. Importantly, alkylated AnxA2 immobilized on the SLB shows no stable interaction with a second 
membrane surface presented by the LUVs, i.e. no additional stable frequency or dissipation shifts were obtained 
following LUV addition. As observed for the AnxA2 Δ14 mutant, a slight and transient change in frequency 
and dissipation shifts occurred immediately after LUV addition (Fig. 4D). An overview of the QCM-D data is 
presented in Fig. S4 (Supporting Information) which provides a statistical analysis of the normalized equilibrated 
frequency shifts that occurred following addition of the secondary membrane surface to the different SLB-bound 
AnxA2 derivatives.

Our QCM-D experiments show a strictly Ca2+-dependent interaction of the different AnxA2 derivatives with 
membranes containing negatively charged phospholipids as the addition of EGTA not only disrupts membrane 
bridging, i.e. removes any bound secondary vesicle (LUV), but also detaches the SLB-bound AnxA2 (Figs 1, 3 
and 4). This contrasts reports showing an interaction of AnxA2 with unilamellar PS liposomes in the presence 
of EGTA that was particularly pronounced at lower ionic strengths of 0.1 mM NaCl28 and molecular dynam-
ics simulations that suggested a direct, Ca2+-independent contact of lysine residues in the AnxA2 core with PS 
headgroups in the membrane33. To exclude that such potentially weaker Ca2+-independent interactions were 
missed in our online QCM-D recordings, possibly due to the relatively high flow rate of 80.4 µl/min, we carried 
out additional QCM-D experiments in the absence of Ca2+ and also reduced the flow rate to 8.4 µl/min. The 
results obtained under these conditions are identical to those obtained at the higher flow rates and show that no 
binding of oxidized WT or alkylated AnxA2 to the SLB is observed in the absence of Ca2+ (Fig. S5, Supporting 
Information) and that Ca2+-dependently bound AnxA2 (oxidized WT, alkylated and Δ14) is completely removed 
from the SLB upon addition of EGTA (Figs S6 and S7, Supporting Information). We also employed the lower flow 
rates to further study the minor and transient change in frequency and dissipation observed when the second 
membrane surface in the form of LUVs is added to SLB-bound alkylated AnxA2 or AnxA2 Δ14 (Figs 3 and 4). 
However, even reducing the flow rate to much lower values of 8.4 µl/min did not increase these minor QCM-D 
shifts supporting the view that alkylated AnxA2 and AnxA2 Δ14 lack a second high affinity membrane binding 
site (Fig. S7, Supporting Information).

The lack of Ca2+-independent binding of AnxA2 to model membranes containing roughly physiological levels 
of PS (20%) observed here is in line with our previous results employing SLBs and giant unilamellar vesicles of 
similar lipid composition26,34,35. However, we did observe a Ca2+-independent interaction of AnxA2 with endo-
somal membranes that was in fact mediated via the N-terminal domain36. We believe that this Ca2+-independent 
binding reflects a specific interaction with certain endosomal lipids not present in our model membranes or 
an interaction with a yet to be identified endosomal protein receptor. We have no explanation why a signifi-
cant Ca2+-independent lipid binding of AnxA2 was observed in a recent study using unilamellar PS liposomes28 
but think that this could be due to the different lipid compositions employed, pure PS vesicles in the study of 
Lopez-Rodriguez and coworkers28 and SLBs composed of POPC/POPS/cholesterol (60:20:20) in our QCM-D 
recordings. Moreover, it should be noted that the pure phospholipid mixtures used in these liposome binding 
studies are different from more complex phospholipid mixtures occurring in natural membranes which show, 
e.g., different lipid fluidities that could affect lipid-protein interactions.

To analyze membrane bridging/linking properties of the different AnxA2 derivatives by independent 
approaches we also performed LUV aggregation experiments. Aggregation of the LUVs following the addition 
of WT AnxA2, alkylated AnxA2 and the two truncation mutants AnxA2 Δ14 and Δ32, respectively, was moni-
tored by optical density measurements at a wavelength of 600 nm (OD600) using identical protein and LUV con-
centrations. Initial equilibration of the LUV dispersion resulted in a constant OD600 value of around 0.05 a.u. 
reflecting scattering from the suspension of dispersed LUVs. Addition of non-reduced WT AnxA2 led to a signif-
icant increase of the OD600 to approximately 0.23 a.u. indicative of the formation of LUV aggregates most likely 
resulting from AnxA2-induced vesicle bridging/linking. In contrast, no increase of OD600 was observed following 
addition of alkylated AnxA2 or the AnxA2 Δ32 deletion mutant (Fig. 5A(i)). LUV aggregation experiments were 
also carried out at 10-fold lower concentrations and, to increase sensitivity of the assay at this lower LUV concen-
tration, by measuring the optical density at OD400. Again, while oxidized WT AnxA2 was able to efficiently aggre-
gate the liposomes, no aggregation activity was observed for alkylated AnxA2 and the two truncation mutants 
AnxA2 Δ14 and Δ32 (Fig. 5A(ii)). Moreover, oxidized WT AnxA2 was not able to aggregate LUVs in the absence 
of Ca2+. Figure 5A(iii) compares the measurements at 400 and 600 nm for the same LUV concentration. The 
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Figure 5.  Membrane vesicle aggregation by different AnxA2 derivatives. (A) Time-dependent changes in 
optical density at OD600 (i) or OD400 (ii) during aggregation of LUVs by non-modified WT AnxA2 (oxidation 
state after 10 weeks), alkylated WT AnxA2 and the N-terminal truncation mutants AnxA2 Δ14 or Δ32. 
LUVs without addition of protein served as control. 60 µl of the respective protein sample (0.5 mg/ml) were 
added at t = 300 s to a 800 µl LUV suspension at a concentration of 0.1 mg/ml (i) or 1 mg/ml (ii) in HBS buffer 
supplemented with 250 µM Ca2+. Monitoring continued for 55 min. In (i), 650 µM EGTA in HBS buffer was 
added at t = 3000 s to revert any Ca2+-dependent aggregation. In (ii), EGTA was included in a parallel recording 
to reveal a potential Ca2+-independent aggregation. (iii) shows a comparison of the sensitivity of the assay at 
400 and 600 nm using the same amount of LUVs (0.1 mg/ml). (B) Size distribution of particles present using 
dynamic light scattering (DLS). 60 µl of the respective AnxA2 protein (0.5 mg/ml) were added to 800 µl of a LUV 
suspension (1 mg/ml; size of 150 to 200 nm) in HBS containing 250 µM Ca2+ or 650 µM EGTA (when indicated) 
under non-reducing conditions. The size distribution after 60 min compared to a vesicle alone control (green) 
was analyzed for non-modified WT AnxA2 (oxidation state after 10 weeks), alkylated WT AnxA2 and 
the N-terminal truncation mutant AnxA2 Δ32 (i). In (ii), vesicle aggregation by oxidized WT AnxA2 was 
compared for two LUV preparations, appr. 50 or 200 nm in size using the same non-reducing conditions. A 
comparison of DSC measurements under oxidizing and reducing conditions is shown in (iii) where TCEP 
(50 mM) was included as a reducing agent in one of the recordings. Data were evaluated using a CONTIN 
algorithm. Graphics shown are representative example of a typical measurement. Optical density measurements 
were performed two times with different batches of proteins and DLS measurements were carried out at least 
three time with two different batches of proteins and LUVs.
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results differ from those obtained recently by Lopez-Rodriguez and coworkers28 who reported that WT AnxA2 
could aggregate PS vesicles even in the presence of EGTA and that the N-terminal truncation mutant AnxA2 
Δ14 was also able to aggregate these vesicles. These findings are difficult to reconcile with our results, although it 
should be noted that a different type of vesicle population was used in the different aggregation assays. Whereas 
Lopez-Rodriguez et al.28 employed unilamellar vesicles composed only of PS, our LUVs contained a more com-
plex lipid mixture (POPC/POPS/cholesterol in a ratio of 60/20/20).

Next, we employed dynamic light-scattering (DLS) to record potential protein-mediated LUV bridging/link-
ing by changes in the hydrodynamic particle diameters. Changes were only observed under non-reducing con-
ditions for the unmodified oxidized WT AnxA2, whereas hydrodynamic particle diameters remained constant 
when alkylated AnxA2 or AnxA2 Δ32 were employed (Fig. 5B(i)). To exclude that the peak in the WT AnxA2 
experiment corresponding to particles with hydrodynamic diameters (<dH>) below 400 nm reflects the presence 
of smaller vesicles that could not be aggregated by oxidized WT AnxA2, we also carried out DLS experiments with 
smaller sized LUVs (<dH > of appr. 90 nm as compared to < dH > of appr. 150 nm for the experiments described 
above). A comparison of the results obtained for oxidized WT AnxA2 at the two LUV sizes reveals no significant 
differences (Fig. 5B(ii)). Aggregated particles of varied sizes including rather small sizes were observed following 
addition of oxidized WT AnxA2 to LUVs of higher (<dH > of appr. 90 nm) and lower curvature (<dH > of appr. 
150 nm) and the intensity-weighted size distributions (Figs 5B(ii) and S8) do not show a selective aggregation 
of larger vesicles by oxidized WT AnxA2. Finally, to verify that the aggregation capacity depends on the oxi-
dation of AnxA2, we performed DLS measurements under reducing conditions by adding the reducing agent 
Tris(2-carboxyethyl)phosphine (TCEP). Figure 5B(iii) reveals that WT AnxA2 shows no aggregation activity 
under reducing conditions. This is in line with the QCM-D and the OD400/OD600 aggregation measurements and 
indicates that the Ca2+ dependent bridging/linking of membrane surfaces by WT AnxA2 only occurs due to an 
oxidative disulfide crosslink involving Cys-9 and the resulting AnxA2 dimer formation.

AnxA2 is likely to remain non-oxidized and thus monomeric within the reducing environment of the cell’s 
cytosolic compartment. In fact, gel filtration experiments carried out with whole cell lysates have so far only 
revealed the existence of monomeric AnxA2 and the AnxA2-S100A10 complex27. Therefore, any membrane 
bridging/crosslinking by AnxA2 within cells is likely to require interaction with an S100 protein ligand (most 
likely S100A10 but possibly also S100A4 or S100A11) and thus formation of heterotetrameric AnxA2-S100 com-
plexes. This view is supported by studies analyzing the function of AnxA2 in Ca2+-regulated secretory events. 
Both, the nicotine-induced exocytosis of chromaffin granules and the histamine- and epinephrin-evoked exocy-
tosis of endothelial Weibel-Palade bodies require AnxA2 in the form of the AnxA2-S100A10 complex suggesting 
a complex-mediated membrane bridging/linking as a possible underlying mechanism12,13. This equivalence to 
cellular scenarios underscores the potential of our model system employing defined lipid bilayers and purified 
proteins. Therefore, we expect that our sequential QCM-D recordings of secondary vesicle binding can be applied 
to other peripherally binding and potentially membrane bridging/crosslinking proteins or protein complexes in 
the future.

Materials and Methods
Materials.  Phospholipids, 1-palmitoyl-2-oleoyl-sn-glycero-3-phoshocholine (POPC), 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosho-L-serine (sodium salt) (POPS) and cholesterol were purchased from Avanti Polar Lipids 
Inc. (Alabaster, USA). Lipids and cholesterol were dissolved in chloroform/methanol (1:1, v/v). The HBS buffer 
contained 10 mM HEPES and 150 mM NaCl at pH 7.4 (20 °C) and the citrate buffer consisted of 10 mM tri-so-
dium citrate and 150 mM NaCl at pH 4.6 (20 °C). Solvents and other chemicals were purchased from Merck 
KGaA (Darmstadt, Germany), Carl Roth GmbH (Karlsruhe, Germany), Sigma-Aldrich (Munich, Germany) and 
Applichem (Darmstadt, Germany). Water was purified and deionized with a cartridge system from Millipore 
(18.2 MΩ).

Methods
Protein expression and purification.  The human AnxA2 encoding cDNA that carries a glutamate 
for alanine substitution for antibody detection at amino acid position 66 was cloned into the pSE420 expres-
sion vector (psE420-AnxA2A66E37). Based on this plasmid, the psE420-AnxA2A66E Δ14 construct was gen-
erated by deleting nucleotides 1–42 (corresponding to amino acids 1–14) of the protein-coding region using 
PCR mutagenesis with the appropriate forward (5′-CATGGTTTATTCCTCCTTATTTAATCGATAC-3′) 
and reverse primers (5′-GATCACTCTACACCCCCAAGTGCATATGGG-3′) (Biomers, Ulm, Germany). 
PCR was performed in an Eppendorf Mastercycler DNA Engine Thermal Cycler PCR (Eppendorf, Hamburg, 
Germany) employing an annealing temperature of 55 °C for 30 s and 30 cycles. The product was purified, 
ligated overnight with T4 DNA ligase (Thermo Fisher Scintific, Waltham, MA) and transformed into E. coli 
cells. The psE420-AnxA2A66E Δ32 construct lacking nucleotides 1–96 (corresponding to amino acid 1–32) 
of the protein-encoding region was also obtained by deleting PCR mutagenesis as described above using 
(5′-GATGCTGAGCGGGATGCTTTGAACATTGAAAC-3′) as reverse primer. For the recombinant protein 
expression of the psE420-AnxA2A66E, psE420-AnxA2A66E-Δ14 and the psE420-AnxA2A66E-Δ32 constructs, 
E. coli strain DH5α was used. The cDNA encoding human S100A10 was cloned into the pKK223-3 expression 
vector38 and protein expression was performed in E. coli strain BL21(DE3) pLysS.

For protein expression, E. coli cells transformed with the respective plasmids were grown in LB medium 
supplemented with ampicillin at 37 °C to an optical density of 0.6 at 600 nm (OD600). Protein expression was 
induced by addition of isopropyl β-D-1-thiogalactopyranoside to a final concentration of 1 mM. After expression 
for 4 h, cells were harvested by centrifugation at 5000 x g for 10 min at 4 °C. Protein purification of all AnxA2 
constructs and S100A10 was performed by diethylamioethyl- and carboxymethyl-cellulose ion exchange chroma-
tography as described previously9. Reconstitution of the heterotetrameric AnxA2-S100A10 complex (A2t) using 
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bacterially expressed AnxA2 and S100A10 was performed as described previously17 and involved as final step a 
gel filtration chromatography to separate the complex from non-complexed subunits.

Purified AnxA2 was identified using immunoblotting with mouse monoclonal anti-AnxA2 antibod-
ies directed against an N-terminal peptide (HH79) or the C-terminal core domain (BD, Purified Mouse 
Anti-Annexin II). Immunoblotting also employed mouse monoclonal anti-S100A10 antibodies described 
before39. Goat anti-mouse IgGs conjugated with IRDye 800CW (LI-COR Biosciences, Lincoln, USA) were used 
as secondary antibodies. Purified proteins were concentrated using an Amicon Ultra-4 Centrifugal Filter Unit 
(Merck Millipore, Darmstadt, Germany) and dialyzed against suitable buffers for the respective binding exper-
iments. Protein concentration was determined by absorption spectroscopy using an extinction coefficient of 
ε280 = 0.7 cm2 mg−1 for all AnxA2 monomers, ε280 = 0.26 cm2 mg−1 for S100A10 and ε280 = 0.65 cm2 mg−1 for the 
AnxA2-S00A10 tetramer complex27,34.

Alkylation of proteins.  The alkylation of monomeric AnxA2 was performed with 2-iodoacetamide, com-
monly used for blocking thiol groups of proteins32. Following the reduction of cysteine residues, the alkylation by 
2-iodoacetamide results in the covalent coupling of a carbamidomethyl group and prevents formation of disulfide 
bonds/crosslinks. For the efficient alkylation of AnxA2 the purification protocol described above was modified 
as follows. Lysis was performed in a lysis buffer that contained a higher amount (5 mM) of the reducing agent 
dithiothreitol (DTT) and an excess (250 mM) of 2-iodoacetamide as alkylation reagent. This also applied to the 2 
different dialysis steps before the ion-exchange chromatography. Dialysis was performed with inclusion of DTT 
(5 mM) and a treatment with 2-iodoacetamide (250 mM) after the dialysis step.

Vesicles.  Lipid films of the following composition (given in molar ratios) were used: POPC/POPS/choles-
terol (60:20:20). For unilamellar vesicle preparation, the respective lipids dissolved in chloroform/methanol were 
mixed at the given molar ratio. The organic solvent was evaporated under a stream of nitrogen at a temperature 
above the lipid gel-fluid phase transition. Traces of solvent were removed under vacuum for 4 h at the same 
temperature and lipid films were stored at 4 °C until use. Vesicles were then prepared according to established 
protocols24. Briefly, dry lipid films were suspended in the respective preparation buffer for 1 h and subjected 
to vortex mixing above the phase transition temperature. Small (SUVs) and large unilamellar vesicles (LUVs) 
were obtained by extrusion using a polycarbonate membrane40 of appr. 50 nm or 200 nm pore size, respectively 
(Avestin Liposofast). For the preparation of solid supported bilayers, SUVs were prepared in a citrate buffer. The 
secondary LUVs used in the QCM setup and all dynamic light scattering (DLS) and optical density (OD) aggre-
gation measurements were prepared in HBS buffer supplemented with or without 250 µM Ca2+.

Liposome co-sedimentation.  The co-sedimentation assay was performed as described41 with some mod-
ifications. Briefly, 40 µg AnxA2 or alkylated AnxA2 were incubated with 0.32 mg of 200 nm LUVs (1.6 mg/ml) in 
HBS buffer supplemented with 1 mM Ca2+ or 1 mM EGTA in a total volume of 200 µl. After an incubation time 
of 1 h at 4 °C the first ultracentrifugation (uc, 96.600 × g, 20 min at 4 °C) step was performed. The supernatants 
were collected and the sediments were resuspended in 200 µl HBS supplemented with the respective additive (see 
above). Following incubation for 20 min at 4 °C, samples were subjected to a second uc step. The supernatants 
were again collected and the sediments were now resuspended in 200 µl HBS supplement with 5 mM EGTA. 
After an incubation time of 20 min at 4 °C and following a third uc step, the supernatants were collected and the 
sentiments were resuspended in 200 µl HBS containing 5 mM EGTA. Several such EGTA washing steps where 
carried out to completely elute all Ca2+-dependently bound protein. All collected fractions were then analyzed by 
immunoblotting with anti-AnxA2 antibodies.

QCM-D measurements.  Quartz Crystal Microbalance with Dissipation (QCM-D) measurements were 
performed on a Q-Sense E4 QCM-D (Q-Sense, Gothenburg, Sweden) instrument equipped with four tempera-
ture controlled flow cells in a parallel configuration connected to a four-channel peristaltic pump (Ismatec IPC, 
Glattbrugg, Switzerland), employing a flow rate of 80.4 µl/min. Binding analysis was performed at 20 °C in HBS 
buffer supplemented with 250 µM Ca2+. Frequency and dissipation shifts of the 3rd overtone resonance frequency 
of the quartz sensor (QSX 303, 50 nm SiO2, 4.95 MHz) were monitored. Data analysis was performed employing 
OriginPro v. 9.1 (OriginLab Corp.) and Hill coefficients were determined as described in26,42.

Circular dichroism measurements.  Far-UV circular dichroism (CD) spectra between 200 and 270 nm 
were recorded using a Jasco J-815 spectropolarimeter at 25 °C. All spectra were averaged over ten scans. Stock 
solutions of the proteins were dialyzed against 10 mM HEPES, 100 mM NaCl, pH 7.8 at 25 °C. Before the CD 
experiment, protein solutions were diluted to 0.4 mg/ml with the same buffer supplemented with either EGTA or 
CaCl2 to a final concentration of 1 mM. Data analysis was carried out with Spectra Manager Version 2 (JASCO) 
and OriginPro 9.1 (Origin).

Measurement of optical density.  Optical density (OD600 and OD400) was measured using a V 650 
double-beam spectrophotometer (JASCO) at 25 °C. Samples for spectroscopic measurements were prepared in 
disposable 1 ml semi-micro PMMA cuvettes (BRAND) and data analysis was carried out with Spectra Manager 
Version 2 (JASCO) and OriginPro 9.1 (Origin). Briefly, the OD of a 800 µl LUV solution (0.1 mg/ml or 1 mg/ml in 
HBS buffer) was measured for 5 min before 60 µl of the AnxA2 protein solution (0.5 mg/ml in HBS buffer contain-
ing 250 µM of Ca2+) was added and the measurement continued for 55 min. If an increase in OD was monitored, 
60 µl of EGTA (10 mM in HBS buffer) were added after 50 min to revert the Ca2+-dependent effects.

Dynamic light scattering (DLS).  Measurements were carried out with a Nano ZS Zetasizer (Malvern 
Instruments) at 25 °C. Samples were prepared in disposable 1 mL semi-micro PMMA cuvettes (BRAND) using 
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concentrations of 1 mg/ml of LUVs (50 nm or 200 nm) and approximately 30 µg/ml of proteins. Mixtures of 
LUVs and proteins were equilibrated for 60 min before each measurement. DLS measurements were performed 
under reducing and non-reducing conditions. TCEP (50 mM) was used as a reducing agent. Data analysis was 
performed with Malvern Zetasizer Software Version 7.12 (Malvern Instruments) and OriginPro 9.1. (Origin). 
To translate the correlation functions into size distributions a CONTIN algorithm (as implemented in Malvern 
research software) was applied with a quadratic weighing scheme of multimodal analysis and an automatic cut-off 
at a 0.01 fraction of the signal.

Mass spectrometry.  LC-MS consisted of an UltiMate™ 3000 RS (Thermo Fisher Scientific Inc., MA, USA) 
connected to a maXis II UHR-TOF LC-MS system (Bruker Corp., MA, USA) with a standard ESI source (Apollo, 
Bruker Corp., MA, USA). MS settings were as follows: Capillary voltage 4500 V, end plate offset −500 V, dry 
heater 180 °C, dry gas 4.0 l min−1, nebulizer pressure 0.4 bar. Lock mass calibration was performed using HP 
1221.990364. 10 µl of a solution containing 0.1% of formic acid were injected, desalted for 5 min on a Zorbax 
300SB-C3 column (3 mm × 150 mm, 3.5 µm, 300 Å) with 95% A (ultrapure H2O, 0.1% formic acid) and 5% B (ace-
tonitrile containing 0.1% of formic acid) at a flow rate of 0.6 ml min−1 and subsequently eluted with a steep gradi-
ent of 5% to 95% B. MS data were recorded using a Control version 4.0.15.3248 and analysed with DataAnalysis 
4.4 (both Bruker Daltonik GmbH, Bremen, Germany). Deconvolution was carried out using the MaxEnt algo-
rithm and monoisotopic masses were determined by means of the SNAP algorithm, both of which implemented 
in DataAnalysis.

Data Availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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