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isolation of human fetal cochlear hair cell
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Sensory hair cells located in the organ of Corti are essential for cochlear mechanosensation.
Their loss is irreversible in humans resulting in permanent hearing loss. The development of
therapeutic interventions for hearing loss requires fundamental knowledge about similarities
and potential differences between animal models and human development as well as the
establishment of human cell based-assays. Here we analyze gene and protein expression of
the developing human inner ear in a temporal window spanning from week 8 to 12 post
conception, when cochlear hair cells become specified. Utilizing surface markers for the
cochlear prosensory domain, namely EPCAM and CD271, we purify postmitotic hair cell
progenitors that, when placed in culture in three-dimensional organoids, regain proliferative
potential and eventually differentiate to hair cell-like cells in vitro. These results provide a
foundation for comparative studies with otic cells generated from human pluripotent stem
cells and for establishing novel platforms for drug validation.
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earing in humans relies on mechanosensitive hair cells

located in the organ of Corti. Hair cells and their

surrounding non-sensory supporting cells derive from
SOX2+ progenitors within a region of the developing cochlear
duct known as the prosensory domain (PSD)!. The PSD becomes
postmitotic as early as embryonic day E12.5-E13 in mice®
Expression of the cell cycle inhibitor p27Kipl, progressing in an
apical-to-basal gradient, coincides with cell cycle exit?. Hair cells
and supporting cells are specified shortly after by coordinated
activity of transcription factors, such as Atoh1#~7, and by Notch-
mediated lateral inhibition®?, resulting in a mosaic-like pattern of
the two cell types!?.

While extensive data are available on gene expression during
mouse development, only limited information exists for human
cochlear development!!-13, The first appearance of hair cells
within the human cochlear duct has previously been reported
during the 12-13th week of development!2. The earliest occur-
rence of human otic neuroblasts and the appearance of vestibular
hair cells has not been well documented.

Characterization of the fetal PSD could provide a framework
for understanding human hair cell development and for com-
parative studies with the goal of finding ways to initiate hair cell
regeneration in the human cochlea. Moreover, gaining informa-
tion about human hair cell progenitors will offer a blueprint to
generate this rare and transient human cell type from more
abundant sources such as pluripotent stem cells'1>,

Here we mapped the expression of well-known otic markers by
immunohistochemistry and multiplex qRT-PCR during human
inner ear development. We focused on the developmental stages
when the human cochlear PSD becomes postmitotic and hair cells
start to differentiate; in parallel we characterized the spiral ganglion
as well as the vestibular sensory epithelium. Moreover, we have
developed an organoid culture method that allows for expansion of
human fetal cochlear duct cells upon fluorescence activated cell
sorting (FACS), relying on EPCAM expression. We show that a cell
population expressing EPCAM and CD271 includes nearly the
totality of hair cell progenitors within the human cochlear PSD. Our
results provide insights in the development of the human inner ear
and provide a method to purify and culture human hair cell pro-
genitors and differentiate them in vitro to hair cell-like cells.

Results

The human cochlear prosensory domain. Cell cycle exit in the
murine cochlear PSD begins at the apex of the organ during
embryonic day 12 and migrates toward its base during the course
of 24h% An indicator of PSD cell cycle exit is the onset of
expression of the cyclin-dependent kinase inhibitor 1B
(CDKN1B), also known as p27Kip1>16, We analyzed expression
of p27Kipl in human samples from the eighth week (W8) until
W12 of development (Fig. la-e). In W8 cochleae, p27Kipl
expression was detectable in cells of the floor of the developing
cochlear duct in apical and middle turns, but not at the base
(Fig. 1a, b). Reciprocally, and in accordance with an apex-to-base
gradient of cell cycle exit is the expression of the proliferation
marker Ki67 in the basal turn, and its absence from apex and
middle turns, where a zone of not-proliferating cells, demarking
the PSD, was distinctly notable (Fig. 1b).

We then assessed the expression of the inner ear prosensory
domain marker SOX2 (Fig. 1c, d, £, h). At W8, we detected SOX2
expression in the floor of the cochlear duct, marking the whole
PSD; p27Kipl was found in cells within this SOX2-positive
domain (Fig. 1c). Over the course of the next 4 weeks, SOX2
expression became more restricted to the developing organ of
Corti, where it was distinctly associated with the zone of non-
proliferating cells marked with p27Kipl (Fig. 1d).

We also assessed the expression of the PSD and supporting cell
marker LGR5!718, Immunostaining showed no detectable
expression at W8 becoming weakly evident at W10 and at W12
(Fig. 1f). In situ hybridization'® confirmed the presence of LGR5
mRNA in the PSD region, in all cochlear turns at W9 (Fig. 1g). In
addition, as seen in mouse’’ some LGR5 mRNA could be
detected in the region of the lesser epithelial ridge/spiral ligament.
Low levels of sparsely positive cells were detected also in the spiral
ganglion region (Supplementary Fig. 1).

Hair cell differentiation was examined by immunostaining for
the hair cell marker MYO7A. Faint MYO7A expression was
detectable around W11 in a subset of SOX2-positive cells that by
location and morphology can be assumed to be nascent hair cells,
visible exclusively in the basal turn (Fig. 1f, h). At W12, MYO7A,
expression became robust in the base and middle turn but not in
the apex, in cells that co-expressed SOX2. In humans, hair cell
differentiation therefore appears, like in mice’, to follow a basal-
to-apical gradient (Fig. 1i). Hair cells in the developing human
vestibular sensory epithelium, detected by MYO7A immunos-
taining, were already clearly manifest at W10. At week 12 they
showed the expression of ESPIN positive hair bundles as well as
nuclear expression of BRN3C (Supplementary Fig. 2).

With the goal of identifying surface markers that can be used to
prospectively isolate PSD cells from the developing human
cochlear duct, we assessed the expression of epithelial markers
EPCAM/CD3262122, MCAM/CD14622, as well as surface mar-
kers for neural stem cells Integrina6/CD49f2!, Prominin/
CD133%324 and SSEA1/CD15%° (Supplementary Fig. 3a).
EPCAM immunostaining was distinctly associated with the
cochlear duct (Fig. 1j), and a well-defined EPCAM-positive
population could be identified by flow cytometry (Supplementary
Fig. 3a). CD49f antibodies labeled cells of the cochlear duct, as
well as neuroblasts in the young spiral ganglion. No specific
staining was detectable for CD133, MCAM/CD146, and CD15/
SSEAL, neither on sections nor by flow cytometry. While weak
immunoreactivity was observed on cyosections for LGR5, we did
not identify a distinct population with flow cytometry that would
allow for cell sorting as previously demonstrated for the murine
organ of Corti!”18, E-Cadherin?® staining appeared less specific
than EPCAM in marking the cochlear duct (Supplementary
Fig. 3b).

We also assessed the expression of NGFR, also known as
CD271. Human CD271 expression was reported as restricted to
the inner pillar region at week 14-1827. We found a dynamically
changing pattern of CD271 expression that was prominently
associated with developing spiral ganglion cells at W8, but this
expression decreased in the ganglion at W10 and was near
background at W12 (Fig. 2a). In the PSD, CD271 was detectable
at W10 in a subset of supporting cells. Starting from W12, it
became restricted and upregulated in cells that are distinctively
located where pillar cells would be expected based on p27Kipl
expression and overall tissue morphology (Fig. 2¢, d). Co-staining
for the neurofilaments BIII tubulin (TUBB3) showed that CD271-
labeling in the cochlear duct is not caused by neurites entering the
PSD, but rather by distinct cells (Fig. 2c).

Human spiral ganglion development. Markers for the devel-
oping spiral ganglion neurons were selected based on the studies
mainly conducted in mouse?. Expression of p27Kipl was
detected in the spiral ganglion at all-time points analyzed
(Fig. la-c, j and Supplementary Fig. 4b), indicating that the
nascent neurons presumably exited the cell cycle before W8. In
mice, spiral ganglion neurons exit the cell cycle between
embryonic day E10.5 and E12.5%2°. Also in agreement with
mouse literature3Y, human spiral ganglion neurons at these stages
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lacked SOX2 expression, which was restricted to a few pre-
sumptive non-neuronal cells in the ganglion (Supplementary
Fig. 4b). The expression of peripherin (PRPH) and TUBB3 was
used to identify spiral ganglion neurons (Supplementary Fig. 4a,
¢, d). Our results confirm that human spiral ganglion neurons
express both neurofilaments already from W8 onwards!>1327.
Isletl (ISL1) and GATA3 were detected in the spiral ganglion
neuron nuclei between W8 and W12, and were also expressed in
the cochlear duct as previously reported during the murine
development®!32 (Supplementary Fig. 4c, d). NEUROD was only
detectable in the youngest spiral ganglion neurons assessed at W8
and was absent in older stages. Doublecortin (DCX) expression
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shows highest similarity between the two cochlear duct samples,
the two utricle samples, and the four spiral ganglion specimen,
independent of the developmental age. Cochlear ducts were more
similar to utricles than to spiral ganglia (Fig. 3a). Markers for the
early developing inner ear epithelia like OC90, SOX9, FBXO2,
EPCAM and supporting cell markers were much stronger
expressed in the cochlear duct and the utricle than in the spiral
ganglia (Fig. 3b). Hair cell genes, like myosin 6 (MYO6), Usher1C
(USHIC), ATOHI, MYOIl5A, MYO7A, MYO3A, Stereocilin
(STRC), and Otoferlin (OTOF) were more strongly expressed in
the utricle compared to the cochlear duct, which is compatible
with our assessment that utricle hair cells differentiate before
cochlear hair cells (Supplementary Fig. 2). When we compared
the expression of sensory epithelium and hair cell genes in general
between utricle and cochlear duct samples with spiral ganglion,
we found that these genes, as expected, are more highly expressed
in the developing sensory epithelia (Fig. 3c). Proneurosensory
genes such as GATA3 and ISLI were detected both in the cochlear
duct, as well as in the spiral ganglia samples, in agreement with
our histological assessment. Conversely, neuronal genes such as
TUBB3, NEUROD, neurogenin 1, 2, and 3 (NEUROGI-3), were
higher expressed in the spiral ganglion samples (Fig. 3d). Genes
involved in inner ear and vestibular organ/semicircular canal
development such as HMX3, DLX3, DLX5 and DLX6 were
enriched in the utricle samples (Fig. 3e). Additional genes
expressed during otic development such as OTXI, OTX2, and
EYA4 were enriched in utricle and cochlear duct and expressed at
lower levels in the spiral ganglion; SIXI, SIX4 and EYAI
expression was less discriminate among the three different sample
groups (Fig. 3f).

In general, the relative expression of each gene among the three
different tissues followed the expression pattern one would
expect, based on the accumulated knowledge gained in animal
models?3-3%, We also did not encounter major differences with
expectations for expression of Notch, Wnt, Sonic Hedgehog, and
cell cycle genes, with the exception of WNT2B and WNT3, which
were distinctively higher expressed in the human utricle samples,
perhaps reflecting the more mature differentiation state of this
organ compared to the rest (Supplementary data 1).

Prospective isolation and organoid culture of cochlear duct
derived cells. Based on the specific expression of the epithelial cell
surface marker EPCAM in the cochlear duct, we sorted EPCAM+
and EPCAM— cells from human cochlear samples between W9
and W12 of development (Fig. 4a). We consistently isolated
17,500-50,000 EPCAM+ cells per cochlea per sample, which
represented 12.2 £ 5.2% (+s.d. n=9) of the total cells.

To promote cell survival and recovery after sorting, we optimized
a strategy for organoid formation exploiting cell re-aggregation in
low-binding round-bottom 96-well plates in presence of Matrigel.

We first validated the protocol using Lgr5-GFP positive cells
isolated from the sensory epithelium of early postnatal mice. In
agreement with their previously reported hair cell progenitor
characteristics!718 we were able to expand these cells and further
differentiate them into hair cell-like cells (Supplementary Fig. 5).
Like the murine cells, human EPCAM+ cells required addition of
2% Matrigel to the culture medium 2-3 days after sorting to enable
the generation of epithelial organoids. In absence of Matrigel, the
cells failed to grow when maintained in the same conditions. In
contrast to the formation of organoids, we observed that the
EPCAM— cells failed to form aggregates and developed mesench-
ymal/neuronal phenotypes instead, with some cells expressing
nestin, BIII tubulin, and peripherin (Fig. 4b). When cultured for an
extended time (56DIV) we occasionally encountered some neurons
(Supplementary Fig. 6).

We analyzed organoids that formed from human cochlear
duct EPCAM+ cell aggregates after 14 and 20 days in culture
and found them well-structured with respect to epithelial
organization and morphology; consistently showing expression
of epithelial markers EPCAM, E-Cadherin (ECAD), and -
Catenin (CTNNBI1), as well as CD49f. (Fig. 4c, green box).
Many cells in the organoids were proliferating, without specific
foci, as shown by scattered Ki67 staining; conversely we also
found cells that had exited the cell cycle, indicated by p27Kipl
expression (Fig. 4c, red box). SOX9 and FBXO2, identified in
the gene expression analysis as highly expressed genes and
previously reported in human!? and mouse development3>37,
were detected in all cells of each organoid tested (Fig. 4c, blue
box). SOX2 expressing cells, used to identify putative PSD cells,
were found as diffuse patches in some organoids (Fig. 4d,
orange box). Lgr5 expression was not convincingly detectable
(Fig. 4d). MYO7A staining did not reveal any cell with
morphological characteristics of hair cell-like cells. Expression
of the antigens listed here was assessed in primary as well as
secondary organoids and no major changes in expression or
localization of the respective proteins was observed with
passaging (Fig. 4e, f). The organoids maintained proper
epithelial organization as well as apical-basal polarity also in
their second generation as shown by apical localization of the
tight junction protein ZO-1 (Fig. 4e).

To promote cell proliferation in epithelial organoids, we tested
the effect of adding the GSK3p inhibitor CHIR99021, which we
had previously shown to enhance sphere forming capacity of
murine Lgr5 cells$, as well as promotion of growth of organoids
derived from murine Lgr5+ sorted cells in our experiments
(Supplementary Fig. 5d). Addition of CHIR99021 to the medium
also lead to an increase in the size of the human organoids
(Supplementary Fig. 5g). Organoids from EPCAM+ sorted cells
have been successfully passaged in vitro by mild trypsinization
and manual trituration, and cultured for up to 3 months

Fig. 1 The human cochlear prosensory domain. a Three stages of human cochlear development (W8 (E1202), W10 (E1201), and W12 (E1210)). Shown are
overview modiolar cyosections, immunolabeled with antibodies to p27Kip1. F-actin was labeled with phalloidin and cell nuclei were stained with DAPI.
Scale bar =1mm. b Cochlea at W8 (E1202) of development, immunostained for p27Kip1 and Ki67. Right and left cochleae from the same fetus are shown.
The prosensory domain (PSD) and the spiral ganglion (SG) are indicated. Pink dashed lines indicate the lack of KI67 positivity in the PSD in apical and
middle turn. Scale bar =100 pm. ¢ Characterization of the W8.4 (E1251) PSD by immunostaining for SOX2 and p27Kip1. Scale bar =100 pm. Apical and
basal turns are shown as indicated. d Characterization of W12 (E1210 top and E1203 bottom) PSDs with immunostaining for SOX2 and p27Kip1. Upper
panel shows the basal turn, lower panel shows the localization of the two markers in the base, middle, and apex. Scale bar =50 pm. e Schematic
comparison of the timing of cell cycle exit between mouse and human. f Immunostaining for SOX2, LGR5, and MYO7A of human fetal cochlear PSDs at
W8 (E1202), W10 (E1201), and W12 (E1210) of development. Basal turns are shown for all-time points. Scale bar =100 pm. g In situ hybridization (brown
dots) with a LGR5-specific RNAscope probe at W9.2 of development (E1276) Basal, middle, and apical turns are shown. Sections are counterstained with
haematoxylin (blue) to visualize tissue morphology. Scale bar = 50 pm. h Immunostaining for SOX2 and MYO7A of cochlear PSDs at W11 (E1195) and W12
(E1203). The basal, middle, and apical turns are shown. Scale bar = 50 pm. i Schematic comparison of the timing of hair cell differentiation between mouse
and human. j Immunostaining of the entire cochlear duct for EPCAM (red) and p27Kip1 (green) at W10. Scale bar =100 pm
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Fig. 2 CD271 is expressed by epithelial cells within the prosensory domain. a Immunostaining for CD271 and p27Kip1 at three stages of development (W8
(E1202), W10 (E1201), and W12 (E1210)). Basal turns are shown. Scale bar =100 um. b Representative modiolar overview section immunolabeled with
antibodies to p27Kip1, CD271, and CD49f (E1201, W10) scale bar Tmm. ¢ CD271, plil Tubulin (TUBB3), and p27Kip1 at W12 of development. Overview
pictures and higher magnifications are shown. Scale bars =100 pm (top) and 50 pm (bottom). The enlarged right panel shows the merged confocal Z-
stacks projected into a single image. d CD271, p27Kip1, SOX2, and CD49f immunolabelings at W10 (E1201) and W12 (E1210). Scale bars = 50 pm

(4 generations); however, the differentiation potential has not presence/absence of CHIR99021, and then transferred the orga-
been assessed beyond the first generation in this study. noids into co-culture with the EPCAM— population (Fig. 5a). We
utilized semi-permeable inserts that allow for exchange of con-
ditioned medium, but no direct contact between the cells present
Organoid differentiation to hair cells. For assessing cell differ- in the two compartments. Simultaneously, we assessed the effect
entiation, we first grew EPCAM+ organoids for 2 weeks in  of the y-secretase inhibitor LY411575, previously described to
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Fig. 3 Gene expression analysis of the microdissected cochlear duct, utricle, and spiral ganglion. a Ct values obtained with multiplex gRT-PCR were used
for hierarchical clustering. Strongly expressed genes with mean normalized Ct values below 10 are shown. Levels of expression are indicated by the color
code. b-f Relative expression level of each gene among the three different tissues across multiple samples. The color code shown is a red-to-blue gradient
binned into eight discrete values, with dark red indicating the highest expression level among the samples and blue the lowest. The range of expression
values for each gene represented by the color range is shown on the right for each gene as Log2EX value (limit of detection) -the raw Ct value. b Epithelial
and supporting cell markers; ¢ hair cell markers; d neuronal genes; e vestibular organ development; f early otic development. Samples used for these

experiments were E1204, E1208, E1235 and E1236

promote hair cell differentiation at the expense of supporting cells
in the neonatal organ of Corti and in otic spheres derived from
this tissue3®~42. The cells were maintained in co-culture for
~2 weeks to reach in vitro the corresponding in vivo develop-
mental age of 14-16 weeks. After this time period, we identified
cell groups of MYO7A+/SOX2+4/EPCAM+ cells in organoids
derived from EPCAM+ sorted population, indicative of nascent
hair cell-like cells (Fig. 5b).

We evaluated the efficiency of differentiation in organoids
grown from five independent fetal samples, isolated from W11
fetuses (mean sample age: week 11.14 + 0.45). The number of hair
cell-like cells (positive for MYO7A and with a cytomorphology
reminiscent of in vitro-generated hair cells!4*3 per organoid was
on average 6.5+ 6.6 (n=11) in untreated samples, ranging from

zero to maximal 19 hair cell-like cells per organoid. Additionally,
we observed F-actin-rich protrusions of hair cell-like cells in
organoids indicative of putative hair bundles (Fig. 5c, d).
Organoids treated with the GSK3p inhibitor CHIR99021 did
not show a difference in the number of hair cell-like cells
compared to untreated samples (Fig. 5e). LY411575 treatment
increased the number of MYO7A-positive cells in some samples
but not in others, an effect that did not reach statistical
significance, and in combination with the GSK3p inhibitor, a
lower number of hair cells was observed (Fig. 5e). As all sorted
cells from each human sample were divided among the four
experimental treatments and no significant changes were
observed upon compound treatment, we estimated the total
number of hair cells obtained for each fetal sample as the sum of
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Fig. 4 Organoid generation and characterization. a Human fetal cochlea at W10 (sample E1201) immunostained for EPCAM and FACS plot showing the
gating of EECAM-positive cochlear duct cells. Also shown is a schematic overview of the procedure for organoid generation. b Representative examples of
EPCAM+ and EPCAM— derived cultures at day 7 (DIV7) and day 20 (DIV20) in vitro (sample E1220). EPCAM negative cells immunostained at day 13 for
nestin (NES), peripherin (PRPH), and BlIl Tubulin (TUBB3). EPCAM-positive organoids immunostained at day 20 in vitro for MYO7A. F-actin was labeled
with phalloidin. Scale bar =100 pm. e-d Immunostaining of Ist generation organoids (E1220 and E1253) at DIV14 and DIV20 for the proteins indicated.
Colored boxes indicate marker classes: epithelial (green), cell cycle (red), cochlear duct (light blue), and PSD markers (orange) are shown. Scale bar =100
pm. e-f Immunostaining of 2nd generation organoids (E1224) at DIV16 + DIV20 (days Tst generation + days 2nd generation) for the proteins indicated;

marker classes are indicated by the colored boxes. Scale bar =100 pm

hair cells of the four groups. The number varied from 20 cells to
maximal 180 MYO7A+ cells (n =45 organoids assessed).

Cell sorting strategy to isolate human inner ear PSD cells.
Based on the expression pattern of CD271 in the PSD (Fig. 2), we
assessed whether it would be feasible to use this marker, in
combination with the surface antigen EPCAM to isolate PSD cells

from the developing human cochlear duct. Because co-expression
of CD271 and EPCAM began during week nine of development,
we focused on samples obtained between W9 and 12 for these
experiments. Flow cytometry confirmed the presence of a double-
positive population representing 2.3% + 1.2 (n = 8 samples) of the
total cochlear cell pool (Fig. 6a, b).

The use of two markers for cell sorting should in theory
allow for simultaneous isolation of PSD cells, the remaining
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Fig. 5 Organoids from EPCAM+ cells generate hair cell-like cells. a Schematic drawing of the experimental procedure. EPCAM+ organoids were expanded
for 2 weeks with or without CHIR99021, then co-cultured with EPCAM— cells in transwell inserts. EPCAM— cells were derived in parallel from the same
sample. The medium was supplemented twice with LY411575 or with vehicle during the 2-week differentiation period as indicated. b Organoid derived from
sample E1229 and immunostained at the end of the differentiation protocol for MYO7A, SOX2, and EPCAM. Scale bar =100 pm. The merged high
magnification image is a confocal projection; the single channels are shown as individual confocal sections. Scale bar =50 pm. ¢ Organoid derived from
sample E1246 (+CHIR99021) and immunostained at the end of the differentiation protocol for MYO7A. F-actin bundle was labeled with phalloidin.
Consecutive magnifications are shown. Scale bars =100p m (left and middle), and 10 pm (right). d Images of MYO7A positive areas in organoids
untreated/treated with CHIR99021 during the expansion phase and untreated/treated with LY411575 during the differentiation phase, as indicated. Scale
bar =100 pm. e Quantification of the number of hair cells-like cells (HC) per organoid at the end of the differentiation protocol for the different culture
conditions as indicated. Three to four organoids per condition per sample were analyzed. Five human fetal samples of ~week 11 were used for this
experiment (E1245, E1246, E1229, E1248, E1253). Box plots showing sample distribution and median. Whiskers represent minimum and maximum values.
Untreated: 6.45 £ 6.6 (n =11); CHIR99021: 9.09 £19.84 (n =11); LY411575:10.46 £10.11(n = 13); CHIR99021 + LY411575: 2.53 £ 1.995 (n =15). Values are
mean = s.d.

cochlear duct region, as well as the remaining mesenchyme/
glial/neuronal population. Both EPCAM+ populations
(EPCAM+/CD271— and EPCAM-+/CD271+) formed as
expected epithelial organoids (Fig. 6d, e and Supplementary
Fig. 7b). The double-negative population (EPCAM—/CD271—
cells) appeared as round cells incapable of substrate adhesion
or cell-cell adhesion and did not survive beyond 5 days in
culture. The EPCAM—/CD271+ population grew in Matrigel
displaying a mesenchymal morphology (Supplementary
Fig. 7c). We were able to expand this latter population and
found that the cells expressed the mesenchymal marker
vimentin and showed neither neuronal morphology nor

specific immunoreactivity for PIII tubulin (Supplementary
Fig. 7d).

We induced differentiation to hair cell-like cells in the
epithelial organoids again by co-culturing them in transwell
inserts, this time with the mesenchymal EPCAM—/CD271+ cells.
We consistently detected hair cell-like cells in organoids that
formed from EPCAM+/CD271+ cells in 19 out of 19 organoids
analyzed from five different donors (W9.7, W10.5, W11, W12,
and W12.5) (Fig. 6 and Supplementary Fig. 8). Conversely,
organoids derived from sorted EPCAM+/CD271— cells only
occasionally gave rise to hair cell-like cells (n =47 organoids
from five different donors). Overall, 86.84/—11.7% of the hair
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Fig. 6 EPCAM+/CD271+ cells are hair cell progenitors. a Schematic illustration of EPCAM and CD271 expression in the cochlear duct. Double-positive
cells in the PSD are shown in yellow. FACS plot showing the gated populations from a W12 sample (E1242). b Pie chart illustrating the distribution of the
four FACS-sorted populations. n = 8 fetal tissues (week 9.4 to 12.3). Values are mean percent + s.d. ¢ Quantification of the total number of hair cells-like
cell (HC) per sample obtained from the two sorted populations (N =5 samples: W9.7 (E1238), W10.5 (E1270), W12.5 (E1242), W11 (E1254), and W12
(E1289)). EPCAM+/CD271+ cells: N=19 organoids; EPCAM+/CD271— cells: n =47 organoids.. Box plot indicates distribution, middle line: median,
whiskers: minimum and maximum. d Representative examples of organoids derived from EPCAM+/CD271+ and e EPCAM+/CD271— populations
(W12 sample, E1242). Immunostaining for MYO7A and co-staining with phalloidin and DAPI is shown. Selected hair cells-like cell morphologies from the
3D stack are shown in d. Scale bars =100 pm. f Organoid derived from EPCAM+/CD271+ cells from a W9.7 sample (E1238) stained for MYO7A, F-actin
and DAPI. Scale bar 100 pm. The area marked by the asterisk is enlarged in the right panel. g Organoid derived from EPCAM-+/CD271+ cells from a
W?10.5 sample (E1270) immunostained for MYO7A. Scale bar =100 pm. The same organoid is shown at higher magnification in h. h The sample is re-

stained for ESPIN (red) and F-actin. Scale bar 10 pm

cells-like cells was derived from the double-positive population
(Supplementary Fig. 8a). These results support our hypothesis
that CD271+ cells in the cochlear duct represent hair cell
progenitors in the human fetal cochlea.

The number of human hair cell-like cells that formed in
organoids from EPCAM+/CD271+ cells varied substantially,
from a minimum of 38 to a maximum of 300 (Fig. 6¢), but was
significantly greater than what obtained from EPCAM+ cells
only (as shown in Fig. 5e). Higher number of hair cell-like cells
were observed in organoids that contained some mesenchymal
cells as a consequence of a less clearly demarked population when
isolated by FACS (Supplementary Fig. 8d).

Staining with F-actin revealed the presence of hair bundle
protrusions in several of MYO7A positive cells in the EPCAM
+/CD271+ organoids. (Figs. 6d, h, and 7). When tested for
immunoreactivity with an ESPIN-specific antibody, we observed
some of the more prominent bundles to be positive for this
marker (Fig. 7a—c). Despite low in number, the hair cells-like cells
identified in the organoids derived from the EPCAM+/CD271—
population, also expressed ESPIN+ and F-actin+ bundles
(Supplementary Fig. 8c).

As a surrogate readout for functionality, we assessed the uptake
of the FM1-43 dye, known to permeate cells with active
mechanotransduction channels**-4. To avoid aspecific dye
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Fig. 7 Functional characterization of the in vitro-derived hair cell-like cells. a Organoid derived from a W9.6 sample (E1286), stained for ESPIN and BRN3C
after FM1-43 labeling. Scale bar 10 pm. The same cell marked by the asterisk is shown in the inserts. b Hair cell-like cell stained for ESPIN and BRN3C after
FM1-43 labeling. Scale bar 10 um. Gain values for FM1-43 are set in order to visualize intracellular dye loading. € Re-image with lower gain of ESPIN+
bundle and FM1-43. d Hair cell -like cells derived from a EPCAM+/CD271+ organoid from a W12 sample (E1289) stained for MYO7A and F-actin after
FM1-43 loading. Cell volumes defined in the MYO7A channel (dashed lines) were used to assess fluorescence intensity in the FM1-43 channel as shown in
Supplementary Fig. 9. Scale bar 10 um. For all examples (a-d) FM1-43 uptake was performed with a 30 s exposure in presence of concanavalin A. e Hair
cell-like cells in an organoid derived from an EPCAM+/CD271+ sample (W9.6, E1286) showing GTTR uptake. The sample was incubated for 30 min with
GTTR, followed by fixation and immunostaining for MYO7A and staining with phalloidin to visualize bundles. 3D projection of a confocal stack is shown for
the single channel and merged colors. Boxed area indicates developing MYO7A positive cells. Scale bar =100 pm. f 3D reconstruction of the area marked
in @ by the asterisks. Merged image f and red channel g are shown. Scale bar 10 pm

uptake by endocytosis, organoids were pretreated for 10 min with
a general blocker (concanavalin A)* and then co-incubated for
30 s with 5 um FM1-43. This resulted in a strong accumulation of
the dye in the hair bundle and cytoplasm of the ESPIN+/BRN3C
+ hair cell-like cells (Fig. 7a-c). The uptake could also be
inhibited by Curare, previously shown to inhibit MET channels*®
(Supplementary Fig. 9a, b).

In addition, we assessed the capacity of the generated cells to
uptake aminoglycosides, specifically a Texas-Red conjugated form
of gentamycin sulfate (hereafter GTTR)#°. Within the same
organoid, we could identify more mature cells, showing hair cell-
like morphology, F-actin rich bundles as well as displaying GTTR
uptake (Fig. 7e-g and Supplementary Fig. 9c, d) along with
neighboring developing, immature hair cells, already showing
expression of MYO7A, but lacking functional bundles (Fig. 7e
boxed area).

Despite the differences in cellular morphology and bundle
morphology/maturity, we robustly and reproducibly obtained
hair cell-like cells in organoids derived from EPCAM+/CD271+
sorted cells. The differentiation from cells isolated at early
developmental stages (W10.5 and W9.7/9.6), thus several weeks
prior to hair cell differentiation in vivo, demonstrates that these
are generated in vitro from a pool of hair cell progenitors.

Discussion

Lossothair cells or spiral ganglion neurons accounts for the
majority of cases of hearing loss and deafness. Reactivation of
signaling pathways active during cochlear development could be
exploited for induction of hair cell regeneration in the adult organ
of Corti*’. A substantial gap of knowledge, however, remains on
human inner ear development, which ultimately will be the target
of regenerative therapies.

We show that the human cochlear duct follows an apical-to-
basal gradient of cell cycle exit while hair cell differentiation
follows a basal-to-apical gradient’>1, We also show that neurons
enter the cochlear prosensory domain before hair cell markers are
detected. In addition, we describe the appearance of human
vestibular hair cells prior to cochlear hair cells which is in
agreement with previous reports!>48-50. Expression of prosen-
sory domain markers (SOX2, LGR5, and CD271) and neuronal
development markers (ISL1, GATA3, NEUROD, DCX, and NES)
assessed in this study are in line with the available animal model
literature. Our comprehensive gene expression profiling of the
developing human inner ear comprises a gene panel that covers
both early and late stages of otic development. Our results agree
with previously generated murine datasets>*36->1->2 and support
the findings of our immunohistological assessments.
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These datasets are of particular interest to provide a blueprint
of inner ear development and guide efforts into deriving in vitro
inner ear sensory cell types from pluripotent progenitors!4°354,
Additional studies focusing on the direct comparison between the
transcriptional profiles of the sorted somatic human fetal pro-
genitors or in vitro-derived hair cells from these sources, and the
human IPSC/ESC derived hair cell/progenitors will be key to
reveal to which extent pluripotent cells recapitulate human
development in vitro®.

We report moreover on a novel approach to prospectively
isolate, expand in vitro and finally differentiate into hair cell-like
cells the sorted human somatic progenitors. The use of three-
dimensional culture conditions for cells of epithelial origin has
been demonstrated to be particularly suitable to preserve tissue
organization, cellular interactions, and tissue development in
different organs®®. Recently this has been applied successfully to
murine postnatal cochlear progenitors®” as well as for the dif-
ferentiation of hair cells from pluripotent stem cells!4>4>8, The
hair cell-like cells generated in this study displayed markers,
morphology, bundle expression, and properties of hair cells that
were not previously achieved using 2D culture on stiff substrates
from similar cell sources®®%°,

Despite their postmitotic state in vivo at the time of isolation,
cochlear duct resident cells were induced to proliferate in vitro, as
shown by Ki67 staining, by the pronounced expansion of the
organoids, and by the proliferative response to GSK3p inhibition.
The latter possibly dependent on canonical Wnt signaling, as
expected based on the expression of the Wnt co-receptor and
target LGR5 in the human cochlear duct!”!857. Despite LGR5
mRNA expression, we could not rely on this antigen for FACS
sorting of PSD resident cells. Instead, we found that the surface
markers CD271 and EPCAM are well suited for isolation of
human inner ear PSD cells. CD271 has been previously used for
isolation of supporting cells with hair cell progenitors char-
acteristics in mice®!.

The pool of sorted cells likely comprises a heterogeneous cell
population, which varies with the developmental stage, as sug-
gested by the changes in expression of CD271 in the PSD. We
speculate that earlier developmental stages may yield to the iso-
lation of less committed cells. In contrast, isolation of double-
positive cells from late stages, will result in the isolation of a
restricted population of supporting cells, which may have a more
limited potential.

Recently described culture conditions using small molecule
Wnt activation and concomitant chromatin modulation by
HDAC inhibition®” could represent promising means to alter the
potential pre-committed fate of the isolated human fetal cochlear
duct cells, induce their expansion and further differentiation.
Alternatively, approaches to immortalize or partially repro-
gram®2-4 the somatic progenitors, may enable the generation of
human progenitor lines, amenable to expansion, which could
eventually provide powerful experimental systems for in vitro
drug validation and screening.

An additional key requisite for the latter will be the reliable
generation of functional hair cells. Currently a subset of the dif-
ferentiated hair cell-like cells displayed F-actin, as well as ESPIN
rich protrusions on their apical surfaces when assessed after
4-5 weeks in vitro. We could also observe uptake of the styryl dye
FM1-43 in culture. The experimental conditions used, (short
incubation time and co-treatment with the endocytosis blocker
concanavalin A) allowed to detect also robust signals at the level
of the hair bundle, suggesting the compound may be entering
through the stereocilia as previously demonstrated*4-46. Similarly,
gentamycin Texas-Red was uptaken by cells displaying F-actin
bundles, but not by more immature cells. The three-dimensional
organization of the cells and the large size of the organoids did

not allow to identify hair cells nor their bundles by light micro-
scopy and probe electrophysiologically the mechanosensitive
properties of the in vitro-generated hair cells. These studies will
rely on the future generation of fluorescent reporter lines, by
knock-in strategies'4, which will also serve as a tool to optimize
culture conditions.

Implementation of the culture system with bioreactors, or non-
static flow condition may implement the health of the culture, as
shown in other systems®>%, as well as it may impact on hair
bundle development and functional maturation and increase the
yield of functional hair cells.

In conclusion, our study provides a detailed analysis of the
developing human inner ear, specifically of the cochlea and
contributes a valuable dataset to comparative neurobiology.
Moreover, it establishes the fundamental principles for the pur-
ification of human cochlea sensory hair cell precursors, as well as
new methodology for their in vitro culture, expansion and dif-
ferentiation to hair cell-like cells.

While the yield and scalability to date lags behind the potential
of (induced) pluripotent cell derived sensory cells, this study lays
the foundation for a future systematic comparison of the two
strategies. Native human cochlear progenitors and hair cells
derived from these, offer a benchmark to implement differ-
entiation protocols from more abundant stem cell sources for
efficient generation of cochlear hair cells.

Methods

Tissue isolation, staging, and dissection. The inner ear was isolated from
aborted human fetuses ranging from W8 to W12 post conception. Signed informed
consent of the donors for procurement of the aborted fetuses and for use of tissues
in research was obtained (after the donors’ decision to terminate pregnancy, prior
to the procedure). Donors were provided with the necessary information about the
research project by medical staff with no vested interest in the research protocol.
Only afterwards the research team was informed of the donation. Procurement and
procedures were performed with full approval by the Ethics Committee of the
Medical Faculty of the University of Bern and the Ethics Committee of the State
Bern, Switzerland (Gesundheits-und Fiirsorgedirektion des Kantons Bern, Kanto-
nale Ethikkommission fiir die Forschung (Project ID: 2016-00033/KEK-Nr. 181/
07). All experiments including the procurement and processing of human fetal
tissue or organs were performed in accordance with guidelines enunciated in the
current version of the Declaration of Helsinki (DoH) and the Essentials of Good
Epidemiological Practice issued by Public Health Schweiz (EGEP). Tissues were
collected the same day, as early as possible after the procedure, otherwise discarded.
Samples were then anonymised (EXXXX). Damaged cochleas, with blood inclu-
sions or visibly broken were not included in the analysis. Supplementary Table 1
lists all specimens used in this study. Fetuses were carefully staged according to
generally accepted guidelines®”. The foot length, distal, and proximal arm length
and distal and proximal leg length were used to calculate the days post conception
(p.c.). The number of days p.c. was then divided by seven to calculate the week of
development. When this was not possible, the postmenstrual date was used for the
calculation. Tissue dissection was performed in ice-cold Hanks” balanced salt
solution (HBSS). The utricle was isolated from the vestibule. After removal of the
cartilageneous/bony capsule of the cochlea, the cochlear duct was removed using
fine tweezers and the remaining modiolar tissue, containing the spiral ganglion,
was collected. For sorting experiments, the spiral ganglion, modiolus, and cochlear
duct were collected without further microdissection. Alternatively, the whole-inner
ear was fixed with paraformaldehyde (PFA) for cryosectioning.

Cryosectioning. Samples were fixed with 4% PFA in phosphate buffer saline (PBS)
for 24 h at 4°C, or for 2 h at room temperature. After washing with PBS, the
samples were decalcified in Osteosoft (Millipore) for 2 weeks. Specimens were then
washed 3X with PBS, incubated for 2 h in a solution of 15% sucrose, and subse-
quently overnight in 30% sucrose. Finally, the samples were placed for 30 min in
optimal cutting temperature (OCT) compound (Sakura Finetek, USA), and snap
frozen in a dry-ice/ethanol bath. Sections of 16 um were cut with a cryostat (Leica
CM3050 S).

Immunostaining and imaging. For immunostaining, the samples were permea-
bilized by treatment for 5 min with 0.1% Triton X-100 (Sigma) in PBS and blocked
with 2% bovine serum albumin (BSA, Sigma) in PBS with 0.01% Triton X-100 for
2 h. Primary antibodies were incubated overnight at 4 °C and samples were then
washed 3X with PBS, followed by 2 h incubation with secondary Alexa-fluor
labeled antibodies (Invitrogen/Thermofisher), diluted 1:500 in PBS with 2% BSA
and 0.01% Triton X-100 at room temperature.
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For whole-mount staining and imaging of the utricle as well as for organoids,
permeabilization was conducted with 3% Triton X-100, blocked for 2 h with 2%
BSA and 0.01% Triton X-100 in PBS, and subsequently incubated with primary
antibodies for 72 h at 4 °C. Samples were then washed with PBS, incubated with
secondary antibodies for 72 h, washed and analyzed by confocal microscopy.
Samples were first imaged as unmounted/floating samples to obtain low
magnification (x10 and x20) overview images. Subsequently, the specimens were
mounted on glass slides with Fluoreshield-with DAPI (Sigma) and re-imaged with
x63 or x40 oil objectives. Images were acquired with a LSM710 confocal
microscope (Zeiss). Deconvolution was performed using Huygens Remote
Manager.

A list of all antibodies used in the study and the dilutions used is provided in
Supplementary table 2.

In situ hybridization (ISH). ISH for LGR5 was performed on 5 pum sections of
paraffin embedded fetal cochleas or intestine, using the RNAscope® LS 2.5 Probe
Hs-LGR5 (NM_003667.2, region 560-1589 cat#311028) using BOND RX (Leica
Biosystems). Cochleae were fixed in 4% PFA after isolation for 24 h at 4 °C, then
decalcified in osteosoft for 48 h and subsequently processed for paraffin embed-
ding. The probe was purchased from ACD (Advanced Cell Diagnostics, Hayward,
CA) and used according to the manufacturer’s instructions. Briefly, samples were
baked at 60 °C for 30 min followed by deparaffinization and pretreatment with Tris
buffer at 95°C for 15 min and protease for 5min at 37 °C. Slides were incubated
with the probe for 2 h at 40 °C, followed by successive incubations with Amp1 to
Ampé6 reagents. Staining was visualized with 3,3- diaminobenzine (DAB) for 10
min, then counterstained with haematoxylin. PPIB was used as positive control
probe (ACD, NM_000942.4, region 139-989, catalog number 313908). The
experiments were performed with the help of the Translational Research Unit
(TRU) of the Institute of Pathology, University of Bern.

Tissue isolation for gene expression analysis. Tissue dissection was performed
in ice-cold HBSS. Sterile forceps were cleaned with RNAseZAP (Ambion). The
utricle was isolated from the vestibule. The cochlear duct was removed using fine
tweezers and the remaining modiolar tissue, containing the spiral ganglion, was
collected. Two different developmental stages were collected for utricle and
cochlear duct (W8.3, W11.1). For the spiral ganglion, two additional samples (W9
and W11.8) were analyzed. Each sample was minced using Dumont #5 forceps and
incubated in 100 pl extraction buffer from Arcturus PicoPure RNA isolation kit
(Thermofisher). RNA isolation was performed in accordance with the kit manu-
facturer’s instructions. Quantity of 200-1000 ng total RNA was used for cDNA
synthesis using High Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems). cDNA was diluted fivefold in water and used for target gene-specific pre-
amplification. Volume of 1.5 ul of cDNA per sample was pre-amplified for 14
cycles with 500 nM DELTAgene pooled primer mix using 2X Taqman PreAmp
Master Mix (Invitrogen), followed by Exonuclease 1 treatment (NEB). Fivefold
diluted pre-amplified cDNA was used for loading the 96.96 Dynamic Array chip on
the Fluidigm Biomark HD. A full list of primers used in the assay is provided in
Supplementary data 2.

Quantitative RT-PCR (qPCR) primer validation. To validate DELTAgene pri-
mers, a two-fold dilution series spanning a gradient of 15 concentrations was
performed on bulk RNA from human utricle. The mean Ct value for the most
dilute sample in which positive amplification plots were detected in all six replicates
with a standard deviation <1 was set as the limit of detection (LoD) for each primer
pair. The overall LoD for the panel of assays was determined by taking the median
of the LoDs for each assay, equal to a Ct of 21.

Data analysis qPCR. Samples were run in technical triplicate and the average Ct
was used for the analysis. Ct values obtained by the qPCR were normalized to the
housekeeping genes B-Actin and GAPDH. The data are presented as Ct values.
Clustering analysis was performed with R-Studio for all genes, and for genes that
had a mean Ct value below 10 (highly expressed genes). Alternatively, the Ct values
for a panel of selected targets are color coded and displayed for each gene. The
complete set of data is provided in Supplementary data 1.

Single cell preparation for FACS. The two cochleae, the spiral gangliae, and the
modioliae were placed in drops of PBS, immediately after collecting, and carefully
minced using forceps. Trypsin-EDTA was added to a dilution of 0.25% and the
samples were incubated for 15 min at 37 °C. Trypsin activity was blocked by adding
equal volumes of trypsin inhibitor mix, consisting of trypsin inhibitor from soy-
bean (1 mg/ml) and DNAsel (1 mg/ml), both from Sigma-Aldrich. Cells were
mechanically triturated by pipetting. The cells were then washed with 5 ml ice-cold
PBS, and centrifuged for 5 min at 190xg. The cell pellet was resuspended in 500 ul
ice-cold sterile PBS containing 2% BSA, and the cell suspension was strained
through a 40 um filter (Falcon). Ninety percent of the cell suspension was used for
sorting CD marker labeled cells, 10% was used for single staining, and negative
controls. For CD marker labeling, the cell suspension was incubated for 30-45 min
on a shaker in the dark, on ice, with 5 ul anti EPCAM-PE-Cy7 (Biolegends)
antibody alone or in combination with 5 ul anti CD271-PE conjugated antibody

(BD bioscience). For initial testing of antibodies, 100 pl cell suspension was incu-
bated with 1 pl fluorescently conjugated antibody on ice. Cells were then washed
twice with 2% BSA in PBS, and sorted using a FACS ARIA equipped with a 100 um
nozzle. Cells were gated based on FSC-A and SSC-A to exclude debris, and sub-
sequently FSC-A/FSC-H to exclude aggregates (representative examples are given
in Supplementary Figures 3 and 8). Automatic channel compensation with single
staining was used.

Human inner ear organoid formation. Two thousand FACS-sorted cells were
plated per well into round bottom U-shaped low-adherent 96-well plates (Costar)
in DMEM-F12 supplemented with B27, N2 (all from Life Technologies), 20 ng/ml
EGF, 10 ng/ml bFGF, 50 ng/ml IGF, and 50 ng/ml heparan sulfate (Sigma-Aldrich).
Two-three days after sort, Matrigel (GF-depleted, Corning) was added at a final
concentration of 2%. Cells were incubated for 1 week at 37 °C and subsequently
transferred, to low-adhesion 24-well plates (Costar) in medium with 2% Matrigel.
The GSK3p inhibitor CHIR99021 (3 uM) was added to the culture at two time
points (d5/6 and d10/11) together with supplementation of fresh medium.

Human inner ear organoid differentiation. Organoids expanded for 2 weeks were
plated on transwell-permeable support membranes (Corning) in 12-well plates.
100 pl of 50% Matrigel was used to pre-coat each insert for 30 min before plating
the organoids. This coating facilitated the immobilization of the organoids at the
bottom of the insert. EPCAM-sorted cells were cultured in the lower compartments
at 70%-100% confluency directly on plastic. Supplemented DMEM-F12 medium
was further supplemented when indicated, with 1 uM LY411575 and left
unchanged for 7 days. The medium was then refreshed by replacing 50% of the
medium with fresh one (DMEM-F12 with B27 and N2, lacking growth factors) and
re-adding LY411575 (1 uM) every 3-4 days. Organoids were fixed and immu-
nostained for characterization as described above.

FM1-43 and GTTR loading experiments. Organoids were incubated for 30 min
with Hoechst at 10 pg/ml in medium at 37 °C. FM®1-43FX (Invitrogen/Molecular
probes), freshly prepared from a lyophilized stock, was added for 30s at 37 °C at
the concentration of 5 uM. After 30's, the medium was quickly removed, and
samples were washed with PBS and then fixed with 4% PFA in phosphate buffer
saline (PBS) for 15 min at RT, washed twice and imaged by confocal microscopy.

Gentamicyn-Texas Red, GTTR (kind gift of Anthony Ricci, Stanford
University) was dissolved from a dessicated stock at 30 mg/ml and used in vitro at
the concentration of 0.3 mg/ml. Organoids were incubated for 30 min at 37 °C.
Samples were washed with PBS and then fixed with 4% PFA in PBS for 15 min at
RT, washed twice and imaged by confocal microscopy.

Subsequently, samples were incubated in 2% BSA in PBS containing 0.01%
Triton X-100 for 1 h at RT and then stained overnight with primary antibodies at 4
°C. Secondary antibodies were added for 2 h at room temperature.

When indicated, Concanavalin A (Con-A, Sigma) or Tubocurarine chloride
pentahydrate (Curare, Sigma) were added 10 min prior to the addition of FM1-43
at the concentration of 2.5 uM and 1 mM, respectively, as previously reported4® to
inhibit endocytosis (Con-A) and as MET channel blocker (Curare).

For the quantification of FM1-43 loading, cells were immunostained with
MYOT7A (secondary antibody alexa 647) and labeled with Phalloidin-ATTO-488.
3D stack were acquired with laser scanning confocal using sequential mode and
filters for the PMTs were selected in order to avoid channel crosstalk. 3D images
were then reconstructed and MYO7A positive cells were identified. Fluorescence
intensity (mean gray value) for the FM1-43 channel was quantified in the volume
identified by MYO7A staining using FIJI (https://imagej.net/Fiji). For each cell,
background fluorescence was quantified in an immediately adjacent area and
background was subtracted for each cell.

Hair cell quantification in organoids. Organoids were confocally imaged with x10
and x20 objective using optimal Z-stack spacing for each objective. Z and 3D
projections of the images were generated with FIJI and hair cells were counted
manually using the “cell counter” plugin. Montages of each plane were assessed in
addition to double-check the software-assisted counting. Hair cells-like cells that
were quantified were qualitatively defined by the expression of Myosin7a in the
cytoplasm and nuclear exclusion of the staining.

Organoid formation from murine Lgr5-GFP cells. All mouse experiments were
approved by the Animal Research Ethics Committee of the Canton Berne, Swit-
zerland, (permission number BE42-15), and were carried out in accordance with
the approved guidelines.

The sensory epithelium was isolated from mice containing an EGFP-IRES-
CreERT?2 knock-in allele at the Lgr5 locus, referred to as Lgr5-GFP (Jackson Labs
Stock 008875). Three- to five-day-old neonates were used. Specimens from 7 to 10
animals were pooled for sorting experiments. Sensory epithelia were microdissected
and triturated using fine forceps, placed in Trypsin-EDTA at a dilution of 0.25%
and incubated for 15 min at 37 °C. Trypsin activity was blocked by adding equal
volumes of trypsin inhibitor mix (Trypsin inhibitor from soybean (1 mg/ml) and
DNAsel (1 mg/ml)). Cells were then mechanically triturated by pipetting, washed
with 5 ml ice-cold PBS, and centrifuged for 5 min at 190xg. Cells were then strained
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through a 40 um filter (Falcon) and sorted based on GFP expression. Positive and
negative cells were plated in round bottom U-shaped low adherent 96-well plates
(Costar) at 2000 cells per well in supplemented DMEM-F12 medium as described
above. Three days later, Matrigel was added to the wells at the final concentration
of 2%. Cells were incubated for 1 week at 37 °C and half of the medium was
replenished once during this period. The GSK3f inhibitor CHIR99021 was
supplemented on day 1 (10 uM). From day 9 to day 14, half of the medium was
replaced with basic medium (DMEM-F12 with B27 and N2, without growth
factors) every 3 days. Hair cell differentiation was assessed at day 15-20 for three
independent experiments.

Statistical analysis and reproducibility of the findings. The samples used for
each experiment are detailed in the figure legends and supplementary table 1. For
the histological characterization, three samples of comparable age were used for
each developmental week (n =2 for W12). For ISH, two samples of similar age
were used. Organoid differentiation from EPCAM+- cells was repeated for five
human samples at W11 of development, using the same protocol. Statistical
comparison between the treatment groups was performed using the non-
parametric Mann-Whitney test (two-tailed), or unpaired t-test (two-tailed) for
normally distributed samples, for each group compared to the untreated condition.
Organoid differentiation from EPCAM+/CD271+ or EPCAM+/CD271— cells
was performed with cells individually sorted from five donors at four different
developmental stages. The number of organoid analyzed per condition is indicated
in the figure legends.

Data availability
All data generated or analysed during this study are included in this published article
(and it supplementary information files).
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