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Functional equivalence of genome sequencing
analysis pipelines enables harmonized variant
calling across human genetics projects
Allison A. Regier 1, Yossi Farjoun 2, David E. Larson 1, Olga Krasheninina3, Hyun Min Kang4,

Daniel P. Howrigan2, Bo-Juen Chen5,11, Manisha Kher5, Eric Banks2, Darren C. Ames6, Adam C. English7,

Heng Li2, Jinchuan Xing 8, Yeting Zhang 8, Tara Matise 8, Goncalo R. Abecasis4, Will Salerno3,

Michael C. Zody5, Benjamin M. Neale 9,10 & Ira M. Hall1

Hundreds of thousands of human whole genome sequencing (WGS) datasets will be gen-

erated over the next few years. These data are more valuable in aggregate: joint analysis of

genomes from many sources increases sample size and statistical power. A central challenge

for joint analysis is that different WGS data processing pipelines cause substantial differences

in variant calling in combined datasets, necessitating computationally expensive reproces-

sing. This approach is no longer tenable given the scale of current studies and data volumes.

Here, we define WGS data processing standards that allow different groups to produce

functionally equivalent (FE) results, yet still innovate on data processing pipelines. We pre-

sent initial FE pipelines developed at five genome centers and show that they yield similar

variant calling results and produce significantly less variability than sequencing replicates.

This work alleviates a key technical bottleneck for genome aggregation and helps lay the

foundation for community-wide human genetics studies.
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Over the past few years, a wave of large-scale WGS-based
human genetics studies have been launched by various
institutes and funding programs worldwide1–4 aimed at

elucidating the genetic basis of a variety of human traits. These
projects will generate hundreds of thousands of publicly available
deep (>20×) WGS datasets from diverse human populations.
Indeed, at the time of writing, >150,000 human genomes have
already been sequenced by three NIH programs: NHGRI Centers
for Common Disease Genomics5 (CCDG), NHLBI Trans-Omics
for Precision Medicine (TOPMed), and NIMH Whole Genome
Sequencing in Psychiatric Disorders6 (WGSPD). Systematic
aggregation and co-analysis of these (and other) genomic datasets
will enable increasingly well-powered studies of human traits,
population history and genome evolution, and will provide
population-scale reference databases that expand upon the
groundbreaking efforts of the 1000 Genomes Project7,8, Haplo-
type Reference Consortium9, ExAC10, and GnomAD11.

Our ability as a field to harness these collective data to their full
analytic potential depends on the availability of high quality variant
calls from large populations of individuals. Accurate population-
scale variant calling in turn requires joint analysis of all constituent
raw data, where different batches have been aligned and processed
systematically using compatible methods. Genome aggregation
efforts are stymied by the distributed nature of human genetics
research, where different groups routinely employ different align-
ment, data processing, and variant calling methods. Prior exome/
genome aggregation efforts have been forced to obtain raw
sequence data and re-perform upstream read alignment and data
processing steps prior to joint variant calling due to concerns about
batch effects introduced by trivial incompatibilities in processing
pipelines10,11. These upstream steps are computationally expensive
—representing as much as ~70% of the cost of basic per-sample
WGS data analysis—and having to rerun them is inefficient (Sup-
plementary Fig. 1). This computational burden will be increasingly
difficult to bear as data volumes grow over coming years.

To help alleviate this burden and enable future genome aggre-
gation efforts, we have forged a collaboration of major U.S. genome
sequencing centers and NIH programs, and collaboratively defined
data processing and file format standards to guide ongoing and
future sequencing studies. Our approach focuses on the harmoni-
zation of upstream steps prior to variant calling, thus reducing
trivial variability in core pipeline components while promoting the
application of diverse and complementary variant calling methods
—an area of much ongoing innovation. The guiding principle is the
concept of functional equivalence (FE). We define FE to be a shared
property of two pipelines that can be run independently on the
same raw WGS data to produce two output files that, upon analysis
by the same variant caller(s), produce virtually indistinguishable
genome variation maps. A key question, of course, is where to draw
the FE threshold. There is no one answer; at minimum, we advise
that data processing pipelines should introduce much less variability
in a single DNA sample than independent WGS replicates of DNA
from the same individual.

Here, we present initial FE pipelines developed at five genome
centers and show that they yield similar variant calling results—
including single nucleotide (SNV), insertion/deletion (indel) and
structural variation (SV)—and produce significantly less varia-
bility than sequencing replicates. Residual inter-pipeline varia-
bility is concentrated at low quality sites and repetitive genomic
regions prone to stochastic effects. This work will enable data
sharing and genome aggregation at an unprecedented scale.

Results
Functional equivalence standard. Towards this goal, we defined
a set of required and optional data processing steps and file

format standards (Fig. 1; see GitHub page12 for details). We focus
here on WGS data analysis, but these guidelines are equally sui-
table for exome sequencing. These standards are founded in
extensive prior work in the area of read alignment13, sequence
data analysis8,14–18 and compression14,19, and more broadly in
WGS analysis best practices employed at our collective institutes,
and worldwide. Notable features of the data processing standard
include alignment with BWA-MEM13, adoption of a standard
GRCh38 reference genome with alternate loci7,20, and improved
duplicate marking. File format standards include a 4-bin base
quality scheme, CRAM compression19 and restricted tag usage,
which in combination reduced file size >3-fold (from 54 to 17 Gb
for a 30× WGS and from 38 to 12 Gb for a 20× WGS). This in
turn reduces data storage costs and increases transfer speeds,
facilitating data access and sharing.

FE pipelines show less variability than data replicates. We
implemented initial versions of these pipelines at each of the five
participating centers, including the four CCDGs as well as the
TOPMed Informatics Resource Core, and serially tested and
modified them based on alignment statistics (Supplementary
Table 1) and variant calling results from a 14-genome test set,
with data contributed from each center (see Methods). In order to
isolate the effects of alignment and read processing on variant
calling, we used fixed variant calling software and parameters:
GATK21 for single nucleotide variants (SNVs) and small inser-
tion/deletion (indel) variants, and LUMPY22 for structural var-
iants (SVs). These 14 datasets have diverse ancestry and are
composed of well-studied samples from the 1000 Genomes Pro-
ject7, including four independently-sequenced replicates of
NA12878 (CEPH) and two replicates of NA19238 (Yoruban). We
tested pairwise variability in SNV, indel and SV callsets generated
separately from each of the five pipelines, before and after har-
monization, as compared to variability between WGS data
replicates (Fig. 2). As expected, pipelines used by centers prior to
harmonization effort exhibit strong levels of variability, especially
among SV callsets. Much of the variability can be attributed to the
use of different incarnations of the GRCh37 reference sequence
pre-harmonization, underscoring the importance of including a
single reference as part of the standard. Most importantly,
variability between harmonized pipelines (mean 0.4%, 1.8%, and
1.1% discordant for SNVs, indels, and SVs, respectively) is an
order of magnitude lower than between replicate WGS datasets
(mean 7.1, 24.0, and 39.9% discordant). Note that absolute levels
of discordance are somewhat high in this analysis because we
performed per-sample variant calling and included all genomic
regions, with minimal variant filtering. All pipelines show similar
levels of sensitivity and accuracy based on Genome in a Bottle
(GiaB) calls for NA1287823, although one center is systematically
slightly more sensitive and less precise, likely due to a slightly
different base quality score recalibration (BQSR) model (Sup-
plementary Fig. 2). The working group decided that this differ-
ence was within acceptable limits for applications of the
combined data.

Pipeline validation with Mendelian inheritance. We next
applied the final pipeline versions to an independent set of 100
genomes comprising 8 trios from the 1000 Genomes Project7,8

and 19 quads from the Simons Simplex Collection24, and gen-
erated separate 100-genome GATK and LUMPY callsets using
data from each of the five pipelines. Considering all five callsets
in aggregate, the vast majority of GATK variants (97.2%) are
identified in data from all five pipelines, with only 1.74% unique
to a single pipeline and 1.02% in various minor subsets. Mean
pairwise SNV concordance rates are in the range of 99.0–99.9%
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over all sites and comparisons, and Mendelian error rates are
~0.3% at concordant sites, and ~22–24% at discordant sites
(Fig. 3). Indel and SV concordance rates are lower—as expected
given that these variants are more difficult to map and genotype
precisely. Pairwise SNV concordance rates are substantially
higher in GiaB high confidence genomic regions comprised
predominantly of unique sequence (SNV concordance:
99.7–99.9%; 72% of genome) than in difficult-to-assess regions
laden with segmental duplications and high copy repeats (SNV
concordance: 92–99%; 8.5% of genome; see Methods). Indeed,
58% of discordant SNV calls are found in the 8.5% most difficult
to analyze subset of the genome. Furthermore, the mean quality
score of discordant SNV sites are only 0.5% as high as the mean
score of concordant SNV sites (16.4% for indels and 90.0% for
SVs) (Supplementary Fig. 3). This suggests that many discordant
sites are either false positive calls or represent sites that are
difficult to measure robustly with current methods. Differences
between pipelines are roughly symmetric, with all pipelines
achieving similarly low levels of performance at discordant sites,
as based on pairwise discordance rates and Mendelian error rates
(Supplementary Fig. 4), further suggesting that most discordant
calls are due to stochastic effects at sites with borderline levels of
evidence. We note that there are some center-specific sources of
variability due to residual differences in BQSR models and
alignment filtering methods, but that these affect only a trivial
fraction of variant calls.

Discussion
Here, we have described a simple yet effective approach for
harmonizing data processing pipelines through the concept of
functional equivalence. This work resolves a key source of batch
effects in sequencing data from different genome centers, and
thus alleviates a bottleneck for data sharing and collaborative
analysis within and among large-scale human genetics studies.
Our approach also facilitates accurate comparison to variant
databases; researchers that want to analyze their sample(s) against
major datasets such as gnomAD, TOPMed, or CCDG should
adopt these standards in order to avoid artifacts caused by non-
FE sample processing. The standard is intended to be a living
document, and maintaining it in a source control repository
provides a natural mechanism for versioning. The standard
should be updated to include new data types (e.g., long-reads), file
formats and tools, as they become widely adopted in the geno-
mics field and deserving of best-practices status. Additionally, our
framework for evaluating FE can be directly used to validate
improvements (e.g., new alignment software) and quantify
backwards-compatibility with older data. Of course, other chal-
lenges remain, such as batch effects from library preparation and
sequencing25, and persistent regulatory hurdles. Nevertheless, we
envision that it will be possible to robustly generate increasingly
large genome variation maps and shared annotation resources
from these and other programs over the next few years, from
diverse groups and analysis methods. Ultimately, we hope that

Mark duplicates

Base quality score 
recalibration (BQSR)

Apply BQSR

Convert to CRAM

CRAM file

Align reads

BWA-mem v0.7.15
Do not use -M
Use -K 100000000
Use -Y

Illumina data

Reference
sequence

GRCh38DH
with • alt file

Match behavior of
Picard v2.4.1 or above

GATK
resource bundle

dbSNP 138, Mills 
and 1 kG indels, 
known indels

4 bin quality score 
compression (2–6, 10, 20, 30) 
rounded in probability space

Lossless

Retain PG records
RG header tags require ID,
PL, PU, SM, LB attributes
RG, MQ, MC, SA read tags
required
Retain original query names

Fig. 1 Highlights of functional equivalence standard. We defined a series of required and allowed processing steps that provide flexibility in pipeline
implementation while keeping variation between pipelines at a minimum. Reads must be aligned to a specific reference genome using a minimum version
of the BWA-MEM aligner. Algorithms for marking duplicates and recalibrating base quality scores are more flexible and vary somewhat between centers.
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international efforts such as Global Alliance for Genomics &
Health (GA4GH)26 will adopt and extend these guidelines to help
integrate research and medical genomes worldwide.

Methods
Dataset selection. For initial testing, we selected 14 whole genome sequencing
datasets based on the following criteria: (1) they include samples of diverse
ancestry, including CEPH (NA12878, NA12891, NA12892), Yoruban (NA19238),
Luhya (NA19431), and Mexican (NA19648); (2) they were sequenced at multiple
different genome centers to deep coverage (>20×) using Illumina HiSeq X tech-
nology; (3) they include replicates of multiple samples, including 2 of NA19238
(Yoruban) and 4 of NA12878 (CEPH); (4) they include the extremely well-studied
NA12878 genome, for which much ancillary data exists, and (5) they were open
access, readily accessible and shareable among the consortium sites. For subsequent
characterization of the finalized pipelines, we selected an independent set of
100 samples composed of 8 open-access trios of diverse ancestry from the 1000
Genomes project—including CEPH (NA12878, NA12891, and NA12892), Yor-
uban (NA19238, NA19239, and NA19240), Southern Han Chinese (HG00512,
HG00513, and HG00514), Puerto Rican (HG00731, HG00732, and HG00733),
Colombian (HG01350, HG01351, HG01352), Vietnamese (HG02059, HG02060,
and HG02061), Gambian (HG02816, HG02817, and HG02818), and Caucasian
(NA24143, NA24149, and NA24385)—and 19 quads from the Simons Simplex
Collection24. The SSC samples were approved for sequencing by the local insti-
tutional review board (IRB) at the New York Genome Center (Biomedical Research
Alliance of New York [BRANY] IRB File # 17-08-26-385). All relevant ethical
regulations were followed.

Downsampling data replicates. To eliminate coverage differences as a contributor
to variation between sequencing replicates of the same sample (four replicates of
NA12878 and two replicates of NA19238), the data replicates were downsampled
to match the lowest coverage sample. To obtain initial coverage, all replicates were
aligned to a build 37 reference using speedseq16 (v 0.1.0). Mean coverage for each
BAM file was calculated using the Picard CollectWgsMetrics tool (v2.4.1). For each
sample, a downsampling ratio was calculated using the lowest coverage as the
numerator and the sample’s coverage as the denominator. This ratio was used as
the PROBABILITY parameter for the Picard DownsampleSam tool, along with
RANDOM_SEED= 1 and STRATEGY= ConstantMemory. The resulting BAM
was converted to FASTQ using the script bamtofastq.py from the speedseq
repository.

Alignment and data processing pipelines. The pre-harmonization pipeline from
the McDonnell Genome Institute at the Washington University School of Medicine
aligns reads to the GRCh37-lite reference using speedseq (v0.1.0)16. This includes
alignment using bwa (v0.7.10-r789)13, duplicate marking using samblaster
(v0.1.22)15, and sorting using sambamba (v0.5.4)18.

The post-harmonization pipeline from the McDonnell Genome Institute at the
Washington University School of Medicine aligns each read group separately to the
GRCh38 reference using bwa-mem (v0.7.15-r1140) with the parameters “-K
100000000 -p -Y”. MC and MQ tags are added using samblaster (v0.1.24) with the
parameters “-a --addMateTags”. Read group BAM files are merged together with
“samtools merge” (v1.3.1-2). The resulting file is name-sorted with “sambamba sort
-n” (v0.6.4). Duplicates are marked using Picard MarkDuplicates (v2.4.1) with the
parameter “ASSUME_SORT_ORDER= queryname”, then the results are
coordinate sorted using “sambamba sort”. A base quality recalibration table is
generated using GATK BaseRecalibrator (v3.6) with knownSites files (dbSNP138,
Mills and 1 kg indels, and known indels) from the GATK resource bundle (https://
console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/
hg38/v0) and parameters “--preserve_qscores_less_than 6 -dfrac .1 -nct 4 -L chr1
-L chr2 -L chr3 -L chr4 -L chr5 -L chr6 -L chr7 -L chr8 -L chr9 -L chr10 -L chr11
-L chr12 -L chr13 -L chr14 -L chr15 -L chr16 -L chr17 -L chr18 -L chr19 -L chr20
-L chr21 -L chr22”. The base recalibration table is applied using GATK PrintReads
with the parameters “-preserveQ 6 -BQSR “${bqsrt}” -SQQ 10 -SQQ 20 -SQQ 30
--disable_indel_quals”. Finally, the output is converted to CRAM using “samtools
view”.

The pre-harmonization pipeline from the Broad Institute at Harvard and MIT
contains the following steps:

-Align with bwa-mem v0.7.7-r441: bwa mem –M –t 10 –p GRCh37.fasta
-Merge aligned bam with the original unaligned bam and sort with Picard 2.8.3:

MergeBamAlignment ADD_MATE_CIGAR= true ALIGNER_PROPER_PAIR=
false UNMAP_CONTAMINANT_READS= false SORT_ORDER= coordinate

- Mark duplicates with Picard 2.8.3: MarkDuplicates
- Find target indels to fix with GATK 3.4-g3c929b0: CreateRealignerTargets

–known dbSnp.138.vcf –known mills.vcf –known 1000genome.vcf
-Fix indel alignments with GATK 3.4-g3c929b0: –known dbSnp.138.vcf

–known mills.vcf –known 1000genome.vcf
- Create recalibration table using GATK 3.4-g3c929b0: RecalibrateBaseQuality

–knownSites dbSnp.138.vcf using –known dbSnp.138.vcf –known mills.vcf –known
1000genome.vcf

- Apply base recalibration using GATK 3.4-g3c929b0: PrintReads
–disable_indel_quals –emit_original_quals

The post-harmonization pipeline from the Broad Institute at Harvard and MIT
contains the following steps:

- Align with bwa-mem 0.7.15.r1140: bwa mem -K 100000000 -p -v 3 -t 16 –Y
GRCh38.fasta

-Merge aligned bam with the original unaligned bam with Picard 2.16.0:
MergeBamAlignment EXPECTED_ORIENTATIONS= FR
ATTRIBUTES_TO_RETAIN= X0 ATTRIBUTES_TO_
REMOVE=NM ATTRIBUTES_TO_REMOVE=MD
REFERENCE_SEQUENCE= ${ref_fasta} PAIRED_RUN= true SORT_ORDER
= “unsorted CLIP_ADAPTERS= false MAX_INSERTIONS_OR_DELETIONS
= -1 PRIMARY_ALIGNMENT_STRATEGY=MostDistant
UNMAPPED_READ_STRATEGY=COPY_TO_TAG
ALIGNER_PROPER_PAIR_FLAGS= true UNMAP_CONTAMINANT_READS
= true ADD_PG_TAG_TO_READS= false

- Mark duplicates with Picard 2.16.0: MarkDuplicates
ASSUME_SORT_ORDER= “queryname”

- Sort with Picard 2.16.0: SortSam SortOrder= coordinate
- Create BQSR table using GATK 4.beta.5: BaseRecalibrator
–knownSites dbSnp.138.vcf using –known dbSnp.138.vcf –known mills.vcf

–known 1000genome.vcf
- Apply recalibration using GATK 4.beta.5:
ApplyBQSR -SQQ 10 -SQQ 20 -SQQ 30
- Convert output to cram with SamTools v 1.3.1: samtools view -C -T GRCh38.

fasta
In the HGSC pre-harmonized WGS protocol (https://github.com/HGSC-NGSI/

HgV_Protocol_Descriptions/blob/master/hgv_resequencing.md), reads are
mapped to the GRCh37d reference with bwa-mem (v0.7.12), samtools (v1.3)
fixmate, sorting and duplicate marking with sambamba (v0.5.9), base recalibration
and realignment with GATK (v3.4.0), and the quality scores are binned and tags
removed with bamUtil squeeze (v1.0.13). Multiplexed samples follow the same
steps up through sorting and duplicate marking, resulting in sequencing-event
BAMs. The BAMs are merged and duplicates marked using sambamba (v0.5.9),
followed by the recalibration, realignment and binning described above.

The HGSC harmonized WGS protocol (https://github.com/HGSC-NGSI/
HgV_Protocol_Descriptions/blob/master/hgv_ccdg_resequencing.md) aligns each
read group to the GRCh38 reference using bwa-mem (0.7.15) with the parameters
“-K 100000000 -Y”. MC and MQ tags are added using samblaster (v0.1.24) with the
parameters “-a --addMateTags”. The resulting file is name-sorted with “sambamba
sort -n” (v0.6.4). Duplicates are marked using Picard MarkDuplicates (v2.4.1) with
the parameter “ASSUME_SORT_ORDER= queryname”, then the results are
coordinate-sorted using “sambamba sort”. For multiplexed samples, these
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Fig. 2 Pairwise variant discordance rates were calculated between pipelines
from each of five centers (pre-harmonization and post-harmonization) as
well as between independent sequencing replicates of the same individuals
processed by the same pipeline (data replicates). From left, single
nucleotide (SNV) and small insertion/deletion (indel) variants were
detected with GATK, and structural variants (SV) with LUMPY. The pre-
harmonization and post-harmonization comparisons include 14
independently sequenced samples. The data replicate comparisons include
four replicates of NA12878 and two replicates of NA19238. Note that the
extremely high levels of discordance for SVs pre-harmonization are largely
due to variable use of decoy sequences in the reference genomes used by
the different centers. The center line is the median, the upper and lower
hinges are the first and third quartiles, and the whiskers extend to the
largest/smallest values no further than 1.5 * inter-quartile range from the
hinge
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sequence-event BAMs are then merged with sambamba (v0.6.4) merge, name
sorted, duplicate marked and coordinate-sorted with the same tools as above. A
base quality recalibration table is generated using GATK BaseRecalibrator (v3.6)
with knownSites files (dbSNP138, Mills and 1 kg indels, and known indels) from
the GATK resource bundle (https://console.cloud.google.com/storage/browser/
genomics-public-data/resources/broad/hg38/v0) and parameters
“--preserve_qscores_less_than 6 -dfrac .1 -nct 4 -L chr1 -L chr2 -L chr3 -L chr4 -L
chr5 -L chr6 -L chr7 -L chr8 -L chr9 -L chr10 -L chr11 -L chr12 -L chr13 -L chr14
-L chr15 -L chr16 -L chr17 -L chr18 -L chr19 -L chr20 -L chr21 -L chr22”. The base
recalibration table is applied using GATK PrintReads with the parameters
“-preserveQ 6 -BQSR “${bqsrt}” -SQQ 10 -SQQ 20 -SQQ 30
--disable_indel_quals”. Finally, the output is converted to CRAM using ‘samtools
view‘.

The pre-harmonization pipeline from the New York Genome Center aligns
each read group separately to the Thousand Genomes version of build 37 reference
sequence using bwa mem –M (v0.7.8). The aligned files are merged using Picard
MergeSamFiles (v1.83), and duplicates are marked using Picard MarkDuplicates
(v1.83). Indel realignment and base quality recalibration are both performed using
the GATK (v3.4-0) commands RealignerTargetCreator, IndelRealigner,
BaseRecalibrator, and PrintReads.

The post-harmonization pipeline from the New York Genome Center aligns
each read group separately to the GRCh38 reference using bwa-mem (v0.7.15) with
the parameters “-Y -K 100000000‘. Picard (v2.4.1) FixMateInformation is run with
the parameter ‘FixMateInformation= TRUE”. Read group BAM files are merged
together with Picard MergeSamFiles (v2.4.1) and the parameter “SORT_ORDER
= queryname”. Duplicates are marked using Picard MarkDuplicates (v2.4.1), then
the results are coordinate sorted using Picard SortSam (v2.4.1) with the parameter
“SORT_ORDER= coordinate”. A base quality recalibration table is generated
using GATK BaseRecalibrator (v3.5) with knownSites files (dbSNP138, Mills and 1
kg indels, and known indels) from the GATK resource bundle (https://console.
cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/
v0) and parameters “--preserve_qscores_less_than 6 -L grch38.autosomes.

intervals”. The base recalibration table is applied using GATK PrintReads with the
parameters “-preserveQ 6 -SQQ 10 -SQQ 20 -SQQ 30”. Finally, the output is
converted to CRAM using “samtools view -C” (v1.3.1).

The pre-harmonization pipeline from the TOPMED Informatics Resource
Center at the University of Michigan aligns reads using default options in the
GotCloud alignment pipeline17 available at https://github.com/statgen/gotcloud. It
aligns the sequence reads to GRCh37 reference with decoy sequences used in 1000
Genomes. The raw sequence was aligned using bwa mem (v0.7.13-r1126)13, and
sorted by samtools (v1.3.1). The duplicate marking and base quality recalibration
were performed jointly using bamUtil dedup [ref—same as GotCloud] (v1.0.14).

The post-harmonization pipeline procedure from the TOPMED Informatics
Resource Center at the University of Michigan (described in https://github.com/
statgen/docker-alignment) first aligns each read group to the GRCh38 reference
using bwa-mem (v0.7.15-r1140) with the parameters “-K 100000000 -Y -R
[read_group_id]”. To add MC and MQ tags, samblaster (v0.1.24) was used with the
parameters “-a --addMateTags”. Each BAM file corresponding to a read group is
sorted by genomic coordinate using “samtools sort” (v1.3.1), and merged together
using “samtools merge” (v1.3.1). Duplicate marking and base quality recalibration
were performed jointly using bamUtil dedup_lowmem (v1.0.14) with parameters
“--allReadNames –binCustom –binQualS 0:2,3:3,4:4,5:5,6:6,7:10,13:20,23:30,33:40
--recab --refFile [reference_fasta_file] --dbsnp [dbsnp_b142_vcf_file] --in
[input_bam] –out -.ubam” and the piped output (in uncompressed BAM format) is
converted into a CRAM file using samtools view.

Calculation of alignment statistics. A total of 184 alignment statistics were
generated for all standardized CRAM files from each center with AlignStats soft-
ware. Results include metrics for both the entire CRAM file and for the subset of
read-pairs with at least one read mapping to the autosome or sex chromosomes.
We examined all metrics across the five CRAMs for each of the 15 samples to
ensure that any differences were consistent with the various options allowed in the
functional equivalence specification. Supplementary Table 1 provides examples of
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these metrics, and full description of all metrics can be found online (https://github.
com/jfarek/alignstats).

Variant calling for the 14-sample analysis. SNPs and indels were called for each
center’s CRAM/BAM files using GATK21 version 3.5-0-g36282e4 HaplotypeCaller
with the following parameters:

-rf BadCigar
--genotyping_mode DISCOVERY
--standard_min_confidence_threshold_for_calling 30
--standard_min_confidence_threshold_for_emitting 0
For the pre-standardization files, the 1000 genomes phase 3 reference sequence

from the GATK reference bundle ftp://ftp.broadinstitute.org/pub/svtoolkit/
reference_metadata_bundles/1000G_phase3_25Jan2015.tar.gz was used. For the
post-standardization files, the 1000 Genomes Project version of GRCh38DH
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/
GRCh38_reference_genome/) was used.

Structural variants (SVs) were called for each center’s CRAM/BAM files using
lumpy22 and svtools (https://github.com/hall-lab/svtools). First, split reads and
reads with discordant insert sizes or orientations were extracted from the CRAM/
BAM files using extract-sv-reads in the docker image halllab/extract-sv-
reads@sha256:192090f72afaeaaafa104d50890b2fc23935c8dc98988a9b5c80dd-
f4ec50f70c using the following parameters:

--input-threads 4 -e –r
Next, SV calls were made using lumpyexpress (https://github.com/arq5x/

lumpy-sv) from the docker image halllab/
lumpy@sha256:59ce7551307a54087e57d5cec89b17511d910d1fe9-
fa3651c12357f0594dcb07 with the -P parameter as well as -x to exclude regions
contained in the BED file exclude.cnvnator_100bp.GRCh38.20170403.bed
(exclude.cnvnator_100bp.112015.bed for pre-standardization samples). Both
exclude files are available in https://github.com/hall-lab/speedseq/tree/master/
annotations

Finally, the SV calls were genotyped using svtyper from the docker image
halllab/
svtyper@sha256:21d757e77dfc52fddeab94acd66b09a561771a7803f9581b8c-
ca3467ab7ff94a

Defining genomic regions. The reference genome sequence is not uniformly
amenable to analysis—some regions with high amounts of repetitive sequence are
difficult to align and prone to misleading analyses, while other regions comprised
of mostly unique sequence can be more confidently interpreted. To gain a better
understanding of how pipeline concordance differs by region, we divided the
reference sequence into three broad categories. The easy genomic regions consist of
the GiaB gold standard high confidence regions, lifted over to build 38. The hard
regions consist of centromeres (https://www.ncbi.nlm.nih.gov/projects/genome/
assembly/grc/human/data/38/Modeled_regions_for_GRCh38.tsv), microsatellite
repeats (satellite entries from http://hgdownload.soe.ucsc.edu/goldenPath/hg38/
bigZips/hg38.fa.out.gz), low complexity regions (https://github.com/lh3/varcmp/
raw/master/scripts/LCR-hs38.bed.gz), and windows determined to have high copy
number (more than 12 copies per genome across 409 samples). Any regions
overlapping GiaB high confidence regions are removed from the set of hard
regions. All remaining regions are classified as medium.

Cross-center variant comparisons for the 14-sample analysis. The VCF files
produced by GATK for both the pre- and post-standardization experiments were
compared using hap.py from the docker image pkrusche/hap.py:v0.3.9 using the
--preprocess-truth parameter.

The four data replicates of NA12878 were compared to the NA12878 gold
standards in the regions defined by to obtain sensitivity and precision measurements.
The post-standardization VCFs were first lifted over to GRCh37 using the Picard
LiftoverVcf tool (v2.9.0) and the chain files hg38ToHg19.over.chain.gz and
hg19ToGRCh37.over.chain.gz downloaded from here: http://crossmap.sourceforge.
net/#chain-file. To reduce artifacts from the liftover that negatively impacted
sensitivity, the gold standard files were lifted over to the build 38 reference and back to
build 37, excluding any variants that didn’t lift over in both directions.

Values for sensitivity (METRIC.Recall) and precision (METRIC.Precision) were
parsed out of the *.summary.csv file produced by hap.py for each comparison,
using only variants with the PASS filter value set.

The downsampled data replicates of NA12878 and NA19238 aligned by the
same center were compared to each other in a pairwise fashion. Pairwise
comparisons between centers were performed for each non-downsampled aligned
file. The variant discordance rates between pairs were calculated using the true
positive, true negative, and false positive counts from the *.extended.csv output file
from hap.py (TRUTH.FN+QUERY.FP)/(TRUTH.TP+ TRUTH.FN+QUERY.
FP). The rates reported are only for PASS variants but across the whole genome.

The VCF files of SVs produced by lumpy and svtyper were converted to BEDPE
using the command “svtools vcftobedpe” from the docker container halllab/
svtools@sha256:
f2f3f9c788beb613bc26c858f897694cd6eaab450880c370bf0ef81d85bf8d45 The
coordinates are padded with 1 bp on each side to be compatible with bedtools

pairtopair. The pairwise comparisons are performed using the bedtools pairtopair
command (version 2.23.0), then summarized using a python script
(compare_single_sample_based_on_strand.py in https://github.com/CCDG/
Pipeline-Standardization). The variant discordance rates between pairs are
calculated with the following formula: (discordant+ 0-only+ 1-only+
discordant_discordant_type)/(match+ discordant+match_discordant_type+
discordant_discordant_type+ 0-only+ 1-only).

Variant calling for 100-sample analysis. SNPs and indels were called using the
GATK best practices pipeline, including per-sample variant discovery using
HaplotypeCaller with the following parameters:

“-ERC GVCF -GQB 5 -GQB 20 -GQB 60 -variant_index_type LINEAR
-variant_index_parameter 128000”. Next, GVCFs from all 100 samples were
merged with GATK CombineGVCFs. Genotypes were refined with GATK
GenotypeGVCFs with the following parameters: “-stand_call_conf 30
-stand_emit_conf 0”. Variants with no genotyped allele in any sample are removed
with the GATK command SelectVariants and the parameter
“--removeUnusedAlternates”, and variant lines where the only remaining allele is a
symbolic deletion (*:DEL) are also removed using grep.

SVs were called using the svtools best practices pipeline (https://github.com/
hall-lab/svtools/blob/master/Tutorial.md). First, per-sample SV calls were
generated with extract-sv-reads, lumpyexpress, and svtyper using the same versions
and parameters as the 14 sample analysis. Next, the calls were merged into 100-
sample callsets for each pipeline using the following sequence of commands and
parameters from the docker container halllab/svtools@sha256:
f2f3f9c788beb613bc26c858f897694cd6eaab450880c370bf0ef81d85bf8d45

svtools lsort
svtools lmerge -f 20
create_coordinates
The merged calls were then re-genotyped for each sample using the previous

svtyper command. Copy number histograms were generated for each sample using
the command cnvnator_wrapper.py with window size 100 (-w 100) in the docker
container halllab/cnvnator@sha256:
c41e9ce51183fc388ef39484cbb218f7ec2351876e5eda18b709d82b7e8af3a2. Each SV
call was annotated with its copy number from the histogram file using the
command “svtools copynumber” in that same docker container with the
parameters “-w 100 -c coordinates”. Finally, the per-sample genotyped and
annotated VCFs were merged back together and refined with the following
sequence of commands in the svtools docker container:

svtools vcfpaste
svtools afreq
svtools vcftobedpe
svtools bedpesort
svtools prune -s -d 100 -e "AF"
svtools bedpetovcf
svtools classify -a repeatMasker.recent.lt200millidiv.LINE_SINE_SVA.GRCh38.

sorted.bed.gz -m large_sample

Cross-center variant comparisons for the 100-sample analysis. The VCF of
SNPs and indels was split into per-sample VCFs using the command “bcftools
view” with the following parameters: “-a -c 1:nref”. Additionally, any remaining
variant lines with only the symbolic allele (*) remaining were removed. Pairwise
comparisons between the same sample processed by different pipelines were per-
formed using hap.py using the same commands as the 14 sample analysis. Variant
concordance rates per sample were calculated using results from the extended.csv
output file produced by hap.py the following formula: TRUTH.TP/(TRUTH.TP+
TRUTH.FN+QUERY.FP). The reported statistics were calculated using all var-
iants genome-wide except those that were marked LowQual by GATK. No VQSR-
based filtering was used. Figure 3a reports the mean rates across all 100 samples for
each pairwise comparison of pipelines.

The per-pipeline SV VCFs were converted to BEDPE using the command
“svtools vcftobedpe” in the docker container halllab/svtools@sha256:
f2f3f9c788beb613bc26c858f897694cd6eaab450880c370bf0ef81d85bf8d45. The
variants were compared using bedtools pairtopair as in the 14 sample analysis.
Next they were classified into hard, medium, and easy genomic regions by
intersecting each breakpoint with BED files describing the regions using “bedtools
pairtobed”. Variants were classified by the most difficult region that either of their
breakpoints overlapped (see compare_round3_by_region.sh in https://github.com/
CCDG/Pipeline-Standardization). Then, the variants were extracted and annotated
in per-sample BEDPE files with the script
compare_based_on_strand_output_bedpe.py (in https://github.com/CCDG/
Pipeline-Standardization). The BEDPE files were converted to VCF using “svtools
bedpetovcf” and sorted using “svtools vcfsort”. The number of shared and pipeline-
unique variants were counted using “bcftools query” (version 1.6) to extract the
genomic region and concordance status of each variant, then summarized with
‘bedtools groupby‘ (v2.23.0). The rates of shared variants per sample were
calculated using the output of this file with the following formula: match/(match+
0-only+ 1-only).
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Mendelian error (ME) rate calculation. SNPs and indels that were classified by
hap.py into categories (shared between pipelines, or unique to one pipeline) were
further characterized by looking at the ME rate for each of the offspring in the trios/
quads. For each offspring in the sample set, the parents and offspring sample VCFs
output by hap.py were merged together using “bcftools merge --force-samples”
(v1.3), and the genotypes from the first pipeline in the pair were extracted. Any
variants with missing genotypes or uniformly homozygous genotypes were excluded
using “bcftools view -g ^miss” and “bcftools view -g het”. A custom python script
(classify_mie.py in https://github.com/CCDG/Pipeline-Standardization) was used to
classify each variant as uninformative, informative with no Mendelian error, or
informative with Mendelian error. Total informative error and non-error sites in
each genomic region were counted for shared sites and unique sites separately, and
ME rate was calculated by dividing the number of ME sites by the total number of
informative sites. A similar calculation was performed for the per-sample SV VCFs
produced by the SV concordance calculations. Fig. 3b and Supplementary Fig. 4
report the mean ME rate across 44 offspring-parent trios for each pairwise pipeline
comparison.

Variant quality evaluation. To evaluate possible causes of remaining differences
between pipelines, we extracted variant quality scores for each variant type and
summarized them by concordance status in each pairwise pipeline comparison
across 100 samples. For SNPs and indels, the QUAL field was extracted along with
the concordance annotation from the per-sample hap.py comparison VCFs using
“bcftools query” (version 1.6). The median QUAL score for each category was
reported using “bedtools groupby”. For SVs, MSQ (mean sample quality) is a more
informative measure of variant quality, so this field was extracted and summarized
in a similar way.

Cost calculations. To calculate the fraction of per-sample pipeline cost attributed
to upstream steps, the Broad Institute production tables were queried for total
workflow cost and HaplotypeCaller cost. The upstream cost was calculated as the
difference between the two. All successful pipeline runs that didn’t use call caching
from October 31, 2017 to May 9, 2018 were included, totaling 13,704 pipeline runs
on 13,295 distinct samples.

Code availability. All custom scripts used for the analysis are available under an
MIT license at https://github.com/CCDG/Pipeline-Standardization/tree/master/
scripts.

Data availability
The 14 input WGS data sets (10 original data sets and 4 downsampled data sets) used in
the initial development of the pipeline are available in the SRA under the BioProject
PRJNA393319. Files in unaligned BAM format as well as CRAM as aligned by all five
centers are available via the Download tab on the RunBrowser pages (for testing addi-
tional pipelines for functional equivalence). The WGS data from 19 Simon Simplex
Collection quad families (accession SFARI_SSC_WGS_P, family codes 11026, 11063,
11069, 11505, 11671, 12083, 12121, 12202, 12261, 12405, 12480, 13226, 13540, 13556,
13567, 13888, 13996, 14497, 14509) are available upon approved application from SFARI
Base. The WGS data from the 8 trios are available in the SRA under the BioProject
PRJNA477862.
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