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Abstract
Whilst the role of the Disrupted-in-Schizophrenia 1 (DISC1) gene in the aetiology of major mental illnesses is debated, the
characterization of its function lends it credibility as a candidate. A key aspect of this functional characterization is the
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determination of the role of common non-synonymous polymorphisms on normal variation within these functions. The
common allele (A) of the DISC1 single-nucleotide polymorphism (SNP) rs821616 encodes a serine (ser) at the Ser704Cys poly-
morphism, and has been shown to increase the phosphorylation of extracellular signal-regulated protein Kinases 1 and 2
(ERK1/2) that stimulate the phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme for dopamine biosynthesis.
We therefore set out to test the hypothesis that human ser (A) homozygotes would show elevated dopamine synthesis capac-
ity compared with cysteine (cys) homozygotes and heterozygotes (TT and AT) for rs821616. [18F]-DOPA positron emission to-
mography (PET) was used to index striatal dopamine synthesis capacity as the influx rate constant Ki

cer in healthy volunteers
DISC1 rs821616 ser homozygotes (N¼46) and healthy volunteers DISC1 rs821616 cys homozygotes and heterozygotes (N¼56),
matched for age, gender, ethnicity and using three scanners. We found DISC1 rs821616 ser homozygotes exhibited a signifi-
cantly higher striatal Ki

cer compared with cys homozygotes and heterozygotes (P¼0.012) explaining 6.4% of the variance (par-
tial g2¼0.064). Our finding is consistent with its previous association with heightened activation of ERK1/2, which stimulates
tyrosine hydroxylase activity for dopamine synthesis. This could be a potential mechanism mediating risk for psychosis,
lending further credibility to the fact that DISC1 is of functional interest in the aetiology of major mental illness.

Introduction
The dopamine hypothesis has been a leading theory underlying
the neurobiology of schizophrenia for the last four decades (1,2).
The hypothesis was initially based on evidence showing that
antipsychotic medications block dopamine receptors (3–5)
and that drugs increasing dopamine levels elicit psychotic
symptoms in healthy people (6–8) and people with schizophre-
nia (9,10). Using [18F] fluoro-3,4-dihydroxyphenyl-L-alanine
(F-DOPA) positron emission tomography (PET), increased pre-
synaptic dopamine synthesis capacity has been found in
schizophrenia (11), people with prodromal psychotic symptoms
(12,13) and those with clinical progression to psychosis (14).
Whilst a substantial body of evidence supports the role of in-
creased presynaptic dopamine synthesis capacity in the patho-
aetiology of psychosis, little is known about how genetic factors
affect the implicated dopamine system(s) (15).

The Disrupted-in-Schizophrenia 1 (DISC1) gene was originally
discovered at the breakpoint of a balanced t(1;11) (q42; q14.3)
translocation in a Scottish family with a high-prevalence of psy-
chiatric disorders including schizophrenia (16–18). Further evi-
dence for a link between DISC1 and psychotic and affective
disorders emerged from the follow-up of families displaying rare
DISC1 mutations (19,20) and large family-based studies in the
population isolate of Finland (21–23) although a large meta-
analysis of families did not observe linkage at this region (24).
Furthermore, evidence from individual population-based cohorts
has been inconsistent (25,26) leading to ongoing debate on its in-
volvement in schizophrenia (27,28). Whilst this controversy
remains unresolved, there is value in seeking convergent evi-
dence via studies elucidating the functional impact of the gene
and its variations (29–32). DISC1 is a scaffold protein involved in a
wide range of neuronal functions including neuro-signalling
(30,33). Preclinical studies show that DISC1 variant models exhibit
increased amphetamine-induced dopamine release in the ventral
striatum [see (34–37) reviewed in (38)], indicating that DISC1 varia-
tions might affect presynaptic dopamine synthesis capacity.

One of the most studied DISC1 single-nucleotide polymor-
phisms (SNPs) is rs821616 which is a non-synonymous muta-
tion leading to the translation of a serine (ser) (A allele) or a
cysteine (cys) (T allele) at codon 704 in exon 11 (39). Importantly,
this polymorphism represents therefore not only a variation at
the genetic sequence level but also at the protein sequence level
of DISC1. At a molecular level, Hashimoto et al. (47) found that
overexpression of the ser variant of codon 704 by viral transduc-
tion resulted in a significant increase in phosphorylated
Extracellular signal-regulated protein Kinases 1 and 2 (ERK1/2),

the more biologically active form (40). ERK1/2 in turn regulates
the state of phosphorylation of tyrosine hydroxylase, the rate-
limiting enzyme for dopamine biosynthesis, to increase its
activity and subsequent dopamine synthesis by up to 2-fold
(41–44). Dopamine is synthesized by converting first tyrosine
into dihydroxyphenyl-L-alanine (L-DOPA) by tyrosine hydroxy-
lase, and second dihydroxyphenyl-L-alanine (L-DOPA) into do-
pamine by aromatic acid decarboxylase (AADC) (45). [18F]-DOPA
PET signal reflects AADC function and dopamine storage capac-
ity (45), but not directly tyrosine hydroxylase function.
However, it should be noted that (i) tyrosine hydroxylase is the
rate limiting step for dopamine synthesis capacity (43) and (ii)
the topological distribution of the [18F]-DOPA signal correlates
highly with tyrosine hydroxylase immunostaining in unilater-
ally 6-hydroxydopamine (6-OHDA)-lesioned rats, thus indicat-
ing that the [18F]-DOPA signal is strongly influenced by
endogenous dopamine formed by tyrosine hydroxylase (46).

In summary, preclinical findings suggest that the Ser704Cys
variation affects dopamine synthesis by regulating ERK1/2 and
its control over tyrosine hydroxylase activity. However, it
remains unknown whether the Ser704Cys variation is associ-
ated with altered dopamine synthesis in humans. The aim of
this study was therefore to test the hypothesis that ser homozy-
gotes would exhibit increased striatal dopamine synthesis ca-
pacity relative to cys homozygotes and heterozygotes.

Results
Demographics, scan parameters including the injected dose
and substance use characteristics are shown in Table 1. A total
of 46 ser homozygotes and 56 cys homozygotes and heterozy-
gotes (which encompass 45 heterozygotes and 11 cys homozy-
gotes) were included in the study. The genotype frequencies
(shown in Table 1) did not significantly deviate from Hardy–
Weinberg equilibrium (v2¼ 1.422 with P¼ 0.233), with a Minor
Allele Frequency (T allele) of 0.335. Age (year) and Ki

cer (1 min�1)
in the striatum were normally distributed across the two groups
whereas injected dose (MBq) was not. There was no significant
difference in age between groups t(100) ¼ 1.588, P¼ 0.115 (inde-
pendent t test) and no significant difference in injected dose
P¼ 0.408 (Mann–Whitney U test). Levene’s test indicated no dif-
ference between the variances in the two groups, F¼ 0.398,
P¼ 0.529. The univariate analysis of covariance (ANCOVA)
showed that the main effect of the DISC1 SNP rs821616 on the
dopamine synthesis capacity in the striatum was significant,
F(1, 96) ¼ 6.555, P¼ 0.012, partial g2 ¼ 0.064 (Fig. 1). The effects of
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the covariates were: for scanner, F(1, 96) ¼ 16.573, P< 0.01, age,
F(1, 96)¼1.056, P¼ 0.307, gender, F(1, 96)¼0.114, P¼ 0.736 and
ethnicity, F(1, 96)¼0.061, P¼ 0.805.

Discussion
In line with our hypothesis, we found that participants ser homo-
zygotes (AA genotype) for the Ser704Cys functional DISC1 poly-
morphism exhibited a significantly greater Ki

cer value in the
striatum, indicating greater dopamine synthesis capacity com-
pared with cys homozygotes and heterozygotes (AT or TT geno-
type). This result is in accordance with preclinical evidence
showing that the ser 704 DISC1 variant increases the activity of
ERK1/2, which in turn enhances the phosphorylation of tyrosine
hydroxylase, the rate limiting step in dopamine synthesis (41,47).

Limitations

The main limitation of this study was that we used data from
three different PET scanners, which could add error variance.

However, scanner was included as a covariate to adjust for this.
Furthermore, the effect of the Ser704Cys polymorphism
remained significant when we only included subjects from PET
scanner 2 [F(1, 28) ¼ 5.273, P¼ 0.029 (N¼ 16 cys homozygotes
and heterozygotes, N¼ 17 ser homozygotes)], but not PET scan-
ner 1 only [F(1, 30) ¼ 0.766, P¼ 0.388 (N¼ 19 cys homozygotes
and heterozygotes, N¼ 16 ser homozygotes)] and PET scanner
3 only [F(1, 29) ¼0.426, P¼ 0.519 (N¼ 21 cys homozygotes and
heterozygotes, N¼ 13 ser homozygotes)]. It is important to
recognize that we measured the final step in the synthesis of
dopamine, the conversion of L-DOPA into dopamine via AADC.
However, the parameter measured could be affected by other
variables including the uptake of L-DOPA into the brain, al-
though this should be controlled for by the reference region and
there is no a priori reason to consider that this should be af-
fected by the DISC1 protein. Importantly, this polymorphism
was chosen based on a specific prior hypothesis. Although there
was evidence to reject the null hypothesis, the P-value would
not survive genome-wide correction and therefore the result
requires replication.

Implications for mental disorders

The Ser704Cys polymorphism has been associated with schizo-
phrenia with an odds ratio in the range of 1.3–4.18 in various
populations including European (48), mixed European/African-
American (49) and Chinese Han (50–52). Inconsistencies have
been found, with some studies indicating increased risk associ-
ated with the ser (A) allele (48,51), whilst others the cys (T)
(allele) (50,52) and no association found (25) mainly in the
Japanese population (53–55). A recent meta-analysis has also
reported association of the ser allele with schizophrenia in
Chinese (OR¼ 1.338) and Japanese populations (OR¼ 1.524), as
well as in the overall mixed race sample (56). The inconsisten-
cies in these results might be owing to different ethnic popula-
tions. It should be noted that ever expanding studies of
European ancestry population level genetic variants in schizo-
phrenia continually demonstrate no significant associations
at the entire DISC1 locus (57,58), although there is evidence
implicating the DISC1 interactor phosphodiesterase 4B as a

Table 1. Sample characteristics and scan parameters

DISC1 SNP rs821616

Total Cysteine homozygotes and heterozygotes Serine homozygotes P value

Total genotype counts 102 45 (AT) and 11 (TT) 46 (AA)
Females 46 21 25
PET scanner 1 35 19 16 0.549a

PET scanner 2 33 16 17
PET scanner 3 34 21 13
Age 30.2 (9.3) 31.5 (9.9) 28.6 (8.4) 0.115b

Tobacco smoking status (non-smoker) 75 43 32 0.411c

Tobacco smoking status (smoker) 27 13 14
Radioactivity injected (MBq) 157.7 (16.2) 156.6 (16.2) 159.2 (16.4) 0.529c

White European 70 35 35 0.503a

Black British/other 22 15 7
Asian British/other 5 3 2
Mixed ethnicity 5 3 2

All data6SD.
aPearson Chi-Square.
bIndependent t test.
cMann–Whitney U test.

Figure 1. Mean (SEM) striatal dopamine synthesis capacity (Ki
cer value, min�1) in

DISC1 rs821616 cys homozygotes and heterozygotes (TT and TA, N¼56) and

DISC1 rs821616 ser homozygotes (AA, N¼46). Dopamine synthesis capacity was

significantly increased in ser homozygotes compared with cys homozygotes

and heterozygotes [F(1, 96)¼6.555, P¼0.012].
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genome-wide significant single gene locus in a recent large
schizophrenia genome-wide association study (GWAS) (58).
Whilst GWAS have made crucial advances in the understand-
ing of the genetic of schizophrenia, the biological mechanisms
directly underlying the disorder remain yet poorly elucidated
(59–61). In this context, the DISC1 protein has been suggested
as a biological candidate of interest for investigating molecular
mechanisms of mental illnesses at the protein levels (33,62).
Beyond studies of dichotomous diagnoses, the ser allele has
also been associated with increased risk for poor concentration
among Korean patients with schizophrenia (63), increased se-
verity of positive symptoms and hallucinations in European
patients with First-Episode Psychosis (64) and increased life-
time severity of delusions in European patients with schizo-
phrenia (65). A potential mechanism for the increased risk
could be by dysregulating the control of dopamine to lead to in-
creased dopamine synthesis. Findings in prodromal popula-
tions show that increased dopamine synthesis is associated
with increased risk for psychosis (12,13). The difference in do-
pamine synthesis capacity we observe here between ser homo-
zygotes and carriers of the alternative allele is much smaller
than the differences seen in at risk subjects (14,66). It is there-
fore likely that the Ser704Cys variant interacts with other
genetic changes to mediate risk, potentially by affecting dopa-
mine synthesis.

The fact that the common ser allele has been described as
the risk allele is compatible with schizophrenia GWAS, in
which �50% of the implicated index SNPs are the more com-
mon alleles (67). At the population level, the genetic suscepti-
bility to schizophrenia is caused by a few rare variants of high
penetrance (mainly copy number variants and translocations)
and many common variants of small penetrance (SNPs and
variable number of tandem repeats) (68). As each SNP very
minimally impacts schizophrenia risk and is compatible with
modern models of natural selection (67), it is expected that
other genetic factors are needed, in the same individual, to in-
crease the liability to a point of schizophrenia onset. For ex-
ample, the Ser704Cys site affects interaction with nuclear
distribution element-like 1 (NDEL1) and its homolog Nuclear
Distribution Element 1 (NDE1, also known as NudE) (69,70),
and there is evidence for an interaction between NDEL1
rs1391768 and the Ser704 allele and the NDE1 rs3784859 and
the Cys704 allele on the risk for schizophrenia in European
participants (71). Ser704Cys is also the binding site for pro-
teins such as kendrin [also known as pericentrin (PCNT)] and
Pericentriolar material 1 (72), which have been both described
as risk factor genes for schizophrenia (73). Furthermore, envi-
ronmental factors such as exposure to psychosocial stress
may also interact with the Ser704Cys polymorphism to affect
dopamine function and mediate risk for schizophrenia (15).
Interestingly, using a transgenic expression of truncated hu-
man Disc1 protein with dominant-negative effect, Niwa et al.
have shown that an interaction between DISC1 and stress ex-
posure, as a 3-week social isolation paradigm, increased do-
pamine release after amphetamine challenge (34) and
induced alterations in DNA methylation of the tyrosine hy-
droxylase gene (74).

Evidence also suggests that the Ser704Cys polymorphism is
a risk factor for affective disorders. The cys allele has been asso-
ciated with major depression in Japanese population (47), and
shown to form a protective haplotype for bipolar spectrum dis-
order with two others DISC1 SNPs (rs1411771 and rs980989) in
Finnish population (75), whereas a higher ser allele rate has
been found in South Indian population with bipolar disorder

(76). Interestingly, increased dopamine synthesis capacity is
seen in both mania (77) and bipolar psychosis (78), whilst major
depression with affective flattening is characterized by a de-
creased synthesis capacity (79,80).

The Ser704Cys SNP has also been shown to have a func-
tional impact at the brain level (39). Compared with healthy
cys homozygotes and heterozygotes, ser homozygotes dis-
play increased (for the same level of performance, thus puta-
tively inefficient) prefrontal cortex activation in the left
middle and left superior frontal gyri and in the homologous
right superior frontal gyrus, the left inferior frontal and
cingulate cortex, the thalamus and the caudate nucleus in a
verbal fluency task (81), as well as an effect on thalamic-
prefrontal connectivity (82). Ser704Cys SNP has also been
shown to affect activation during declarative memory task
with inconsistent findings. Callicott et al. (48) found de-
creased activation bilaterally in the hippocampal formation
during a declarative memory task and increased activation
bilaterally in the hippocampal formation in an N-back task in
ser704 homozygotes controls compared with cys homozy-
gotes and heterozygotes, whereas Di Giorgio et al. (83) found
increased hippocampal formation/dorsolateral prefrontal
cortex coupling during memory encoding in a declarative
memory task in ser homozygotes compared with healthy cys
homozygotes and heterozygotes.

In summary, our results provide unprecedented preliminary
evidence that DISC1 Ser704Cys has an impact on the dopamine
synthesis capacity, in a large sample of 102 healthy volunteers.
Further studies should aim at (i) replicating this result in differ-
ent cohorts; (ii) investigating potential epistatic interactions
with DISC1 and other risk genes. Genetic studies based on
molecular evidence could help identify the molecular mecha-
nism that underlies the pathoaetiology of dopamine-related
disorders such as psychotic disorders, and help identify novel
potential treatment targets (15).

Conclusion
We found that the ser allele of DISC1 Ser704Cys (rs821616) was
associated with significantly higher striatal dopamine synthe-
sis capacity, consistently with its previous association with
heightened activation of ERK1/2 that stimulates tyrosine hy-
droxylase activity for dopamine synthesis. This implicates the
DISC1 polymorphism in altering a psychosis relevant mecha-
nism in the brain, i.e. the facilitation of greater dopamine syn-
thesis capacity. Although, this effect of rs821616 may be of too
small effect to be identified in population-based studies of end
state diagnoses at their current large size, it continues to impli-
cate the functional role of DISC1. Firstly by highlighting the
role of this polymorphism at this gene in creating variation
within the normal functioning of the brain, but also by indicat-
ing this function as a potential mechanism through which
other rare or familial mutations for major mental illnesses
could disrupt functioning and increase risk to these devastat-
ing disorders.

Materials and Methods
Overview

All participants gave informed written consent to take part after
full description of the study. All studies were approved by
the institutional review board and the local research ethics
committee.
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Participants

Participants were recruited via advertisement in local media
based in London. One hundred and twenty-three participants
underwent a [18F]-DOPA PET scan. For all participants the inclu-
sion criteria were (i) age above 18 years; (ii) capacity to give writ-
ten informed consent. The exclusion criteria were (i) any
current medical conditions or history of medical condition (past
minor self-limiting conditions were permitted); (ii) history of a
psychiatric disorder as determined by the Structured Clinical
Interview for DSM-IV Axis 1 Disorders, Clinician Version (SCID-
CV) (84); (iii) history of substance abuse/dependence as deter-
mined by the Structured Clinical Interview for DSM-IV Axis 1
Disorders, Clinician Version (SCID-CV) (84); (iv) history of head
injury with a loss of consciousness; (v) a family history of
any psychotic disorder in first- or second-degree relatives; (vi)
contraindications to PET scanning (significant prior exposure to
radiation, pregnancy or breast feeding). All participants pro-
vided urine samples prior to the scan to screen for drug use and
pregnancy test in women. Six participants were excluded owing
to positive urine THC screening, 12 participants were excluded
to contamination of samples and 3 participants were excluded
owing to current psychotropic medication use. This resulted in
the final inclusion of 102 participants (46 females/56 males, age:
30.2 6 9.3 years, mean 6 Standard Deviation). Both scanning
and imaging analysis were done blind to the genotype status.

[18F]-FDOPA PET

PET data were acquired using three different PET scanners. PET
scanner 1 was an ECAT HRþ 962 PET scanner (CTI/Siemens,
Knoxville, TN, USA). The dynamic images were acquired in 3D
mode with an axial field of view of 15.5 cm and reconstructed
using filterback projection. PET scanners 2 and 3 were two
Siemens Biograph HiRez XVI PET-CT scanner (Siemens
Healthcare, Erlangen, Germany) at Imanova, Centre for Imaging
Sciences. PET scanner 1 and PET scanner 2–3 were identical
with the only exception of the axial field of view: 16.2 versus
21.6 cm, respectively. The dynamic images were also recon-
structed using a 3D filtered back-projection algorithm (discrete
inverse Fourier transform, DIFT) with a 128 matrix, a zoom of
2.6 and a 5 mm isotropic Gaussian smoothing. Participants were
scanned at various times of the day. Some of the imaging data
has been included in prior reports but not for genetic analysis
(85–88). For attenuation and model-based scatter correction, a
10 min transmission scan was performed using a 150-MBq
cesium-137 rotating point source for the ECAT HRþ 962 PET
scanner and a computed tomography scan (effective
dose¼ 0.36 mSv) for the Siemens Biograph HiRez XVI PET-CT
scanners were acquired prior to each PET scan. Experimental
protocol was consistent for all the participants (85). Participants
were asked to fast and abstain from smoking from midnight on
the day of the scan as tobacco use has been associated with in-
creased striatal dopamine synthesis capacity (89) although this
has not been replicated (85). Oral doses of carbidopa (150 mg)
and entacapone (400 mg) were administrated 1 h before scan-
ning. While the first reduces the peripheral metabolism of the
tracer (90), the latter minimizes the formation of radiolabelled
[18F]-FDOPA metabolites, which can cross the blood–brain bar-
rier (91). Head movement was monitored and minimized with a
light head strap. If participants moved extensively during the
acquisition or got out of the scanner a second attenuation cor-
rection image was acquired at the end of the acquisition. PET
data were acquired dynamically during 95 min after bolus

injection of the radioactive tracer [18F]-DOPA through a cannula
inserted into a vein. Dynamic data were binned into 26 frames
(PET scanner 1) and 32 frames (PET scanner 2 and 3).

Image analysis

Head movement was corrected using a frame-by-frame realign-
ment and denoizing algorithm (92) with a level 2 order 64
Battle–Lemarie wavelet filter applied on the non-attenuation-
corrected dynamic images. These images were used because
they include a significant scalp signal compared with attenua-
tion-corrected images (93). Frames were realigned to a reference
frame corresponding to the frame with the highest number of
counts, i.e. obtained 7 min (for the ECAT HRþ 962 PET scanner-
CTI/Siemens) and 17 min (for the Siemens Biograph HiRez XVI
PET-CT scanners, Siemens Healthcare) after the radiotracer in-
jection using a mutual information algorithm (94). The transfor-
mation parameters were then applied to the corresponding
attenuation-corrected dynamic images. These realigned frames
were summated, creating a movement-corrected dynamic im-
age from which to extract the time activity curves for graphical
analysis quantification. Standardized regions in Montreal
Neurologic Institute space were defined in the striatum delin-
eated as previously described to create a region of interest (ROI)
map (95) and in the cerebellum using the probabilistic Martinez
atlas (95,96). The cerebellum was used as a reference region as it
is largely devoid of dopaminergic neurons or projections (45). A
non-linear transformation procedure on SPM8 (http://www.fil.
ion.ucl.ac.uk/spm) was used to normalize the ROI map together
with the [18F]-DOPA template to each individual PET summation
image, in order to place the ROI automatically on individual
[18F]-DOPA PET dynamic images. Influx constant Ki

cer value
(min�1) for the striatum was calculated relative to uptake in the
reference region using a graphical approach (97), a method
which has been shown to have good reliability (95).

Genetic analysis

DNA was extracted from blood or cheek swabs using standard
methods (98). Genotyping of the rs821616 A>T SNP, was per-
formed by KBioscience (Herts, UK, http://www.kbioscience.co.
uk) using a competitive allele-specific polymerase chain reac-
tion system. Quality control procedures included negative con-
trol (water) wells and duplicate wells.

Statistical analysis

The normality of the distribution for all variables was examined
using the Shapiro–Wilk test, inspection of Q–Q plots and skew-
ness and kurtosis values within range of 62. Homogeneity of
variance was assessed with Levene’s Test for Equality of
Variances. An alpha threshold was set at 0.05 (two-tailed) for
significance for all statistical comparisons. Statistical Package
for the Social Sciences version 24 was used for all statistical
analysis (IBM, Armonk, NY, USA). All data are shown as
mean 6 SD. An univariate ANCOVA was performed on 102
healthy controls, with the DISC1 SNP Ser704Cys variation (ser
homozygotes versus cys homozygotes and heterozygotes) as
the independent variable, Ki

cer in the striatum as the dependent
variable and age, gender, ethnicity (Table 1) and the three PET
scanners separately as covariates as these variables have been
previously found to influence dopamine synthesis capacity
(99,100). Effect sizes are reported as partial g2. Independent t test
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and Mann–Whitney U test were used to compare age and
injected dose.
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