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ABSTRACT The emergence of very large cohorts in genomic research has facilitated a focus on genotype-
imputation strategies to power rare variant association. These strategies have benefited from improvements
in imputation methods and association tests, however little attention has been paid to ways in which array
design can increase rare variant association power. Therefore, we developed a novel framework to select
tag SNPs using the reference panel of 26 populations from Phase 3 of the 1000 Genomes Project. We
evaluate tag SNP performance via mean imputed r2 at untyped sites using leave-one-out internal validation
and standard imputation methods, rather than pairwise linkage disequilibrium. Moving beyond pairwise
metrics allows us to account for haplotype diversity across the genome for improve imputation accuracy and
demonstrates population-specific biases from pairwise estimates. We also examine array design strategies
that contrast multi-ethnic cohorts vs. single populations, and show a boost in performance for the
former can be obtained by prioritizing tag SNPs that contribute information across multiple populations
simultaneously. Using our framework, we demonstrate increased imputation accuracy for rare variants
(frequency , 1%) by 0.5–3.1% for an array of one million sites and 0.7–7.1% for an array of 500,000 sites,
depending on the population. Finally, we show how recent explosive growth in non-African populations
means tag SNPs capture on average 30% fewer other variants than in African populations. The unified
framework presented here will enable investigators to make informed decisions for the design of new
arrays, and help empower the next phase of rare variant association for global health.
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There is a growing recognition in genomic research of the need for very
large-scale associations studies and genome-wide arrays are often the
cost-efficient technology of choice. In this study we explore ways to
improve array design for rare variant imputation, an underused means
to increase power in association studies.We describe a pipeline inwhich
an array is empirically evaluated based on genome-wide imputation
accuracy, rather than pairwise linkage disequilibrium, to improve
tagging and give real-world estimates of array performance.We explore
the impactofpatternsofdemographyonarrayperformance, anddiscuss

the trade-off between accurate rare variant imputation and trans-ethnic
utility. This work provides a framework and insights that can guide the
next generation of array development.

The vast majority of human genomic variation is rare (Nelson et al.
2012), and an appreciable fraction of rare variants are likely to be
functionally consequential. (Kircher et al. 2014) The gold standard
approach to assay rare variation (MAF , 1%) is via deep sequencing.
So far, large-scale sequencing studies have had some, but limited, suc-
cess for discovery of rare variant associations (Emond et al. 2012;
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Lohmueller et al. 2013; SIGMA Type 2 Diabetes Consortium et al.
2014; UK10K Consortium et al. 2015). There is a new appreciation
that studies of hundreds of thousands or millions of individuals will be
needed to drive well-powered discovery efforts. (Lindquist et al. 2013;
Kosmicki et al. 2016) Currently, genome sequencing on this scale is
prohibitively expensive and computationally burdensome. In contrast,
genome-wide genotyping arrays are inexpensive, with far less bioinfor-
matic overhead compared to sequencing. The past decade of genomic
research has seen the development of myriad commercial high-
throughput genotyping arrays.(Hoffmann et al. 2011a; Hoffmann
et al. 2011b) While initially designed to capture common variants
(International HapMap Consortium 2003), in recent years arrays have
been leveraged to capture variation at the rare end of the frequency
spectrum. One strategy is to ascertain rare variants directly on arrays,
which is restricted to a very narrow subset of the rare variant spectrum
due to array size limits. (Igartua et al. 2015; Wessel et al. 2015;
McCarthy et al. 2017) Another strategy is to leverage the haplotype
structure determined by common variants on the array, which form a
’scaffold’, for accurate inference of un-genotyped variation through
multi-marker imputation into sequenced reference panels of whole
genomes. The strategy of genotyping, followed by imputation, has
the potential to recover rare untyped variants in very large cohorts of
arrayed samples at no additional experimental cost. (Huang et al. 2015;
Michailidou et al. 2015) Imputation increases the effective sample size,
leading to increased statistical power. (Pritchard and Przeworski 2001)
This model bridging genotyping and imputation has prompted efforts
to build deep reference sequence databases and a renewed interest in
methods for improving genome-wide scaffold design. (1000 Genomes
Project Consortium et al. 2015; UK10K Consortium et al. 2015;
McCarthy et al. 2016).

Genotype array scaffolds have historically been designed using
algorithms that select tagging single nucleotide polymorphisms (tag
SNPs) that are in linkagedisequilibrium(LD)withamaximal numberof
other SNPs. Tag SNP algorithms are optimized to maximize this score,
typically described as pairwise coverage. However, imputation tools
increasingly incorporate sophisticated haplotype information to impute
unobserved variants. (Howie et al. 2012; Fuchsberger et al. 2014;
Browning and Browning 2016) Consequently, it is not clear that tag
SNPs thatmaximize pairwise coverage will be tag SNP’s that provide, in
aggregate, the best GWAS scaffold for accurate imputation. (de Bakker

et al. 2005) Further, most tag SNP selection algorithms use LD archi-
tecture in a single population (Weale et al. 2003; Carlson et al. 2004),
while we know LD patterns can vary extensively between populations.
(1000 Genomes Project Consortium et al. 2015) Historically, many
commercial arrays were designed by selecting tag SNPs from European
populations, although arrays targeting some other populations have
recently entered the market. (Hoffmann et al. 2011a; Hoffmann et al.
2011b) The number of SNPs tagged by a tag SNP can vary appreciably
between populations due to demographic forces of migration, popula-
tion expansion, and genetic drift. This may diminish GWAS scaffold
performance in populations other than those in which the tag SNPs
were selected, which in turn, can lead to reduced power for imputation-
based association. This is a particularly pernicious problem in popula-
tions for which no targeted commercial array is available, in studies
withmulti-ethnic populations, and for accurate estimation of the trans-
ferability of genetic risk across populations.

As association studies grow larger and increasingly diverse, there is a
need to reassess design criteria forGWAS scaffolds and arrays. (Carlson
et al. 2013; Fuchsberger et al. 2016) On the one hand, tag SNPs that tag
lower frequency variants are likely to be on the lower end of the site
frequency spectrum and, consequentially, more geospatially restricted.
(Nelson et al. 2008; Bustamante et al. 2011; Gravel et al. 2011;
Mathieson andMcVean 2014) On the other hand, as studies grow very
large, cohort heterogeneity is likely to increase substantially. (Banda
et al. 2015; Marouli et al. 2017) Given finite GWAS scaffold density,
examining the trade-off between lowering the frequency threshold for
accurate imputation and extending utility to multiple populations will
become important. (Nelson et al. 2013; Martin et al. 2014) In this
manuscript, we describe a framework for developing well-powered
tag SNP selection leveraging thousands of whole genomes from diverse
populations for balanced cross-population coverage. In our study, ge-
nomic coverage is evaluated based on genome-wide imputation accu-
racy as measured by mean imputed r2 at untyped sites, rather than
pairwise linkage disequilibrium. Moving beyond pairwise metrics al-
lows us to account for haplotype diversity across the genome and
demonstrates population-specific biases from pairwise estimates.
Assessing accuracy using leave-one-out cross-validation yields a real-
world estimate of genomic coverage. We examine the effect of allele
frequency, correlation thresholds, and population diversity on the se-
lection of tag SNP and on the landscape of tag-able variation. This work
demonstrates that, while there may be limits given current reference
panels, improving GWAS scaffold design is an underused means to
increase power in association studies.

MATERIALS AND METHODS

Genetic Data
The genetic data are from the 1000 Genomes Project (1000 Genomes)
Phase 3 data release, version 2 (7/8/2014) containing whole genome
sequences for 2,535 individuals from 26 global populations. (1000 Ge-
nomes Project Consortium et al. 2015) Sequence data were in VCFv4.1
format, mapped to the forward strand and variants annotated as ref-
erence or alternate alleles. Only biallelic SNPs were included in this
analysis (77,224,748 SNPs total). A list of known cryptically related
individuals was obtained from the 1000 Genomes FTP site, and one
individual from each related pair were subsequently removed (n = 62).
Individuals were assigned to their super populations according to
the original 1000 Genomes assignments (EAS = East Asian, EUR =
European, AFR = African, SAS = South Asian, AMR = Americas,
comprising 503, 501, 495, 477, and 341 individuals, respectively).
Two populations of admixed African ancestry (ASW and ACB) were
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removed from the African super population and formed a separate
African American/Caribbean (AAC) super population (n = 156).

Tag SNP Selection
Allele frequency was estimated within super population for each SNP
using Plink v1.9. (Chang et al. 2015) Linkage Disequilibrium (LD) was
also calculated within each super population using Plink v1.9 and
settings for pairwise linkage with a minimum r2 of 0.2 within a max-
imum distance of 1 megabase (mb). Tag SNP selection was performed
per chromosome in the program TagIT (Weale et al. 2003) (https://
github.com/statgen/TagIt), with frequency and LD files for each super
population as input. The TagIT algorithm analyzed each super popu-
lation separately. After filtering based on theminor allele frequency (set
as either 0.5%, 1%or 5%), TagIT annotates the tag SNP that has the highest
number of LD pairs with r2 above a minimum threshold (set as either 0.2,
0.5, or 0.8). The selected tag SNP and all of its linked SNPs aremasked and
TagIT finds the next tag SNP with the highest number of LD pairs. The
output for each super population included for each index tag SNP the
number of sites in LD, as well as the number of unique sites that weren’t
already tagged by a previously chosen tag. The number of unique SNPs
tagged across all populations per tag SNP was tallied in the final output.

Cross-population tag SNP ranking and scoring
The naive approach ranked potential tags by the absolute number
of unique SNPs that are tagged across all super populations. From
this list, the top SNPs were selected for the appropriate allocation. To
ensure performance of the tags across multiple populations, the cross-
population prioritization schema first ranks tags by the number of
populations inwhich they are informative,meaning they tag at least one
site (SupplementaryFigure1). This ensures that the top rankedSNPsare
not biased to a super population with large LD blocks or high SNP
density in which one tag can contribute information about many other
SNPs.Within each one of these categories (all 6 super populations down
toonly 1 super population), the tags are rankedby the number of unique
tags across all six super populations, as was done in the original
approach. The appropriate allocation is selected from the top of this
list, scaled to the size of the chromosome of interest.

Metric of Performance
Coverage and imputation accuracy were assessed using all polymorphic
biallelic siteswithin the 1000GenomesPhase 3 data release, version 2. Sites
were categorized into tendiscreteminor allele frequencybins: (0.005-0.01],
(0.01-0.02], (0.03-0.04], (0.04-0.05], (0.05-0.1], (0.1-0.2], (0.2-0.3], (0.3-0.4],
and (0.4-0.5]. The term “coverage” is used to denote the proportion of
untyped sites that had at least one tag SNP with pairwise r2 greater than a
certain threshold (0.2, 0.5, or 0.8). Imputation accuracy was determined
through a leave-one-out internal validation approach with the 1000 Ge-
nomes Project Phase 3 data using a modified version of Minimac.
(Fuchsberger et al. 2014) For this approach, each individual within the
1000Genomes data had the appropriate tag SNPs denoted as ‘genotyped’,
with all other sites set as missing. These missing sites are then imputed
using the rest of the 1000Genomes panel as a reference. Correlation was
calculated comparing the estimated dosages from this imputation to the
true genotypes from the original VCF files. While this internal validation
approach may introduce overfitting of the data and an upwards bias of
imputation accuracy, we sought the relative imputation accuracy for dif-
ferent methods and do not see any bias altering described trends.

Ascertainment Bias Analyses
Population-specific tagswere selected separately throughTagIT for each
super population with a genome-wide allocation of 500,000 sites. All

tags had a minimum MAF of 1% and a minimum r2 threshold of 0.5.
Each of the single population ascertained tag lists assessed for imputa-
tion accuracy in all six super populations, including their index pop-
ulation. Imputation accuracy was calculated as previously described
and limited to chromosome 9.

Local Ancestry
Local ancestry was estimated using RFMix (Maples et al. 2013) assum-
ing three ancestral backgrounds: African, European, and Native Amer-
ican, and is described in detail in (Martin et al. 2016) Tracts were
dropped if smaller than 20 cM to improve accuracy in local ancestry
estimation. Diploid ancestry with three ancestral backgrounds yielded
six categories of variation. Imputation accuracy was then calculated
separately per diploid tract category, with all other sections masked
out. Results were aggregated across all chromosomes to calculate the
genome-wide performance per diploid ancestry. Tracts were removed
from analysis if the ancestral diplotype was found in fewer than 5 indi-
viduals. This included AFR-NAT and EUR-NAT within ACB which
only occurred in 2 individuals each, NAT-NAT diplotypes in ASW
which occurred in one individual, and AFR-AFR diplotypes in MXL
which occurred in 3 individuals.

Cross-population patterns of linkage disequilibrium
To determine how many sites were in LD with tag SNPs across all 6 super
populations, we selected one million SNPs for a GWAS scaffold using
a minimum r2 of 0.5 and a minimumMAF of 0.01 on chromosome 9.We
calculated the number of polymorphic sites (MAF . 0.5%) and the pro-
portion of these sites that were in LD (r2. 0.5 or r2. 0.8) with at least one
tag marker. To determine sharing of tags across multiple populations, we
calculated the proportion of tag markers that were informative in other
populations, conditional upon them being informative in the index popu-
lation. The proportion of sites shared among multiple populations was
calculated as the proportion of tag SNPs that performed in a certain number
of populations (from 1 to 6 super populations) per super population.

Tagging Potential
Tag SNPswere selectedwith aminimum r2 of 0.5 and aminimumMAF
of 0.01 on chromosome 9. The potential for tagging was determined
assuming an infinite site scaffold, using all possible tags until every
pairwise relationship with r2 above 0.5 was captured. The average num-
ber of sites captured per tag was calculated in each super population
separately, using only the tags that were informative within that popu-
lation.We also calculated these trends assuming a scaffold of one million
sites, following the same procedures. The “dark sites” were calculated
as sites inwhich therewas no pairwise correlationwith any other sitewith
r2 . 0.2, determined separately for each super population.

Data Availability
The input data from1000Genomes Project, Phase 3 is publicly available
at the following link: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/.
The program TagIt is available on github (https://github.com/statgen/
TagIt), as well as a tutorial for how to select tag SNPs as detailed in this
manuscript (https://github.com/chrisgene/crosspoptagging). Supplemen-
tal material available at Figshare: https://doi.org/10.25387/g3.6626762.

RESULTS

Assessing population-specific imputation accuracy With
standard GWAS scaffold design
First we designed an experiment to assess imputation accuracy perfor-
mance comparing tag SNP selection from different populations. This
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experiment mimics the current design of many commercial arrays, in
which tag SNPs were selected to capture the primarily variation in a
single population or a closely related group of populations. We built a
pipeline using the 26 population reference panel from Phase 3 of the
1000 Genomes Project and the Tagit algorithm(Taliun) for tag SNP
selection. (Weale et al. 2003) (Supplementary Table 1) Individuals were
split into mutually exclusive “super populations.” These included the
Admixed American (AMR), East Asian (EAS), European (EUR), and
South Asian (SAS) populations as described in 1000 Genomes Project
Consortium et al. (2015) In addition, we divided the African super
population into two groups: four populations from Africa (AFR) and
twopopulations ofAfricandescent in theAmericas (AAC) (seeMethods).
Initially, to mimic the design of many arrays, tag SNPs were selected from
a single super population. We assumed a genome-wide allocation of
500,000 tag SNPs, however analyses for a single population tagging strat-
egy were only conducted on chromosome 9 with the allocation of 21,107
sites proportional to the physical distance of chromosome 9 compared to
all chromosomes combined. Potential tags were required to have a minor
allele frequency (MAF)$ 1% and be in pairwise LDwith the tagged target
site with a r2 $ 0.5.

Thecurrentgenerationofphase-basedimputationalgorithms(BEAGLE,
IMPUTE2, Minimac3) leverage local haplotype information and se-
quenced reference panels to improve accuracy of variant inference
compared to tag SNP approaches. (Marchini et al. 2007; Browning and
Browning 2007; Howie et al. 2009; Marchini and Howie 2010;
Fuchsberger et al. 2014; Browning and Browning 2016) Therefore, opti-
mal array design depends not only on tag SNP selection, but also on
empirical evaluation of imputation performance. For each of the popu-
lation-specific GWAS scaffolds, imputation accuracy was assessed in all
six super populations by MAF bins (common, MAF = 0.05-0.5; low
frequency, MAF = 0.01-0.05; and rare, MAF , 0.01) by comparing
the imputed dosages to the real genotypes through leave-one-out internal
validation. (see Methods).

Consistently across all super populations, thepopulation fromwhich
the tags were ascertained had the highest imputation accuracy in the
common bin. (S1 Fig) Trends in imputation accuracy follow known
patterns of demography. For example, if the tags were ascertained in
European populations, imputation accuracy was best in Europeans
(EUR), followed by out-of-Africa populations (AMR, SAS, EAS), and
worst inAfrican ancestry populations (AFR,AAC). (Figure 1) If the tags
were ascertained in African populations, the inverse was observed. (S1
Fig) As expected, the same trend of reduced imputation accuracy in
non-ascertained populations was exacerbated in the low frequency bin.
Imputation of low frequency variants in East Asian populations (EAS)
was consistently most challenging; even when tag SNPs were selected
fromEAS, accuracy of low frequency imputation was the same or better
in other populations. This can be explained by evidence of a recent tight
bottleneck followed by rapid population grown in EAS, resulting in a
large proportion of rare variants that are difficult to tag due to lower
LD, especially with a limited scaffold of 500,000 sites. (Gravel et al.
2011) In contrast, the imputation performance of tag SNPs ascertained
in AFR, AMR, and AAC populations is the same or better compared to
the performance in out-of-Africa populations. This is likely due to
increased allelic heterogeneity in African ancestry populations, which
results in greater haplotypic diversity and a higher chance that a rare
variant is well tagged by a haplotype for imputation. (1000 Genomes
Project Consortium et al. 2015) The imputation accuracy of AMR
higher in the rare frequency bin (MAF 0.5–1%), independent of the
ascertainment population, is likely due to longer haplotypes resulting
from recent admixture, allowing the rare variation to be captured ac-
curately given the limited allocation. (Gravel et al. 2013) Importantly,

in each case we observe a notable drop-off in performance across most
of the frequency spectrum when examining imputation coverage in
populations diverging from the one used for tag SNP selection. (S1 Fig).

Comparing single vs. cross population tag SNP
selection strategies
When developing a genotyping platform, it is useful to assess whether
selected tag SNPs segregate in the population of interest and contribute
to tagging by being in LD (high r2) with untagged sites. For example,
using Illumina’s OmniExpress platform (Illumina) within the 1000 Ge-
nomes Project data, over 99.7% of the sites will be polymorphic
(MAF . 0.5%) in the overall dataset. However, when we stratify by
super population, each group has a differential loss due to monomor-
phic sites. AFR loses only ,1% of sites with a MAF , 0.5%, whereas
EUR and EAS lose 4.4% and 9.2%of variants, respectively. Reduction in
tagging can result in loss of statistical power for downstream analysis.
We quantify this as “informativeness”, or the ability of a tag SNP to
both segregate in the population and provide LD information (r2. 0.5
with at least one untagged site). Balancing representation of variation
across all groups becomes very important in multi-ethnic studies.

To explore different approaches for GWAS scaffold design we
compared three strategies for selecting tag SNPs; single population
tag SNP ascertainment, in which all tags are selected from a single
population; a ‘naïve’ approach, in which all populations are combined
and tags are selected based on composite statistics derived from this
multi-population pool; and a ‘cross-population prioritization’ ap-
proach, in which tags are prioritized if they are both informative in
multiple populations and by the number of unique sites targeted across
all groups (seeMethods and S2 Fig).We generated lists of tags permethod
assuming a total genome-wide allocation of 500,000 sites and minimum
thresholds of r2 . 0.5 and minor allele frequency (MAF) $ 1%. Using
these parameters, an exhaustive set of tag SNPs were selected using the
naïve approach with tags ranked by the absolute number of sites tagged
across the 6 super populations, regardless of howmany super populations
had LD between tags and targets. We then re-ranked them using the
cross-population prioritization approach (S2 Fig).

To compare the three approaches, we tallied the number of in-
formative tags per population for each method to investigate the added
value of tags contributing information in multiple populations. (Figure
2) This was done for all 22 autosomes. As per the design, all the single-
population tags were informative within the super population from
which tag SNPs were selected. Comparing the naïve and cross-popu-
lation approaches that selected tag SNPs across all populations, the
cross-population prioritization approach increased the number of in-
formative tag SNPs in all populations relative to the naïve approach. In
the naïve approach, we observed that the majority of tag SNPs were
selected from the AFR population, followed by AAC, due to African-
descent populations having more polymorphic sites across the genome
with lower linkage disequilibrium. (Henn et al. 2015; 1000 Genomes
Project Consortium et al. 2015) Whereas in the cross-population pri-
oritization approach variation specific to a single population is down-
weighted, leading to more balanced representation between all 6 super
populations. By leveraging cross-population information the largest
boost in the proportion of tag SNPs contributing linkage disequilibrium
information compared to the naive approach was observed in non-
African descent populations (10.5%, 28.6%, 25.9%, and 28.7% in
AMR, EAS, EUR and SAS, respectively). Even the African descent
populations (AFR andAAC), which dominate the naïve approach, have
a higher proportion of tags in linkage disequilibrium with target sites
with the cross-population prioritization approach (a 2.2% and 1.0%
boost for AAC and AFR, respectively).
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To assess performance across the frequency spectrum we also
stratified our accuracy estimates by super population-specificMAF into
common, low frequency, and rare bins, as previously described. We
observed that the cross-prioritization approach results in a larger pro-
portion of tags being informative compared to both the single-
population and naïve for common tag SNPs (MAF. 0.05) in all super
populations. This is likely because the cross-prioritization approach
prioritizes potential tag SNPs that provide LD information across
multiple populations, therefore prioritizing common variants tagging
common variation. However, by limiting tag SNP selection to these
common variants only, the proportion of tags that provide LD infor-
mation for low frequency variants is decreased compared to the single
population approach, which had the highest proportion of informative
tag SNPs in low and rare frequency in the target population. For ex-
ample, when tags were ascertained using only AAC LD information,
19.5% of the 500,000 SNP scaffold were informative for rare variation

(MAF , 1%) and 62.8% for common variation MAF . 5%) within
AAC populations. When the cross-population approach was used, en-
suring the prioritization of common variation, the proportion of tag
SNPs informative for rare variation dropped to 6% while the propor-
tion informative for common variation jumped up to 82.4%. This
is consistent with low frequency and rare variants being population-
specific, therefore not tagged by cosmopolitan common variation pre-
sent in multiple populations. A notable exception is that the naïve
approach contributes the most LD information for rare variants in
the AMR super population. This is consistent with our previous find-
ings showing highest imputation accuracy in the rare variation within
AMR, evenwhen the population fromwhich tag SNPs were ascertained
was different. The AMR on average exhibit longer haplotype lengths
from the recently admixed populations in the Americas. (Gravel et al.
2013; 1000 Genomes Project Consortium et al. 2015) Because of
the long haplotype tract lengths, more limited haplotypic diversity,

Figure 1 Imputation Accuracy by super population of tags selected in European populations for a scaffold assuming 500,000 genome-wide
variants. Tags were required to have a MAF $ 1% and r2 $ 0.5 with target sites. This trend is observed across all super populations (S1 Fig).

Figure 2 Proportion of tags that are informative by population with the three methods. (Left, lightest) tags selected from only a single population,
(Center) tags selected by pooling all populations agnostically, and (Right) tags selected with the cross-population prioritization approach. Tag
SNPs were informative if they were in linkage disequilibrium (r2 . 0.5) with at least one untagged site.
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and the limited allocation of tag SNPs, a naïve approach empha-
sizing the absolute number of unique sites up-weights variation
that is informative for at least one of the ancestral components
present in these populations.

Cross population prioritization of tag SNPs increases
imputation accuracy for all groups Across frequency
spectrum compared to naïve approach
The goal of tag SNP selection is to inform the unmeasured haplotypes,
and therefore their performance must be evaluated in aggregate. One
way to assess this is through imputation accuracy. Following the
observation that cross-population prioritization selects a higher pro-
portion of informative common tag SNPs for each population, even
compared to the single population approach, we next assessed what
impact this would have on imputation accuracy.We deployed the same
leave-one-out internal cross validation approach as before using the
1000 Genomes Project populations (see Methods). We again assumed
a genome-wide scaffold of 500,000 sites and tags had to have a
MAF . 1% and r2 . 0.5 with tagged sites. Imputation accuracy was
highest across all population-specific minor allele frequency bins when
ascertaining in the target population in non-African non-admixed de-
scent continental populations (EAS, EUR, and SAS). (S3 Fig) For the
two African descent groups (AAC and AFR), the cross-population
prioritization approach had the highest imputation accuracy across
all sites. When stratified by MAF bins, the increase in informative
tag SNPs for common variants with the cross population approach
yielded higher imputation accuracy for common variation in all super
populations. As previously seen, the population-specific nature of low
frequency and rare variants led to decreased imputation accuracy in
non-African descent populations for both the cross-population and
naïve approach when compared to targeted single-population ascer-
tainment. The cross-population prioritization approach had higher
imputation accuracy than the naïve approach for all MAF bins.

As scaffold size can dramatically affect imputation accuracy(Spencer
et al. 2009), we additionally examined allocations of 250,000, 500,000,
1,000,000, 1,500,000, and 2,000,000 genome-wide tags, which were all
selected with r2 . 0.5 and MAF . 0.01. These allocations approxi-
mate the size range of many commercially available arrays. The
cross-population prioritization scheme performed better with
higher imputation accuracy than the naïve method for all super popula-
tions across all minor allele frequency bins with tags selected. (Figure 3)
The biggest improvement came with the smaller array sizes. The most
marked improvement was found in EAS, which originally had the lowest
imputation accuracy of the 6 super populations with the naive approach.
Within EAS groups, the cross-population approach increased imputation
accuracy overall by 9.8% (from 67.3 to 77.1%) for a tag scaffold of 250,000
sites. For a scaffold of 500,000 sites, an overall improve of 6.2% was
observed (from77.4 to 83.6%). Improvementswere largely consistent with
the increase of informative tag SNPs. (Figure 2) As with the naive prior-
itization approach SNPs were disproportionately informative within AFR
and AAC, consistent with admixed ancestry reflected by reference panels.
For the smaller sizes (250K), the greatest increase in performance incor-
porating cross-population information was found within common SNPs
(MAF. 5%).However, the larger sized scaffolds (1-2million) showed the
most improvement within the low frequency bins (MAF , 5%).

Imputation accuracy varies by local ancestry
background in admixed individuals
We also assessed imputation ancestry stratified by local ancestry dip-
lotype in the two admixed populations, the AAC and AMR, for a
genome-wide allocation of 500,000 tag SNPs. First, using phased data,

we inferred haploid tracts of African, European, and Native American
local ancestry along the genomes of all individuals in theAMRandAAC
populations (see Methods, (1000 Genomes Project Consortium et al.
2015; Martin et al. 2016)). Then each variant was inferred to be on
one of six ancestral diploid tracts; European-European (EUR-EUR),
European-African (EUR-AFR), European-Native American (EUR-
NAT), African-Native American (AFR-NAT), African-African (AFR-
AFR) and Native American-Native American (NAT-NAT). In all local
ancestry strata the cross-population prioritization yielded improved
imputation accuracy when compared to the naïve approach. When
looking at ASW population (Americans of African ancestry in South
West US), performance was high overall with all diploid tracts having
imputation accuracies of 92.8–96.8% for all sites with minor allele
frequency above 1%. (S4 Figure) The lowest imputation accuracy was
found in AFR-AFR tracts, especially at the lower end of the frequency
spectrum. The highest imputation accuracy was found in EUR-EUR
tracts (94% overall for ASW). In AMR populations, by contrast, the
NAT-NAT tracts had the lowest performance of all. An example can be
seen in the MXL population (Mexican Ancestry from Los Angeles),
where the highest imputation accuracy was found in the AFR-EUR
tracts (overall imputation accuracy of 90.1% for all SNPs with
MAF . 0.5%) and the lowest within NAT-NAT tracts (74.8% for all
SNPS with MAF . 0.5%). (S4B Fig) These performances could be
reflective of the relative availability of reference data relevant to these
specific ancestral components.

Evaluating impact of r2 and MAF thresholds on tag
SNP performance
Previous standards in scaffolddesignhave consideredminimum linkage
disequilibrium (r2) and minor allele frequency (MAF) thresholds when
prioritizing possible tag SNPs. However, the impact of these thresholds
are often evaluated through pairwise coverage. We explored varying
the minimum r2 threshold (0.2, 0.5, 0.8) and MAF (0.5%, 1%, 5%) to
assess their impacts on imputation accuracy, as well as pairwise cover-
age, assuming a genome-wide allocation of one million tags. For com-
mon variants, a higher minimum r2 threshold (r2 . 0.8) resulted in
slightly higher imputation accuracy. (Figure 4A) However, the sites in
the low and rare bin demonstrate population-specific accuracy only.
(S5 Fig) For AFR, SAS, and EAS, a less stringent threshold of r2 . 0.2
had the worst imputation accuracy across all frequency bins. Low fre-
quency and rare variation had higher imputation accuracy for an r2

threshold of 0.5 compared to 0.8.Within AAC,AMR, and EUR, the low
frequency variation had improved imputation accuracy with the lowest
r2 threshold of 0.2. However, the imputation accuracy within this low
threshold was notably compromised for common variants. This indi-
cates that low frequency variation is better captured byweak correlation
structure, but at a cost to common variation in these populations.
Analyses performed with r2. 0.5 had the best balance of performance
across all frequency bins with the highest overall imputation accuracy
in all super populations except for EAS. (S2 Table) Overall, there were
very small differences in imputation accuracy between the different r2

thresholds. There were much larger differences in coverage, including
both coverage evaluated with minimum r2 (LD) of 0.5 and 0.8. (Figure
4A) Additionally, the best “performance” using pairwise coverage
was highly dependent on the definition of coverage. Specifically, if
pairwise coverage was calculated as the proportion of sites that are in
LD with r2 . 0.5, then the best minimum r2 threshold in tag SNP
selection will be 0.5. This holds true for r2 . 0.8 as well.

The impact of minimum minor allele frequency threshold was
negligible across variants with MAF . 5% for all non-African popu-
lations (S6 Fig). Within populations of African descent, limiting tags to
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variants withMAF. 5% resulted in increased imputation accuracy for
all frequency bins, especially for common variants. Lowering the MAF
to 0.5% reduced accuracy in African-descent populations across all
frequency bins. For EUR, SAS, and AMR, tags with MAF . 1% had
decreased accuracy for variants with MAF 0.5–1% compared to when
tags are limited to MAF. 0.5%. (Figure 4B) The lowest limit of MAF
(0.5%) showed increased accuracy for rare variation but at a slight cost
to the accuracy for common sites (MAF. 5%). We concluded that the
best balance for tag SNP selection across all populations among these
was MAF. 1% within the population being tagged, as the imputation

accuracy was best for MAF . 5% for half of the groups (AAC, AFR,
EAS) and best for MAF . 0.5% for the other half (AMR, EUR, SAS).
(S2 Table) However, the overall differences in imputation accuracy
was minimal, with less than 1% between all lower MAF thresholds
across all sites. Again, we observed large differences in pairwise cover-
age, despite negligible differences when performance is evaluated by
imputation accuracy. (S6 Fig) This is particularly striking for African-
descent populations (ASW and AFR), where there were large gains of
pairwise coverage for MAF . 1%, compared to MAF . 0.5% and
MAF. 5%. As previously described, African populations have shorter

Figure 3 Increased imputation accuracy with cross-population prioritization (solid line) vs. naïve approach (dashed line) for a minimum pairwise
correlation threshold of r2 . 0.5 and MAF . 1% across different scaffold sizes. Imputation accuracy was calculated separately within minor allele
frequency bins for each super population.
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LD blocks and a greater absolute number of polymorphic variants
compared to other populations. (1000 Genomes Project Consortium
et al. 2015) Therefore, pairwise coverage underestimates performance
compared to imputation accuracy, as addressed below.

Tagging potential differs between populations
Efficient tag SNP selection is an opportunity to boost power in down-
stream analyses. In our study, African and out-of-Africa populations
exhibited distinct genetic architectures, which resulted in different
performance trends. Even when cross-population performance was
prioritized, it did not guarantee equal representation of all population
groups within the tag SNP set. To determine the contribution of each
population, we focused on chromosome 9 (42,215 tags), equivalent to
onemillion sites genome-wide, selectedwithour novel cross-population
prioritization scheme. This tag SNP allocation resulted in including all
tags thatwere informative in at least 3 to all 6 populations in the scaffold.
Out of all tags for chromosome 9, 17.96% were informative in all
6 populations. (S3 Table) No tags were included that were informative
in only one or two populations. Of tags that were informative in 5 out of
the6 super-populations, only54%were inLDwithany target siteswithin
EAS populations, while 93% were informative in AAC populations.
(Figure 5A) This trend is consistent with cross-population tags tending
to be less informative in EAS populations compared to the other pop-
ulations.When tags are informative in 3 out of 6 groups, only 18%were
informative in EAS, while 75% were informative in AAC. Tags infor-
mative in only 2 of the 6 groups were likely informative in AAC and
AFR, the African descent populations, while very few of them were
informative for non-African descent groups, consistent with capturing
differential LD patterns in African populations.(Henn et al. 2011)
When tags are stratified by MAF (0.5–1%, 1–5%, and .5%), these
trends are exaggerated in the low frequency and rare MAF bins. (S7
Fig) As expected, the rare variation (0.5–1% MAF) was highly popula-
tion-specific with no sites in this frequency bin being informative across
all populations, or even 5 out of the 6 populations. (Gravel et al. 2011) For
low frequency variation (1–5%), tags were the least informative within
EAS, with only 36% of the tags informative in 5 out of 6 populations.

Conditional performance, or the ability of a tag which is informa-
tive in the index population also being informative in an additional

population, was also examined and found to be consistent with known
population histories. Of tags that are informative withinAFR, 94%were
informative within AAC, while only 38% were informative within EAS.
(Figure 5B) However, among tags that were informative within EAS,
81% were informative within African populations. Once again, the
stratified analyses show exaggerated trends for the low frequency and
rare MAF bins. (S8 Fig) For the rare variation (0.5–1%), only a very
small percentage (,10%) of tags are informative in other populations
(AMR, EAS, EUR, SAS) if they were informative within African-de-
scent populations (AFR and AAC). The high level of sharing between
AFR and AAC is expected due to the high proportion of African
ancestry within African-American and Afro-Caribbean populations.
Of tags informative within EUR, 78% are also informative within
AMR, largely due to the high proportion of European ancestry within
someHispanic/Latino populations.(Moreno-Estrada et al. 2013; Gravel
et al. 2013; Moreno-Estrada et al. 2014).

The tagswere alsonotequally informative in eachpopulationwhen it
comes to the number of sites they tag with r2. 0.5. For chromosome 9,
it would take 81,416 tags to capture all possible tag-able variation with
an r2 . 0.5 within AFR populations, while it would take only 28,473
tags within EAS populations to saturate coverage. However, each tag
within the AFR populations captures on average 7.17 other sites,
whereas for EAS populations, each tag captures on average 10.27 other
SNPs. When restricting the design to a million tag SNP scaffold, each
tag captures on average 16.16 other SNPs within EAS populations and
12.16 other SNPs in AFR populations. (Table 1) This reflects the dif-
ferent underlying genetic architecture of these different groups.

Limits of tagging and imputation
Not all of the human genome can be captured through pairwise tagging
givenexisting referencepanels. Foreachsuperpopulation,wefiltered for
sites that were polymorphic (MAF . 0.5%) and had no pairwise cor-
relation (r2 . 0.2) with any other site within one megabase. The num-
ber of these “lone sites”without any pairwise correlation was dependent
upon population. AAC had the greatest number of lone sites, but that is
likely due to the significantly decreased sample size compared to the
other populations. (Table 2) The lowest number of lone sites was found
within AMR. Although these sites have no notable pairwise correlation

Figure 4 Influence of (A) minimum r2 threshold and (B) lower MAF threshold on imputation accuracy and coverage (r2 . 0.5 and r2 . 0.8) within
populations from the Americas with an allocation of 1M sites.
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with any other site in the human genome, haplotypes may be informa-
tive and allow the recovery of information for imputation. We again
assumed a one million genome-wide tag SNP scaffold allocation
with minimum MAF of 1% and minimum r2 threshold of 0.5 and
imputed to the entire 1000 Genomes reference panel. As expected,
imputation accuracy and ability to recover information was popula-
tion-specific. The imputation accuracy within AAC was an outlier
when compared to other populations, with 80.72% of lone sites being
imputed with at least the accuracy of racc2 $ 0.5 and over 50% of sites
being imputed with even higher accuracy (racc2 $ 0.8). Many of these
lone sites within AAC were captured with pairwise and haplotype LD
within other populations, primarily AFR and to a lesser extent EUR.
While there were likely insufficient allele counts for accurate correlation
estimation within AAC due to the small sample size, this information
could be recovered using a global reference panel. The number of un-
recoverable “dark sites”, which had no pairwise correlation and were
not recoverable with imputation using haplotype information, was the
largest in EAS and is consistent with known demography and popula-
tion history yielding an excess of highly rare variation compared to
other populations.(Gravel et al. 2011)

Pairwise coverage vs. imputation accuracy
When evaluating the performance of a GWAS scaffold, there are
numerous factors to take into consideration. These include the number
of sites you have allocated to tag SNPs and what your priorities are for
balanced representation. To a lesser extent, the benefits and pitfalls of
prioritizing low-frequency variantsmust be weighed. However, we have
demonstrated that the influence of these factors is highly dependent on

how performance is measured. The notion of genomic “coverage” has
historically been estimated using pairwise correlations, and therefore
this term will be used to denote the proportion of polymorphic sites
that are in pairwise LD (r2 threshold) with at least one tag SNP. We
calculated coverage separately per super population at an r2 threshold
of 0.5 and 0.8 within minor allele frequency bins identical to the im-
putation accuracy estimation analyses, assuming a genome-wide tag
SNP set of 500,000 and 1,000,000. (Table 3) For a tag SNP set of one
million sites, coverage was lowest in AFR with an overall average of
59.15% for all sites with MAF. 0.5% and r2 . 0.5. (S9 Fig) When the
r2 threshold is raised to 0.8, the proportion of sites in linkage disequi-
librium with at least one tag SNP lowers to 28%. (Figure 6) The highest
coverage was found in populations from the Americas (AMR) and East
Asia (EAS). For a lower r2 threshold of 0.5, 79.9% of AMR sites with
MAF. 0.5% were covered. When using the higher r2 threshold of 0.8,
East Asian populations had the highest coverage with 63.08% of sites in
LD with at least one tag SNP. This difference is even more marked
when looking at a smaller tag SNP set of 500,000 sites. (S10 Fig, S11 Fig)
African populations now have an overall coverage of 33.17% with r2 .
0.5 and 14.10% with r2 . 0.8. East Asian populations have the
highest coverage with 73.16% of sites covered with r2 . 0.5 and
55.09% with r2 . 0.8.

These trends are in striking contrast to those we observed in
imputation accuracy. When comparing a tag SNP set of 1 million,
pairwise LD coverage is the lowest in populations of African descent
(59% with r2. 0.5) yet imputation’s ability to recover un-typed sites is
on average high and consistent with other populations (imputation
accuracy of 89.62%) among SNPs with a minor allele frequency above

Figure 5 Tag SNPs informativeness across population. (A) Proportion of sites informative (r2 . 0.5, MAF. 0.01, 1M site scaffold) across a number
of populations, with lines corresponding to the index population. For example, for sites that are informative (r2 . 0.5 with any untyped SNP in
genome) in five out of the six populations, only slightly more than half are informative in East Asian populations while greater than 90% are
informative in African populations. (B) Proportion of sites shared across populations, conditional on index population. For example, for sites
informative in African populations, less than half are informative in East Asian, European, and South Asian populations.

n Table 1 Performance per tag SNP to capture all variation possible with r2 > 0.8 on chromosome 9, as well as within a one million site
genome-wide scaffold allocation through cross-population prioritization

Population

All Possible Tags One Million Tag Scaffold

Number of Tags Sites Captured per Tag Number of Tags Sites Captured per Tag

AAC 74,255 8.04 36,336 12.97
AFR 81,416 7.17 34,548 12.16
AMR 43,065 9.40 28,691 12.80
EAS 28,473 10.27 16,457 16.16
EUR 35,027 9.48 22,111 13.63
SAS 37,644 9.28 23,480 13.33
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0.5%. This contrast is also found in East Asian populations, which had
one of the highest proportion of polymorphic SNPs with r2 . 0.5
for coverage (76.95%), but the lowest imputation accuracy (86.28%).
(Table 3) When sites are stratified by minor allele frequency bins, the
differences in trends are even more striking. (Figure 6, S9 Fig) For
example, within the lowest frequency bin (0.5–1%) for admixed pop-
ulations of African-descent, the coverage of sites for a set of 500,000 tag
SNPs with r2 . 0.8 falls below 10%, however the imputation accuracy
remains relatively high at 77.82%. These trends are consistent andmore
dramatic when evaluated within a tag SNP set of 500,000 sites. (S10 Fig,
S11 Fig) These observations reinforce the necessity of examining im-
putation accuracy, instead of pairwise coverage, when evaluating the
performance of tag SNPs.

DISCUSSION
As genomic researchers shift their focus to rare variant association in
large and increasingly heterogeneous populations, it is important to
design arrays with this ultimate goal in mind. There are currently two
acceptedmethods of evaluating the performance of a tag SNPs: pairwise
LD “coverage” and imputation accuracy. Coverage has historically been
used as a term to denote the proportion of polymorphic sites that are in
linkage disequilibrium with at least one tag marker above a certain r2

threshold. (Barrett and Cardon 2006; Pe’er et al. 2006; Li et al. 2008;
Bhangale et al. 2008) Genotyping arrays are typically compared using
this score averaged across the genome. However, as we and others have
demonstrated, restricting performance assessment to this definition of
pairwise coverage is limited by removing multi-marker information.
(Nelson et al. 2013; Martin et al. 2014) Evaluating imputation accuracy,
particularly via leave-one-out cross validation, is highly computation-
ally intensive, but provides a better assessment of how well untyped
variation can be recaptured and a more realistic depiction of array
performance than pairwise coverage. Imputation accuracy is also a
more useful statistic in a practical sense, especially with the develop-
ment of deeper and more diverse reference panels, (Prüfer et al. 2014;
Gurdasani et al. 2015; Sudlow et al. 2015; 1000 Genomes Project Con-
sortium et al. 2015; McCarthy et al. 2016) as performing GWAS with

imputed variants is now the expectation. Emerging evidence suggests
that rare variants (MAF, 1%) that are poorly tagged by an individual
tag SNP will be accessible via imputation, due to added haplotype in-
formation, particularly as sample sizes move beyond the thousands into
the tens or hundreds of thousands. (Nelson et al. 2013; Fuchsberger
et al. 2014).

Previous tagging strategies have predominantly focused on optimiz-
ing performance in a single population. In prioritizing potential tags by
their ability to provide linkage disequilibrium information across mul-
tiple populations, we were able to demonstrate that cross population tag
SNP selection outperforms single population selection. This boost in
imputation accuracy exists across all populations and frequency bins.
We simulated tag SNP sets for a range of sizes (250,000-2 million), as
well as for several minimum minor allele frequencies (0.5%, 1%, 5%)
and minimum r2 thresholds (0.2, 0.5, 0.8). For investigators with lim-
ited real estate or budget for tag SNP selection, we found that the biggest
improvement in imputation accuracy provided with our cross popula-
tion approach was with the smaller array sizes (250,000) when com-
pared to a naïve design or biased population ascertainment. As
expected, the influence of MAF and r2 threshold was population-
specific. For African-descent populations, including tag SNPs with a
low threshold of r2 $ 0.2 resulted in lower imputation accuracy across
all bins, while in other populations (EUR, AMR, SAS) tags at r2 $ 0.2
led to increased imputation accuracy for low frequency variants to the
detriment of common variation. This is due to the lower LD patterns
overall in African haplotypes, requiring denser coverage. The best bal-
ance was found with a moderate r2 threshold of$ 0.5 for those seeking
to perform well across all populations. This compromise is also present
in choosing the lower MAF threshold. Limiting tag SNP selection to
common variants with MAF $ 5% produced the highest imputation
accuracy across all frequency bins within African-descent populations.
However, this threshold decreased imputation accuracy for low fre-
quency and rare variants in all other populations. Therefore, the best
balance is once again found in the moderate value of MAF $ 1%.
Investigators will need to take their priorities into account when select-
ing the correct thresholds for their populations and if they have a

n Table 2 Lone sites by super population and their imputation accuracy for a one million site scaffold

Population
Number of
Individuals

Number of
Lone Sites

Imputation Accuracy Quality Number Unrecoverable
with r2acc $ 0.2 (%)r2acc $ 0.2 r2acc $ 0.5 r2acc $ 0.8

AAC 156 7,509 90.79% 80.72% 51.72% 691 (9.2%)
AFR 495 4,497 63.29% 38.73% 7.03% 1,651 (36.7%)
AMR 341 2,701 48.98% 25.88% 3.78% 1,378 (51.02%)
EAS 503 4,947 44.37% 12.41% 2.14% 2,752 (55.63%)
EUR 501 3,881 51.07% 23.22% 3.74% 1,899 (48.93%)
SAS 477 4,293 51.01% 18.77% 2.26% 2,103 (48.99%)

n Table 3 Coverage of 1 million and 500,000 tag SNP set by super population for all polymorphic sites on chromosome 9 with MAF >
0.5%

Super population
Total Number

of Polymorphic Sites

Scaffold of 1,000,000 tags Scaffold of 500,000 tags

Coverage

Imputation Accuracy

Coverage

Imputation Accuracyr2 . 0.5 r2 . 0.8 r2 . 0.5 r2 . 0.8

AAC 780896 63.64% 30.27% 90.59% 34.03% 14.07% 84.85%
AFR 777207 59.15% 28.05% 89.62% 33.17% 14.10% 83.32%
AMR 503804 79.90% 53.60% 92.77% 61.00% 37.02% 90.09%
EAS 367189 76.95% 63.08% 86.28% 73.16% 55.09% 84.16%
EUR 414184 78.77% 62.65% 91.02% 72.87% 52.86% 88.90%
SAS 455573 74.84% 56.97% 88.09% 67.28% 45.91% 85.46%
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specific target frequency bin. We chose to prioritize all populations
equally to provide a design of broad global utility, which was
adopted to construct the GWAS scaffold for Illumina Infinium
Multi-Ethnic Global Arrays (Illumina) and Global Screening Ar-
rays (Illumina). If a study is comprised of mostly one ancestral
group, then the investigators should choose the appropriate
thresholds tailored for their study.

Consistent with demographic history, the potential to capture
variation with a limited allocation is unequal between the different
populations in the 1000 Genomes Project. The naïve tagging approach
will bias tag SNP selection to be primarily informative within African-
descent populations. The absolute number of polymorphic sites within
African populations is much larger than other populations, and while
LD tends to be lower than in other populations, the high number of
potential tags and pairwise correlations overwhelms the other popula-
tions’ contributions without controlling for this unique pattern. By
prioritizing potential tags that provide information across all popula-
tions, the population-level contributions are more balanced without
detriment to the African-descent groups (Figure 4). The absolute num-
ber of rare variants (MAF , 1%) is larger in African populations, but
the frequency spectrum is more skewed toward rare variants in pop-
ulations with recent bottlenecks and exponential population expansion,
such as in East Asians. Contrasting these two populations (AFR and
EAS), East Asian populations require fewer sites to saturate coverage,
with each potential tag being in LD with more sites. However, far more
polymorphic sites across the genome cannot be captured with either
pairwise linkage disequilibrium or through haplotype information with
imputation accuracy within these populations due to a dearth of LD
information. This is amplified by the lack of comprehensive reference
panels for many populations, such as East and South Asia. As reference
panels are expanded, more variation will be captured to inform tag SNP

selection and imputation accuracy, and we expect imputation accuracy
to improve for all populations and across the frequency spectrum.
(Fuchsberger et al. 2014).

The power to identify relevant disease loci is inherently constrained
by sample size and genome coverage. It is important to note that
algorithmic development both on association testing and imputation
methods have been a productive avenue of research sinceGWASbegan,
with new methods providing incremental improvements in statistical
power. Here, we demonstrate a complementary strategy to improve
statistical power by designing arrays optimized for imputation
accuracy. Also, as cosmopolitan biobanks and large-scale multi-
ethnic epidemiological studies become more commonplace, it will
be important to have available platforms with built in trans-ethnic
utility. As global reference panels become deeper and more di-
verse, more variation will be available for array design. The unified
framework presented here will enable investigators to make in-
formed decisions in the development and selection of GWAS scaf-
folds for future large-scale multi-ethnic studies. This increased
representation of multi-ethnic genetic variation will promote the
investigation of the genetics of complex disease and the improve-
ment of global health in the next phase of GWAS.
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Figure 6 Coverage (dashed lines) vs. Imputation Accuracy (solid lines), assuming a genome-wide scaffold size of one million tags. Coverage is
shown with an r2 . 0.8. While pairwise tagging values are low, particularly in African-descent populations, multi-marker imputation accuracy
remains high across groups.
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