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Abstract

Addiction has been proposed as a ‘reward deficient’ state, which is compensated for with substance use. There is growing
evidence of dysregulation in the opioid system, which plays a key role in reward, underpinning addiction. Low levels of
endogenous opioids are implicated in vulnerability for developing alcohol dependence (AD) and high mu-opioid receptor
(MOR) availability in early abstinence is associated with greater craving. This high MOR availability is proposed to be the
target of opioid antagonist medication to prevent relapse. However, changes in endogenous opioid tone in AD are poorly
characterised and are important to understand as opioid antagonists do not help everyone with AD. We used [11C]carfentanil,
a selective MOR agonist positron emission tomography (PET) radioligand, to investigate endogenous opioid tone in AD for
the first time. We recruited 13 abstinent male AD and 15 control participants who underwent two [11C]carfentanil PET scans,
one before and one 3 h following a 0.5 mg/kg oral dose of dexamphetamine to measure baseline MOR availability and
endogenous opioid release. We found significantly blunted dexamphetamine-induced opioid release in 5 out of 10 regions-
of-interest including insula, frontal lobe and putamen in AD compared with controls, but no significantly higher MOR
availability AD participants compared with HC in any region. This study is comparable to our previous results of blunted
dexamphetamine-induced opioid release in gambling disorder, suggesting that this dysregulation in opioid tone is common
to both behavioural and substance addictions.

Introduction

Alcohol dependence (AD) affects 4% of adults in Europe
and 4.7% in the United States, and globally 3.3 million
deaths per year (5.9% of deaths worldwide) are attributed to
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harmful alcohol use [1]. Treatment for alcohol abuse and
dependence costs an estimated $12 billion in the US and
€5 billion in the EU [2, 3], however three quarters of
individuals with AD will not remain abstinent from alcohol
in the first year following treatment [4]. Thus, there is a
substantial unmet need in reducing this harm.

Psychosocial approaches are the mainstay treatment of
AD but effective relapse prevention medications, including
the opioid antagonists naltrexone and nalmefene, are
available [5–7]. Opioid antagonists modulate the meso-
limbic ‘reward’ pathway, which is proposed to underpin
their effectiveness in reducing the risk of relapse to heavy
drinking [5, 7–9]. Using functional magnetic resonance
imaging (fMRI), naltrexone and nalmefene have been
shown to reduce brain responses in the mesolimbic pathway
to salient alcohol cues or exposure [10, 11]. These medi-
cations do not help everyone and so a better understanding
of opioid system function in alcoholism is required to
develop improved therapies and better target individuals
with current medication.

The mu-opioid receptor (MOR) subtype is expressed in
brain regions associated with addiction including the ventral
tegmental area, nucleus accumbens and amygdala. The
MOR and its endogenous ligands, including β-endorphin,
play an important role in reward [12–14]. Some substances
of abuse, including alcohol and amphetamines, increase the
levels of endogenous opioids binding to MORs and this is
associated with positive subjective effects, including ‘best
ever’ feelings and euphoria [15, 16]. Naltrexone has been
shown to attenuate these positive subjective effects [17–19].
Endogenous opioid dysregulation may also play an impor-
tant role in the vulnerability to developing addiction where
a ‘reward deficient’ state leads to substance abuse to com-
pensate for opioidergic hypofunction [20, 21].

Lower basal endogenous opioid levels in the brain may
result in higher opioid receptor availability and this has
been demonstrated in AD during early abstinence using the
non-selective radioligand [11C]diprenorphine [22] and the
MOR-selective radioligand [11C]carfentanil [23, 24]. Higher
opioid receptor availability is associated with alcohol
craving [22, 23, 25] and alcohol-dependent individuals with
higher [11C]carfentanil binding may benefit more from
naltrexone treatment [25]. This suggests that the effective-
ness of opioid antagonists is linked to opioid receptor
availability in humans. However, no studies have assessed
in vivo endogenous opioid tone in AD, which is also key to
understanding the predictors of response to opioid
antagonists.

We have developed and validated a [11C]carfentanil
positron emission tomography (PET) protocol to assess
endogenous opioid release following an oral dex-
amphetamine challenge [15, 26]. With this protocol, we
demonstrated no difference in baseline MOR availability

but a blunted dexamphetamine-induced opioid release,
with blunted associated subjective effects, in gambling
disorder [27]. In this study, we applied the same protocol
to test the hypotheses that in AD there is blunted
dexamphetamine-induced endogenous opioid release, as
shown in gambling disorder, and a higher baseline MOR
availability.

Patients and methods

This study was approved by the West London Research
Ethics Committee and the Administration of Radioactive
Substances Advisory Committee, UK (14/LO/1552). Writ-
ten informed consent was obtained from all the participants.

Alcohol-dependent (AD) men (n= 13, > 4 weeks absti-
nent, DSM-5 criteria for ‘severe’ alcohol use disorder) were
recruited from Central North West London NHS Founda-
tion Trust, UK and associated services. Severity of AD,
relapse risk and alcohol craving were assessed using the
Severity of Alcohol Dependence Questionnaire (SADQ)
[28], Time to Relapse Questionnaire (TRQ) [29] and
Alcohol Urge Questionnaire (AUQ) [30]. ‘High risk’ alco-
hol exposure was calculated as lifetime cumulative weeks
with > 60 g average daily alcohol consumption [31]. Male
healthy controls (HC) (n= 15) included 10 from previous
studies [15, 26] and 5 recruited for the current study to
achieve age-matching between groups.

All participants’ physical and mental health history,
including history of alcohol, tobacco and substance use, was
assessed by psychiatrists using the Mini International
Neuropsychiatric Interview (MINI-5) [32]. Current or past
history of gambling disorder or substance dependence
(excluding nicotine) was an exclusion criterion; previous
recreational drug use was allowed ( > 10 times in lifetime:
cannabis: 3 HC, 9 AD, cocaine: 6 AD, stimulants: 5 AD,
inhalants: 1 HC, 3 AD, hallucinogens: 1 AD, sedatives:
1 AD, 2 HC, opioids: 1 AD). HC were excluded if they
drank > 21 UK units of alcohol (166 g) per week or had a
previous history of AD. Drug use (except nicotine) was not
permitted 2 weeks prior to the study visits and confirmed by
negative urine drug screen (cocaine, amphetamine, THC,
methadone, opioids, benzodiazepines). Participants were
breathalysed for alcohol. Smoking tobacco was not allowed
1 h before each scan. All participants had laboratory and
ECG results within normal range, and were not prescribed
any regular psychotropic medications.

Participants with current or previous psychiatric dis-
orders were excluded. However, in AD participants a past
history of depression (non-psychotic) and/or anxiety dis-
orders was permitted owing to the high prevalence in this
population. Depression was assessed with the Beck
Depression Inventory (BDI) [33] and anxiety with
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Spielberger State/Trait Inventory (SSAI and STAI) [34].
Impulsivity was assessed with the UPPS-P Impulsive
Behaviour Scale [35].

Genotyping

Blood samples for genotyping of OPRM1 A118G poly-
morphism were available from all participants (AD: n= 13;
HC: n= 11) except for four HC from our first study [15]
and were analysed by LGC Limited (Middlesex, UK). DNA
was extracted and normalised and underwent SNP-specific
KASPTM Assay mix. Loci with a call rate < 90% were not
included. Participants were categorised as a G-allele carrier
(G:A or G:G) or not (A:A).

PET and MR imaging protocol

We followed our protocol as previously described
[15, 26, 27]. [11C]carfentanil PET scans were acquired on a
HiRez Biograph six PET/CT scanner (Siemens Healthcare,
Erlangen, Germany). Dynamic emission data were collected
continuously for 90 min (26 frames, 8 × 15 s, 3 × 60 s, 5 ×
120 s, 5 × 300 s, 5 × 600 s) following an intravenous bolus
infusion of maximum 350MBq [11C]carfentanil infused
over 20 sec. Participants underwent two [11C]carfentanil
PET scans, one before and one 3 h following the oral
administration of 0.5 mg/kg dexamphetamine. Seven parti-
cipants (n= 1 AD, n= 7 HV) underwent scans on separate
days. However, there were no significant effects of this on
[11C]carfentanil binding potential (BPND).

Subjective responses to dexamphetamine challenge were
measured with the Simplified Amphetamine Interview
Rating Scale (SAIRS) (15 mins pre-dose (baseline), 1, 2, 3,
4.5 h post dose) [36], and SSAI (before and after each
PET scan).

Blood samples to measure plasma dexamphetamine
levels were obtained pre dose (baseline), 1, 2, 3 and 4.5 h
post dosing. Dexamphetamine samples were analysed at the
Drug Control Centre, Analytical and Environmental Sci-
ences, King’s College London, UK. Serum cortisol samples
were collected immediately pre-dexamphetamine dose
(baseline), 30, 60, 90, 120, 150 and 180 min post dose.
Cortisol samples were analysed using the ARCHITECT
cortisol assay at the Pathology Department, Hammersmith
Hospital, Imperial College Healthcare NHS Trust, London,
UK. See Supplementary data for further details of cortisol
and amphetamine assays.

On a different day to their PET scans, participants
underwent a T1-weighted structural MRI (Magnetom Trio
Syngo MR B13 Siemens 3 T; Siemens AG, Medical Solu-
tions). Subjects completed the ICCAM fMRI imaging
platform [37, 38] and these results will be reported
elsewhere.

Image analysis

As described previously [15, 26, 27], image pre-processing
and PET modelling were carried out using MIAKAT (www.
miakat.org). Dynamic PET data underwent motion correction
and rigid-body coregistration to the structural MRI. Ten
bilateral regions of interest were chosen a priori: caudate,
putamen, thalamus, cerebellum grey matter, frontal lobe grey
matter, nucleus accumbens, anterior cingulate, amygdala,
insular cortex and hypothalamus. All time-activity data,
except the hypothalamus, were sampled using a neuroanato-
mical atlas [39]. This was applied to the PET image by non-
linear deformation parameters derived using unified
segmentation (SPM-12) of the structural MRI. The template
and atlas fits were confirmed visually for each participant. The
hypothalamus was manually defined on individual structural
MRIs as previously described [15, 39].

[11C]carfentanil BPND values were quantified using the
simplified reference tissue model with occipital lobe as the
reference region [15, 40]. BPND is the ratio of specifically
bound radioligand (e.g., bound to MOR) to that of non-
displaceable radioligand (e.g., unbound and non-specifically
or non-MOR bound [11C]carfentanil) in tissue at equili-
brium. BPND used in reference tissue methods compares the
concentration of radioligand in receptor-rich with receptor-
free regions [41]. Reductions in [11C]carfentanil BPND
observed following dexamphetamine challenge are owing
to reductions in specific [11C]carfentanil binding to MORs
associated with endogenous opioid release, compared with
non-specific [11C]carfentanil binding in the occipital lobe
reference region. Endogenous opioid release was indexed as
the fractional reduction in [11C]carfentanil BPND following
dexamphetamine:

ΔBPND ¼ BPNDpost � BPNDpre

� �

BPNDpre

Statistical analysis

All statistical analyses were carried out using IBM
SPSS (version 24). Data were normally distributed
(Shapiro–Wilk) except for BDI and abstinence duration.

Demographic differences between groups were assessed
using independent sample t tests. Omnibus mixed-model
analysis of variance (ANOVA) tested the effects of status
(AD or HC) on [11C]carfentanil BPND and ΔBPND, SAIRS
and SSAI subjective responses, plasma amphetamine and
serum cortisol concentrations. Post hoc tests were made
using one-way ANOVA or t tests. Correlational analyses
were made using Pearson correlation coefficient or Spear-
man’s rho (BDI and abstinence duration). Bonferroni cor-
rected p values are reported in the results. Data were tested
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for sphericity, and where sphericity was violated ANOVAs
were Greenhouse–Geisser corrected.

Results

Demographic and clinical variables

Demographic results are presented in Table 1. There were
no significant differences in age or IQ between HC and AD
participants. More AD participants smoked tobacco but
there were no differences between daily numbers of cigar-
ettes or dependence scores (FTND) between HC and AD
smokers. AD participants had significantly higher BDI and
STAI scores than HC but none reached a threshold for
clinical anxiety or depression. UPPS-P negative urgency
scores were higher in AD participants compared with HC.

Injected mass and radioactivity and head motion

There were no significant differences in injected cold car-
fentanil mass between AD participants and HC for either
scan, but there was a significantly higher injected activity in
post-dexamphetamine scans in AD participants (Supple-
mentary Table 1). There were no significant correlations
between [11C]carfentanil BPND in any region and injected
mass or activity in the pre- or post-dexamphetamine scans.
There was no significant effect of dexamphetamine on
movement within scans, or differences between AD and HC
participants (Supplementary Tables 2 and 3).

Dexamphetamine and cortisol pharmacokinetics

A repeated measures ANOVA showed a significant effect of
Time on dexamphetamine plasma concentrations but no
significant effect of Status (AD or HC) (Supplementary
Figure 4, Supplementary Table 5).

Serum cortisol concentration increased following oral
dexamphetamine administration (Supplementary Figure 6).
A mixed-model ANOVA showed a significant effect of
Time on cortisol levels but no significant effect of Status
(AD or HC) (Supplementary Table 5).

Subjective effects of amphetamine

The subjective effects from the oral dexamphetamine were
mild in both groups (Fig. 1). A mixed-model ANOVA
showed no significant effects of Time or Status (AD or HC)
on changes in SAIRS scores from baseline (Supplementary
Table 7). There was a significant Time × Status interaction
on change in SAIRS Anxiety from baseline. Post hoc ana-
lysis (paired t test) showed reductions in anxiety ratings in
HC at 180 and 270 mins post-dexamphetamine (p= 0.048
and p= 0.025, respectively, Bonferroni corrected p < 0.01),
which was not present in the AD group. There was no
significant effect of Time or Status on SSAI scores.

Pre- and post-dexamphetamine [11C]carfentanil BPND

A mixed-model ANOVA examining pre- and post-
dexamphetamine [11C]carfentanil BPND showed a significant

Table 1 Demographic and
genotype data (mean ± SD)

Healthy controls Alcohol dependence p value (two-tailed)

Numbers 15 13

Age 42.8 ( ± 10.2) 46.6 ( ± 7.3) 0.281

IQ 115.6 ( ± 9.9) 107.8 (+ 10.7) 0.090

Alcohol UK units/week 6.67 ( ± 8.2) 0

Current smokers 3 7

Cigarettes per day (current smokers) 10.0 ( ± 5.0) 10.6 ( ± 7.7) 0.247

Pack years (current and ex-smokers) 7.9 ( ± 8.1) 23.6 ( ± 14.5) 0.063

FTND (current smokers) 3.0 ( ± 2.7) 3.7 ( ± 3.1) 0.906

BDI on PET visit 0.2 ( ± 0.6) 3.3 ( ± 3.6) 0.004

STAI 30.3 ( ± 7.4) 37.2 ( ± 5.9) 0.012

SSAI (before PET 1) 27.9 ( ± 6.6) 28.8 ( ± 9.9) 0.797

UPPS-negative urgency 20.8 ( ± 6.1) 27.4 ( ± 4.1) 0.006

SADQ 38.5 ( ± 11.2)

TRQ 18.9 ( ± 5.1)

Alcohol abstinence (days) 9.6 ( ± 12.7) 604.6 ( ± 866.5) < 0.001

OPRM1 G-allele carrier 2 of 11 (18.2%) 4 of 13 (30.1%)

Abbreviations: FTND Fagerstrom Test for Nicotine Dependence, BDI Beck Depression Inventory, SSAI,
STAI Spielberger State and Trait Anxiety Inventory, UPPS Impulsivity Scale, SADQ Severity of Alcohol
Dependence Questionnaire, TRQ Time to Relapse Questionnaire
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effect of Scan (pre- or post-dexamphetamine) demonstrating
differences in BPND following dexamphetamine, and a sig-
nificant Scan × Status interaction indicating a significantly
different change in BPND after dexamphetamine between AD
and HC (Supplementary Table 8). Post hoc paired t tests
showed significant reductions in BPND after oral dex-
amphetamine in HC across all ROIs except hypothalamus and
amygdala, but no significant reductions in AD participants
(Supplementary Table 9).

A mixed-model ANOVA examining pre-dexamphetamine
[11C]carfentanil BPND showed no significant effect of Status
indicating no differences between AD and HC participants
(Fig. 2, Supplementary Tables 8 and 9).

A mixed-model ANOVA examining [11C]carfentanil
ΔBPND showed a significant effect of Status, indicating
differences between AD and HC participants. Independent
sample t tests showed [11C]carfentanil ΔBPND (i.e., opioid
release) was significantly blunted in AD participants,
compared with HC, in the frontal lobe, insula,

thalamus, anterior cingulate and putamen (Bonferroni cor-
rected p < 0.005) with large effect sizes (Cohen’s D > 0.8,
significant t tests comparing [11C]carfentanil ΔBPND
between HC and AD) (Figs. 3 and 4, Supplementary
Tables 8 and 9).

[11C]carfentanil binding, demographic and clinical
variables

We found no significant correlations between [11C]carfen-
tanil BPND and ΔBPND with SADQ, TRQ, duration/length
of alcohol abstinence or exposure measures in AD partici-
pants. Of note, AD did not report any AUQ craving at
baseline or at any other point during the study. There were
no significant differences in [11C]carfentanil BPND or
ΔBPND comparing smokers with non-smokers regardless of
group (combined AD and HC or AD and HC separately).
The inclusion of smoking status in the mixed-model
ANOVA examining [11C]carfentanil ΔBPND did not
impact on these results (Supplementary Table 8). There
were no significant correlations between [11C]carfentanil
BPND or ΔBPND with daily cigarettes smoked or FTND
scores in all participants (AD and HC) or AD or HC
separately.

There was no significant association between UPPS-P
negative urgency and baseline [11C]carfentanil BPND in AD
or HC participants. There was a significant positive corre-
lation between [11C]carfentanil ΔBPND in the amygdala and
BDI score (Spearman’s rho= 0.654, p= 0.015) in AD
only, indicating a higher BDI score is associated with lower
opioid release. This result did not survive Bonferroni cor-
rection (two-tailed p < 0.005). There were no correlations
between STAI and [11C]carfentanil BPND or ΔBPND in
either participant group.

MOR polymorphism

There was a higher G-allele prevalence in AD participants
compared with HC (30.1 and 18.2% respectively—,
Table 1). To assess the influence of the OPRM1 A118G
polymorphism on [11C]carfentanil BPND the two mixed-
model ANOVAs examining [11C]carfentanil BPND and
ΔBPND were repeated with the addition of the genotype (A:
A or A:G/G:G) as a between-subject factor.

We found a significant main effect of Genotype on
baseline [11C]carfentanil BPND, but no Status × Genotype
interaction. A post hoc analysis independent sample t test
showed significantly lower [11C]carfentanil BPND in G-
allele carriers in the thalamus (two-tailed Bonferroni cor-
rected p < 0.005), and a trend toward lower [11C]carfentanil
BPND across all other regions (Supplementary Figure 10,
Tables 11 and 12). We found no significant main effect of

*
*

Fig. 1 Change in SAIRS following dexamphetamine administration
(mean ± SD, *p < 0.05 in HC)

Fig. 2 Baseline [11C]carfentanil BPND in HC and AD participants
(mean ± SD)
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Genotype or Status x Genotype interaction on [11C]carfen-
tanil ΔBPND.

Discussion

We have demonstrated a blunted dexamphetamine-induced
endogenous opioid release in the brain for the first time in
abstinent alcohol-dependent individuals with [11C]carfen-
tanil PET. We did not find higher baseline MOR availability
in AD as previously reported by ourselves and others
[22, 23, 42]. Our data in AD are consistent with our pre-
vious study in gambling disorder where we also found
blunted dexamphetamine-induced opioid release [27]. This
strongly suggests that dysregulation of opioid tone under-
pins both behavioural and substance addictions.

This ‘opioid deficient’ state may play a key role
in a broader ‘reward deficient’ state associated with
the development and maintenance of AD and other
addictions, and may precede the development of addiction

[20, 21, 27, 43–45]. Individuals with AD or a family history
of AD both have blunted responses to financial rewards and
lower peripheral plasma β-endorphin concentrations [43,
44, 46]. Although peripheral and central β-endorphin are
not directly comparable, both are produced from the clea-
vage of pro-opiomelanocortin (POMC) and the release of
both can be stimulated by intense exercise, dex-
amphetamine and alcohol [15, 16, 46–49]. This low
opioidergic function may represent a vulnerability to the
development of addiction, which endures after successful
treatment and may predispose an individual to relapse.
There may be an additional impact of addiction or heavy
alcohol use on endogenous opioid tone, though this is dif-
ficult to determine from our current [11C]carfentanil PET
studies.

There is evidence of blunted intravenous dexamphetamine-
induced dopamine release in AD during early abstinence [50],
which may be a mechanism for the blunted dexamphetamine-
induced endogenous opioid release AD. Another study
reported that lower dexamphetamine-induced ventral striatal
dopamine release was associated with blunted cortisol release
[51]. However, in our alcohol-dependent participants,
dexamphetamine-induced cortisol release was not blunted
compared with controls. This may suggest that dopamine
responses to dexamphetamine are less blunted in our alcohol-
dependent participants, with longer durations of abstinence,
than those described in early abstinence [50].

The blunted dexamphetamine-induced endogenous
opioid release in AD may be mediated by a mechanism
downstream from dopamine release, which would be con-
sistent with the findings of blunted endogenous opioid
release in gambling disorder despite a higher dopamine
response to oral dexamphetamine [27, 52]. Intravenous
dexamphetamine increases striatal dopamine concentrations
in man within minutes of administration [50, 53, 54] but
does not result in similarly acute changes in opioid levels in
the brain [55]. A period of 1.5–3 h following dex-
amphetamine administration is required to reach peak
endogenous opioid concentrations [15, 26, 27, 56, 57],
suggesting that the mechanism of dexamphetamine-induced
endogenous opioid release is also downstream of the acute
dopamine release. Concentrations of other monoamines
(5HT and noradrenaline) are also increased by dex-
amphetamine, and may play a role in endogenous opioid
release in brain regions with lower dopamine transporter
density, such as the frontal cortex and thalamus [15, 58].
Further work is required to better understand the mechan-
isms of dexamphetamine-induced endogenous opioid
release, and how this is blunted in both AD and gambling
disorder.

The salience of our dexamphetamine ‘reward’ may also
be a factor in mediating endogenous opioid release. As
addiction develops, salience towards addiction-associated

Fig. 3 [11C]carfentanil ΔBPND in HC and AD participants (mean ± SD,
*significant ΔBPND differences between HC and AD, Bonferroni
corrected p < 0.005)

Fig. 4 a Clusters with significant reductions in [11C]carfentanil BPND
following dexamphetamine in HC. There are no significant clusters in
AD. b Clusters with significantly lower [11C]carfentanil ΔBPND in AD
compared with HC (all images: min cluster size 100, p < 0.001, z= 62)
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cues increases, whereas responses to non-addiction related
rewards decrease [59, 60]. For example, individuals with
AD have blunted fMRI responses to non-salient financial
rewards and higher responses to salient alcohol cues
[43, 44, 61–63]. The effect of opioid antagonists to mod-
ulate the mesolimbic system also appears to be mediated by
the salience of the reward. For example, naltrexone only
blunts dexamphetamine-induced striatal dopamine release
in rats following a period of dexamphetamine sensitisation
[54]. Whereas naltrexone does not modulate striatal fMRI
response to financial reward anticipation in AD [43], when
the same task was performed during an alcohol infusion, a
salient context, nalmefene reduces activation [11]. Nal-
trexone also reduces BOLD response in striatum to salient
alcohol cues in alcohol-dependent individuals [10, 64]. This
salience mediated endogenous opioid release, rather than
low opioidergic tone, may the target for opioid receptor
antagonists in reducing the risk of relapse to heavy drinking
during abstinence.

Although the above evidence suggests that salience is an
important factor for the activation of endogenous opioi-
dergic signalling, a recent study has shown that feeding
induces a release of endogenous opioids regardless of how
palatable or ‘rewarding’ the food is [65]. One potential
further study to elucidate the effect of the salience of a
reward on endogenous opioid release in AD would be the
administration of an alcohol challenge, where a non-blun-
ted, or possibly enhanced, endogenous opioid release might
be observed. However, this would not be an ethical
experiment to conduct in our abstinent alcohol-dependent
participants.

Contrary to our hypothesis we did not find higher MOR
availability in alcohol-dependent participants compared
with controls. Previous studies using [11C]carfentanil and
[11C]diprenorphine have shown higher MOR in AD,
whereas in our data there were no evidence of higher MOR
availability in our alcohol-dependent participants (Fig. 2,
Supplementary Table 9) [22–24]. Hermann et al. [25]
reported non-significantly higher [11C]carfentanil binding in
recently abstinent alcohol-dependent individuals and lower
MOR receptor numbers in post-mortem alcohol-dependent
brains measured with the MOR agonist [3H]DAMGO. They
proposed that repeated alcohol administration in AD, and
the subsequent chronic elevations in endogenous opioids,
may lead to a compensatory reduction in absolute MOR
numbers [25]. Chronic alcohol-induced endogenous opioid
release may also lower basal endogenous opioid tone via
homoeostatic feedback mechanisms, potentially through an
inhibition of POMC activity [66]. This low endogenous
tone, when coupled with a cessation of alcohol-induced
opioid release, may lead to a relative increase in MOR
availability in early abstinence, despite lower absolute
MOR density.

It is unclear if there are changes in basal endogenous
opioid tone or MOR receptor numbers as abstinence
lengthens. Alcohol-dependent participants in our current
study have a considerably longer abstinence compared with
previous studies (months compared with days to weeks)
[22–24] and have ‘normal’ MOR availability. This would
be consistent with a ‘normalisation’ of the balance of MORs
and endogenous opioid ligands as abstinence progresses.
However, we did not observe any association between
duration of abstinence and MOR availability in our current
study and we and others have reported no changes in MOR
or other opioid receptor availability in AD during the first
3 months of abstinence [22, 23]. Higher MOR availability
associated with higher craving reported previously in AD
may represent a greater potential to relapse, and a potential
target for opioid receptor antagonist treatment. The lack of
higher MOR availability in our alcohol-dependent partici-
pants may reflect their stable abstinence and low craving,
and suggests these individuals may benefit less from opioid
receptor antagonist treatment compared with recently
abstinent individuals reporting high alcohol craving.

We explored a number of clinical variables that may
influence [11C]carfentanil binding. Although smoking status
differed in our alcohol-dependent and control groups, there
was no influence of current smoking, or associated mea-
sures, on baseline MOR availability, or dexamphetamine-
induced endogenous opioid release. Previous evidence
concerning MOR in smokers is inconsistent, with higher,
lower, or no differences in availability compared with non-
smokers reported [67–69]. Consistent with others, we found
that OPRM1 G-allele carriers had lower MOR availability
[70, 71]. We found no significant effect of the OPRM1
polymorphism on dexamphetamine-induced endogenous
opioid release, whereas others have observed lower endo-
genous opioid release in G-allele carriers during a pain task
following placebo administration [71]. In gambling dis-
order, we demonstrated a positive correlation between the
UPPS-P negative urgency and baseline MOR availability in
the caudate [27] but we did not replicate this finding in our
alcohol-dependent group. This is consistent with previous
evidence showing correlations between impulsivity and
[11C]raclopride (D2/3) and [11C]-(+ )-PHNO (D3-pre-
ferring) in gambling disorder and cocaine dependence but
no such correlations between [11C]-(+ )-PHNO binding and
impulsivity in AD [72–75]. This suggests that the nature of
impulsivity in AD may differ from cocaine and gambling
disorders.

An exploratory analysis found that higher levels of
depressive symptoms (BDI score) were associated with a
blunted endogenous opioid release in the amygdala,
although this result does not survive a strict Bonferroni
correction for multiple correlations. The amygdala is an
important region for emotional processing in depression
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[76], and endogenous opioid release in the amygdala is
associated with positive emotion and exercise-induced
negative emotion, and is dysregulated in major depressive
disorder [48, 77–79]. One reason for this association being
observed only in alcohol-dependent participants may be due
to a higher and greater range of BDI scores compared with
controls. These scores were, however, low and did not reach
a threshold for clinically significant depression.

Our study was designed to be adequately powered for
our primary outcome of [11C]carfentanil ΔBPND and our
samples size is consistent with those in other relevant
published human PET literature examining amphetamine-
induced endogenous neurotransmitter release [15, 26, 27,
50, 52, 80]. Our study sample size is too small to adequately
investigate clinical factors that may be associated with our
PET outcome measures.

In summary, we have demonstrated for the first time
blunted dexamphetamine-induced opioid release in the
brain in abstinent alcohol-dependent individuals. This study
adds to the evidence supporting a role for a dysregulated
opioid system in AD and builds on our previous study with
the same protocol in gambling disorder showing similarly
blunted dexamphetamine-induced opioid release in the
presence of ‘normal’ MOR availability. The similarly
blunted opioid release in gambling disorder where partici-
pants had no history of substance dependence, excluding
nicotine, lends further support to an ‘opioid deficit’ con-
tributing to vulnerability to addiction. Thus, dysregulated
opioid signalling appears to be a common feature across
both behavioural and substance addictions.

Further characterisation of the endogenous opioid tone
and the dopamine–opioid interactions will inform our
understanding of substance and behavioural addictions and
how best to optimise and develop the use of opioid
antagonists in treatment.
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