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The tumor necrosis factor (TNF) cytokine familyand theTNF/nerve growth factor (NGF) family
of their cognate receptors together control numerous immune functions, as well as tissue-
homeostatic and embryonic-development processes. These diverse functions are dictated by
both shared and distinct features of family members, and by interactions of some members
with nonfamily ligands and coreceptors. The spectra of their activities are further expandedby
theoccurrenceof the ligandsand receptors inbothmembrane-anchoredandsoluble forms,by
“re-anchoring”of soluble forms toextracellularmatrix components, andbysignaling initiation
via intracellular domains (IDs) of both receptors and ligands. Much has been learned
about shared features of the receptors as well as of the ligands; however, we still have only
limited knowledge of the mechanistic basis for their functional heterogeneity and for the
differences between their functions and those of similarly acting cytokines of other families.

The study of protein families and their indi-
vidual members contribute cooperatively to

the assembly of knowledge, providing insights
into the features shared by family members as
well as their distinctive features. The benefit of
such a cooperative endeavor is lavishly demon-
strated by the huge advances in understanding
the mechanisms of action of the tumor necrosis
factor (TNF) ligand and TNF/nerve growth fac-
tor receptor (NGFR) families. The founding
members of these families—the cytokine TNF
and the low-affinity NGFR—were isolated and
cloned three decades ago (Old 1985; Johnson
et al. 1986; Radeke et al. 1987). In this review, I
will present a brief overview of the knowledge of
common structural, mechanistic, and functional
features of the TNF ligand and TNF/NGFR
families. I will also refer to interactions that
are known for only a few family members,

but whose occurrence raises the possibility that
other family members participate in similar
associations.

THE WIDE RANGE OF FUNCTIONS OF THE
TNF FAMILY

There are 18 known human genes for the TNF
ligand family and 29 for the TNF/NGFR fami-
ly (see genenames.org/genefamilies/TNFSF and
genenames.org/genefamilies/TNFRSF; see Table
1 for their major known functions). Practically,
all cells in the body express receptors, and
many also express some of the ligands of these
families. Each receptor–ligand pair controls a
wide range of cellular activities. Assessing the
impact of functional arrest of specific members
of the TNF and TNF/NGF families has re-
vealed some key physiological roles served ex-
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clusively by them. Listed below and briefly dis-
cussed are the functions of family members
that have attracted the greatest attention, either
because they appear to be unique to the family
or because of known pathological consequences
of their deficiency or hyperactivity.

Control of Cell Survival

Stimulation of Cell Death

The ability of certain ligands of the TNF family
to trigger death of cells independently of protein
synthesis was the family’s first cellular effect to
be described (Granger and Kolb 1968; Ruddle
and Waksman 1968), and to this day it remains
the only function not known to be shared with
other cytokines. Several TNF family receptors
(TNFR1, DR3, FAS, TNF-related apoptosis-in-
ducing ligand [TRAIL]-R1, TRAIL-R2) trigger
rapid cell death. Others signal for cell death less
effectively, either through induction of TNF
(Grell et al. 1999; Burkly 2014) or by poorly
defined cell-autonomous mechanisms (Force
et al. 2000; Georgopoulos et al. 2006; Elmetwali
et al. 2010).

The cytotoxic functions of the TNF family
contribute to immune-mediated cell killing.
They also seem to contribute to the control of
expansion and to the duration of activities of
immune-cell populations and to the shaping of
leukocyte repertoires (Falschlehner et al. 2009;
Strasser et al. 2009).

Providing Survival Signaling

One way in which the TNF family members
facilitate maintenance and amplification of im-
mune responses is by providing the relevant
cells with survival signals. Best documented
are the crucial roles of several members of the
family in maintaining the survival of B and T
lymphocytes (Croft 2014; Figgett et al. 2014).
TNF family members are also capable of induc-
ing resistance of cells to the cytotoxic activities
that they themselves activate (e.g.,Wallach 1984;
Hahn et al. 1985; Blomberg et al. 2008; Chen
et al. 2010; Jeon et al. 2015).

Orchestration of Inflammation

The best-documented pivotal role of a ligand of
the TNF family in pathological disorders is the
contribution of TNF to chronic inflammatory
diseases. This has been demonstrated by the
therapeutic effects of TNF-blocking agents ob-
served in millions of patients, as well as in ex-
perimental animal models for both chronic and
acute inflammatory diseases (Tracey et al. 1987;
Apostolaki et al. 2010; Sfikakis 2010). TNF con-
tributes to the initiation, progression, and termi-
nation of inflammation, while displaying antag-
onistic effects: for example, induction of cell
death but also cell growth and resistance to cell
death, and obstruction and destruction of capil-
laries but also stimulation of angiogenesis. TNF
is also an important player in systemic manifes-
tations of inflammation, for example, in activat-
ing the acute-phase response in the liver (Wal-
lach and Kovalenko 2016).

Also contributing to inflammation, although
in more restricted ways, are several TNF family
ligands, including TKA1, TNF-related weak in-
ducer of apoptosis (TWEAK), TRAIL, CD40L,
LIGHT, and receptor activator of nuclear factor
(NF)-κB ligand (RANKL),which are knownpri-
marily for other functions.

Tissue Modeling

Tissue Remodeling in Response to Injury

Like TNF, TWEAK exerts a wide range of an-
tagonistic effects on cell functions; it contributes
to both inflammation and its arrest, as well as to
both destruction and regeneration of tissues. It
thus serves important roles in coordinating tis-
sue remodeling in response to injury (Burkly
2014).

Bone Homeostasis

Calcified bone matter undergoes constant turn-
over as a result of the antagonistic effects of
osteoblasts, which construct bones, and osteo-
clasts, which resorb them. Local inflammation
in the bone facilitates bone destruction. RANKL
serves a crucial role in maintaining the consti-
tutive activity of the osteoclasts. Its soluble re-

Tumor Necrosis Factor Family
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ceptor, osteoprotegerin (OPG), blocks RANKL
function by competing for the binding of RANK
(Boyce and Xing 2007; Walsh and Choi 2014).
CD40L potentiates this inhibition via several ef-
fects, including induction of OPG in B lympho-
cytes (Li et al. 2007). In contrast, TNF enhances
bone dissolution. It does this by triggering the
egress of osteoclast precursors from the bone
marrow as well as by enhancing RANKL gener-
ation and triggering osteoclast differentiation
and activation synergistically with this ligand
as well as with the non-TNF family cytokine
interleukin (IL)-1 (Li et al. 2004).

Control of the Development of Ectodermal
Tissues

Ectodysplasin (EDA) and its receptor EDAR are
the only known ligand–receptor pair within the
TNF families that seems to make no contribu-
tion to immune regulation. They signal for em-
bryonic development of ectodermal appendages
such as the hair, teeth, and sweat glands. This
role is evolutionarily conserved in other meta-
zoan phyla in which EDA and its receptor con-
trol the development of ectodermal appendages
such as feathers, scales, and fins (Lefebvre and
Mikkola 2014).

EDA-A2, a slightly shorter splice variant en-
coded by the Eda gene, binds to a distinct recep-
tor of the TNF/NGF family, XEDAR. Although
expressed in the developing hair follicle, this
receptor does not seem to be required for hair
growth. Limited evidence suggests that it might
serve to control skeletal muscle homeostasis
(Lefebvre andMikkola 2014). TROY, an orphan
receptor of the TNF/NGF family, is also co-
expressed with EDAR in hair follicles and in
embryonic skin, but its function at these sites
is not known (Kojima et al. 2000).

Control of Adaptive Immunity

Elicitation of an adaptive immune response ne-
cessitates fine-tuning of the development of
lymphocytes and of their interaction with anti-
gen-presenting cells as well as regulation of the
development and function of specific organs in
which these processes occur. In all of these func-

tions, members of the TNF family play pivotal
roles.

Control of the Generation and Maintenance
of Lymphoid Organs

Embryonic development of the secondary lym-
phoid organs crucially depends on signaling by
lymphotoxin β receptor (LTβR) and RANK.
Both LTβR-triggered and TNF-triggered signal-
ing are required for maintenance of the micro-
architecture of the lymphoid organs and their
appropriate function in the adult (Ware 2005;
McCarthy et al. 2006). Both are also required for
the neogenesis of lymphoid assemblages at sites
of chronic inflammation (Drayton et al. 2006). A
similar “morphogenic” role is served by TNF in
dictating the generation of granuloma (Kindler
et al. 1989).

Control of the Development and Function
of T Lymphocytes

Signaling by several TNF/NGF family receptors,
including TNFR1, LTβR, RANK, herpesvirus
entry mediator (HVEM), OX40, and CD40,
controls the migration, maturation, and activa-
tion of dendritic cells (Ware 2005; Summers de-
Luca and Gommerman 2012; Walsh and Choi
2014). Signaling by receptors of the TNF/NGF
family contributes to the selection of lympho-
cytes in the thymus. TNFR1, TNFR2, DR3,
HVEM, OX40, CD27, CD30, 4-1BB, B-cell-ac-
tivating factor of the tumor necrosis factor fam-
ily (BAFF), and transmembrane activator and
calcium-modulating cyclophilin ligand interac-
tor (TACI) provide costimulatory signals in an-
tigen-stimulated T lymphocytes. Some of those
receptors also initiate stimulatory signals in T
lymphocytes whose antigen receptors have not
been activated. These stimulatory signals en-
hance lymphocyte survival, growth, and effector
functions. The various costimulatory family
members apparently serve distinct roles at dif-
ferent phases of T-lymphocyte response, and the
relative contribution of their costimulatory ef-
fects to defense varies depending on the nature
of the particular pathogenic challenge (Croft
2014; Mbanwi and Watts 2014).
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Control of the Development and Function of
B Lymphocytes

Activation of the TNF/NGF family receptors
BAFFR, B-cell maturation antigen (BCMA),
TACI, and CD40 provide B lymphocytes with
survival and growth signals at distinct stages of
their development. CD40 signaling is crucially
required also for antibody isotope switching and
for the generation of memory B lymphocytes.
Various other TNF/NGF family members also
affect B-cell biology (Bishop and Hostager 2003;
Dillon et al. 2006; Elgueta et al. 2009; Figgett
et al. 2014).

Functions of the TNF Family in the Brain

At times of injury or autoimmune response
within the brain, the affected cells display the
same modes of TNF family–induced regulation
as those observed in such situations elsewhere
in the body (Akassoglou et al. 1999; Shohami
et al. 1999). Some of these cytokine effects re-
sult in tissue damage. However, TNF also pro-
vides protective and survival signals in nervous
tissue, in part through TNFR2 (Bruce et al.
1996; Fontaine et al. 2002). Effects of TNF on
brain functions contribute to several behavioral
responses to disease, including enhanced slow-
wave sleep (Shoham et al. 1987), fever (Dina-
rello et al. 1986), anorexia (Cerami et al. 1985;
Plata-Salaman et al. 1988), increased pain per-
ception (Hess et al. 2011), and others (Dantzer
2001). Fever induction by TNF, as well as by
several other inflammatory cytokines, is trig-
gered indirectly through induction of RANK-
mediated signaling in astrocytes (Hanada et al.
2009).

Emerging knowledge indicates that TNF
family members also contribute to brain func-
tions unrelated to immune defense. TNF pro-
duced by glial cells stabilizes neuronal circuits by
dictating homeostatic synaptic scaling (Stell-
wagen and Malenka 2006). Some evidence indi-
cates that FAS signals for neurogenesis in the
adult brain (Corsini et al. 2009). The receptor
DR3 is expressed in motor neurons and its tonic
signaling seems to be necessary for their survival
(Richard et al. 2015).

The function of NGFR, a TNF/NGF family
receptor for which no ligand of the TNF family
is known, serves cooperatively with several co-
receptors to control the growth and survival of
neurons in response to simulation by several li-
gands and also to control pain sensation (Hemp-
stead 2002; Chao 2003; Ibanez and Simi 2012).
Limited evidence suggests that TROY and DR6,
additional members of the TNF/NGFR family
not known to bind any ligand of the TNF family,
also serve to signal for neuronal death (Shao
et al. 2005; Nikolaev et al. 2009; Olsen et al.
2014).

TRIGGERING OF SIGNALING: INDUCED
JUXTAPOSITION

Members of the TNF ligand and TNF/NGFR
families share conserved extracellular motifs by
which they bind each other. With the exception
of lymphotoxin (LT), a secretory protein, all
ligands are produced as type II transmembrane
(TM) proteins in which the receptor-binding
motif, whose structure consists of two packed
sheets of eight antiparallel β strands, is located
at the carboxyl terminus. Most ligands also oc-
cur in soluble forms, generated by proteolytic
processing of the TM forms to yield soluble li-
gand-binding molecules. Both in their mem-
brane-bound and in their soluble forms, the
ligand molecules associate constitutively in
trimers.

The receptors are produced as type I TM
proteins, whose amino-terminal ligand-binding
motif consists of a variable number of two con-
served modules that together form a 40-amino-
acid structure containing several cysteines, the
“cysteine-rich domain” (CRD).

Distinct parts of receptors’ extracellular do-
mains (EDs) serve opposing roles in controlling
signaling. The amino-terminal CRD serves as a
“pre-ligand assembly domain” (PLAD), which
safeguards against ligand-independent signal-
ing (Chan 2007). In the absence of ligands, the
PLADs in the EDs of three or (more likely) two
(Naismith et al. 1995) receptor molecules asso-
ciate in a way that keeps their intracellular do-
mains (IDs) apart. In contrast, ligand binding,
which occurs downstream from the PLAD, im-
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poses juxtaposition of the receptor IDs. In re-
ceptors whose IDs contain a death domain (DD)
(see below), such juxtaposition is fostered by the
propensity of the DD to self-associate (Boldin
et al. 1995). Proline-containing motifs found in
the transmembrane domain (TD) in FAS, and
apparently also in the other receptors of the
family, also tend to self-associate (forming ho-

motrimers), further strengthening the ligand-
binding effect (Fu et al. 2016).

Juxtaposition of the IDs of the receptors ex-
poses their binding surfaces to signaling pro-
teins. Their binding to the receptors and conse-
quent juxtaposition triggers their enzymatic
activity and/or their association with down-
stream signaling proteins (Fig. 1A).

TM domain
Self-association

PLAD

A

B

C

DD
Self-association

Membrane raft

Membrane raftS-palmitoylation

Membrane raft

Cysteine link

NGFR

Neurotrophin

Figure 1. Signaling triggering: proposed mechanisms. (A) Triggering by intracellular domain (ID) juxtaposition
imposed by tumor necrosis factor (TNF) family ligands, and its restriction by the pre-ligand assembly domain
(PLAD). (B) Triggering potentiation by anchorage of ligands to membranes. (C) Triggering by ID distancing: A
fraction of the nerve growth factor receptor (NGFR) molecules occurs as dimers of receptor molecules that are
covalently linked throughaconserved transmembrane (TM)cysteine residue. In thesedimers, the intracellulardeath
domains (DDs) seem to be constitutively associated. Neurotrophin-induced triggering of these dimers to signal for
death was suggested to occur by distancing of the IDs, imposed rather like a snail tongue, with the TM cysteine link
serving as a fulcrum (Vilar et al. 2009). (See discussion of these findings in the last paragraph of this review.)
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The self-association of four of the receptors
(CD40, NGFR, CD27, and the soluble receptor
OPG) is facilitated by constitutive cysteine links
(found in the ID of CD40, in the TDofNGFR, at
the carboxyl terminus of OPG, and apparently
in the EDofCD27) (VanLier et al. 1987; Schnee-
weis et al. 2005; Vilar et al. 2009; Nadiri et al.
2015). Constitutive dimerization of the soluble
receptor OPG is also dictated by two DDmotifs
found at its carboxyl terminus (Schneeweis et al.
2005).

Structural studies of glucocorticoid-induced
TNFR-related protein (GITR) suggest that the
trimeric ligands of the TNF family may tend to
undergo further clustering through noncovalent
homotypic self-association (Zhou et al. 2008).
However, formation of a soluble supercluster
(of 20 trimers) has been documented only in
the case of one TNF family member, BAFF
(Liu et al. 2002; Cachero et al. 2006). The trimers
of EDA are exceptional in that they are consti-
tutively dimerized by homotypic self-associa-
tion of an amino-terminal collagen-like domain
unique to this ligand (Swee et al. 2009).

SIGNALING FACILITATION BY MEMBRANE
ANCHORAGE

The ability of membrane-anchored forms of the
ligands to induce clustering of the receptors that
theybind is greater than that of the soluble forms.
This ability is enhanced by positioning of both
the membrane-bound ligands and their recep-
tors within membrane rafts (Legler et al. 2003;
Muppidi et al. 2004; So andCroft 2013) andby S-
palmitoylation of the ligands and their receptors
(Chakrabandhu et al. 2007; Feig et al. 2007; Ros-
sin et al. 2009; Poggi et al. 2013). Formation of
larger aggregates stabilizes binding of the ligands
to the receptors. It can also dictate higher-order
organization of signaling proteins (Fig. 1B).

The various signaling functions activated by
the TNF family differ in the extents of their de-
pendence on such higher-order signaling-pro-
tein organization. Accordingly, membrane and
soluble forms of the ligands have differential
abilities to trigger different cellular responses.
For example, although TNFR1 can be activated
both by soluble and by membrane-anchored

TNF, TNFR2 is activated only by the latter.
FAS can be triggered to signal for death by a
dimerof FASL trimers, but not bya single trimer.
Fn14, whenmassively aggregated, activates both
the canonical and the alternative NF-κB tran-
scription factor pathways, but only the alterna-
tive one when mildly aggregated (Grell et al.
1995; Schneider et al. 1998; Muhlenbeck et al.
2000; Bishop and Hostager 2003; Holler et
al. 2003; Stone et al. 2006; O’Reilly et al. 2009;
Wyzgol et al. 2009; Burkly 2014).

BIDIRECTIONAL SIGNALING: MULTIPLE
FORMS AND FUNCTIONS OF SOLUBLE
AND MEMBRANE-ANCHORED LIGANDS
AND RECEPTORS

Similar to the IDs of TNF/NGF family receptors,
the IDs of membrane-anchored TNF family li-
gands are found to recruit and activate signaling
proteins on receptor–ligand interaction. Thus,
they trigger “reverse signaling” within the li-
gand-producing cells (Stuber et al. 1995; Arens
et al. 2004; Eissner et al. 2004; Grohmann et al.
2007; Kang et al. 2007; Sun et al. 2007; Juhasz
et al. 2013).Various other similarities in actionof
the TNF and TNF/NGF families further blur the
distinction between their identities as ligands
and as receptors. As with the ligands, many of
the receptors can be proteolytically cleaved,
yielding ligand-binding “soluble receptors.”
Two of these receptors, OPG and DcR3, occur
only in soluble forms, while two others, DcR1
and DcR2, despite their anchorage to the mem-
brane, are devoid of the molecular structures
within the IDs that are required for signaling.

The various forms of soluble and mem-
brane-anchored ligands and receptors, and the
functions served by the transitions in these
forms, are shown in Figure 2.

“RE-ANCHORING” OF SOLUBLE FORMS OF
LIGANDS AND RECEPTORS VIA THEIR
BINDING TO EXTRACELLULAR MATRIX
COMPONENTS

Several ligands of the TNF family and the
two TNF-family receptors that occur only in
soluble form (OPG and DCR3) contain sites

Tumor Necrosis Factor Family

Cite this article as Cold Spring Harb Perspect Biol 2018;10:a028431 9



5

3

11

1

10

9

14

13

7

4

8

15

2

12

6

Figure 2. Membrane-anchored and soluble forms of ligands and receptors of the tumor necrosis factor (TNF)
families, and their functional roles. The figure shows an intriguing symmetry of the spectra of soluble and
membrane-anchored forms attained by TNF family ligands and TNF/nerve growth factor (NGF) family recep-
tors, and of the functions of these forms. Both ligands (1) and receptors (2) are proteolytically cleaved to yield
soluble forms (Kriegler et al. 1988; Engelmann et al. 1990; Nophar et al. 1990; Black et al. 1997; Moss et al. 1997).
The cleavage occurs constitutively or inducibly, either on the cell surface as illustrated (Black et al. 1997; Moss
et al. 1997; Becker-Pauly and Rose-John 2013) or within the cell (Lopez-Fraga et al. 2001). (3,4) Some of the
ligands (Gordon and Galli 1990; Bossi and Griffiths 1999; Koguchi et al. 2007) and receptors (Wang et al. 2003)
accumulate within intracellular vesicles from which they are secreted in response to specific stimuli, thus
supplementing either the cell-surface-expressed or the soluble pools. Some are released while anchored to
membranes that might correspond either to exosomes that have accumulated in intracellular multivesicular
bodies (5,6) or to microvesicles exfoliating from the cell surface (7,8) (Albanese et al. 1998; Martinez-Lorenzo
et al. 1999; Islam et al. 2007). Binding of membrane-anchored ligands of the TNF family to their receptors,
besides triggering receptor signaling (9), also triggers “reverse signaling” by the ligand molecules (10) (Stuber
et al. 1995; Arens et al. 2004; Eissner et al. 2004; Grohmann et al. 2007; Kang et al. 2007; Sun et al. 2007; Juhasz
et al. 2013). One mechanism contributing to this reverse signaling is intramembrane proteolytic cleavage,
yielding ligand intracellular domain (ID) fragments that apparently mediate signaling following their translo-
cation to the nucleus (Domonkos et al. 2001; Fluhrer et al. 2006; Friedmann et al. 2006; Kirkin et al. 2007) (11).
Intramembrane cleavage that apparently contributes to signaling has also been reported for two receptors of the
TNF/NGF family, nerve growth factor receptor (NGFR) and TNFR1 (Kanning et al. 2003; Kenchappa et al. 2006;
Chhibber-Goel et al. 2016) (12). Accumulation of the soluble forms of both receptors and ligands interferes with
the binding of membrane-bound forms to the ligands and the receptors, respectively, and can thus block
signaling (13,14). To the extent that the soluble forms are incapable of triggering signaling, theymay also interfere
with signaling activation by their membrane-bound forms. However, the association of soluble receptors with
soluble ligands also stabilizes the trimeric structures of the soluble ligands, so that they function not as mere
inhibitors but rather as buffering agents. While decreasing the intensity of signaling activation, they also extend
its duration (15) (Aderka et al. 1992; Eliaz et al. 1996).
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that bind extracellular matrix components such
as heparan sulfate proteoglycans (HSPGs) and
fibronectin. Their associations with these extra-
cellular compounds have several functional con-
sequences. (The numbering that follows corre-
sponds to that shown in Fig. 3.) (1) Binding of
TNF (Alon et al. 1994) and of FASL (Aoki et al.
2001; Zanin-Zhorov et al. 2003) to extracellular
matrix proteins such as fibronectin, and of
APRIL to HSPGs (Ingold et al. 2005; Kimberley
et al. 2009), facilitate signaling activation by
these ligands, apparently by imposing an oligo-
meric state on them. Such binding can also
impose local restrictions. The anchorage of
APRIL to HSPGs in mucosal lymphoid tissues
not only augments its function but also restricts
this ligand to target cells at this site (Huard et al.
2008), while the binding of EDA to proteoglycan

interferes with EDA function by preventing its
access to EDAR. (2) Binding of OPG to HSPGs
blocks the function of OPG by also causing
its uptake into the cell and its subsequent deg-
radation (Standal et al. 2002). (3) Binding of
OPG, APRIL, or DcR3 to HSPG appears to
also trigger signaling by cell-surface molecules
such as syndecans, which are linked to HSPG
moieties, or by cell-surfacemoleculeswithwhich
these moieties associate noncovalently (Couch-
man 2003; Mosheimer et al. 2005; Chang et al.
2006; Dillon et al. 2006; You et al. 2008). (4)
Conversely, binding of cell-associated HSPG
to TACI triggers TACI signaling, apparently in-
dependently of any ligand of the TNF family
(Bischof et al. 2006). Because both APRIL and
its receptor TACI bind HSPG, they probably
formtripartite complexes inwhich the threepro-

1

2
3

3

4

Figure 3. “Re-anchoring” of soluble forms of ligands and receptors by their binding to extracellular matrix
components. Various reported effects of extracellular matrix components on the functions of soluble ligands
and receptors, shown in the lower part of the figure, are compared with the functions of soluble ligands and
receptors in the absence of such components, as shown in the upper part. See text for details and for numbering of
the illustrated effects. Undulating lines correspond to extracellular matrix components. Orange forms corre-
spond to structural motifs that dictate binding to such components.
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teinsmodulate one another’s function (Moreaux
et al. 2009).

MECHANISMS OF SIGNALING ACTIVATION
BY THE TNF FAMILY

The cellular responses initiated by the TNF fam-
ily reflect a gamut of molecular changes, includ-
ing altered expression of many proteins, and
extensive changes in their patterns of phosphor-
ylation, ubiquitination, association, localization,
and rates of turnover, as well as alterations in the
expression of various lipid metabolites. Because
neither the IDs of TNF/NGF family receptors
nor those of TNF family ligands possess enzy-
matic activity, they need to bind to signaling
proteins that do express such activities, which
are stimulated as a consequence of ligand–re-
ceptor association.

Protein-Binding Motifs in the Receptors
and Ligands

The receptors of the TNF family can be subclas-
sified into two groups with distinct binding mo-
tifs in their IDs. The IDs of TNFR1, DR3, FAS,
TRAIL-R1, TRAIL-R2, NGFR, and EDAR each
contain a DDmotif of about 80 amino acids that
bindadapterproteins containing the samemotif.
All other receptors contain short (five to eight
amino acid residues) motifs of binding to adapt-
er proteins of the TNF receptor–associated fac-
tors (TRAFs) family. NGFR is the only receptor
that contains bothan (atypical)DDandaTRAF-
binding motif. The TRAF-binding receptors are
incapable of triggering signaling pathways acti-
vated by the DD adapter proteins. In contrast,
because two of the DD-containing adapter pro-
teins—TNF receptor-associated death domain
(TRADD) and EDAR-associated death domain
(EDARADD)—also contain a TRAF-binding
motif, the DD-containing receptors are capable
of triggering at least part of the signaling path-
ways activated by the TRAF-binding receptors.

Bindingof bothDD-containing adapter pro-
teins and the TRAFs to their receptors dictates
the formationof large complexes containing sev-
eral receptor molecules and multiple adapter
molecules. As to the associations of the receptors

with TRAFs (associations whose structural basis
has so far been explored only for TRAF2 and
TRAF6), assembly of the signaling complexes
is fostered by constitutive trimeric oligomeriza-
tion of the carboxyl-terminal leucine zipper
TRAF motifs and by induced dimeric associa-
tion of the TRAFs’ amino-terminal regions
(McWhirter et al. 1999; Park et al. 1999; Yin et
al. 2009a). In the initiation of signaling through
DD association, an event so far explored only
for FAS association with the adapter protein
FADD/MORT1, oligomerization is fostered by
homotypic associations of the DDs of both FAS
and FADD/MORT1 as well as by their hetero-
typic associations (Scott et al. 2009; Wang et al.
2010; Kersse et al. 2011; Li et al. 2013).

These associations between receptors and
their adapter proteins initiate signaling by ex-
posing, within the adapter proteins, binding
surfaces for signaling proteins. With the excep-
tion of TRAF1, and—as was recently indicated,
probably also with the exception of TRAF2 (Yin
et al. 2009b)—members of the TRAF adapter
protein family possess ubiquitin ligase activity,
which is triggered by their induced associations
with receptors.

Some adapter proteins initiate the above as-
sociations and activities while still bound to re-
ceptors expressed on the cell surface. Others do
so only after uptake of the receptors into the cells
(Schutze et al. 2008; Ganeff et al. 2011). Some of
the signaling complexes that they generate re-
main associated with the receptors. Others dis-
sociate from the receptors and generate signaling
complexes in the cytoplasm (Sessler et al. 2013).

Sporadic evidence indicates that various
other evolutionarily conserved amino acid resi-
dues within the IDs of receptors and of ligands
serve—either without modification or after un-
dergoing phosphorylation or ubiquitination—
as binding sites for additional cytoplasmic pro-
teins. In so doing, they contribute to the initia-
tion of additional signaling pathways and to the
control of trafficking of the receptors and li-
gands (e.g., Pocsik et al. 1995; Adam Klages
et al. 1996; Watts et al. 1999; Eissner et al.
2004; Kimura et al. 2004; Sun et al. 2007; Juhasz
et al. 2013; Ma et al. 2013; Fritsch et al. 2014;
Chakrabandhu et al. 2016).
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In addition to their ligand–receptor interac-
tion motifs, the EDs of both the ligands and the
receptors contain, in closer proximity to their
TDs, specific sequences that determine their
mode of shedding. Several ligands, including
EDA, BAFF, and APRIL, contain consensus se-
quences for furin cleavage and are constitutively
shed by intracellularly located furin. Other li-
gands as well as several receptors, including
TNF and its receptors, are shed inducibly after
they reach the cell membrane, mainly via the
effects of metalloproteinases such as TACE/
ADAM17. Little is known of the sequence de-
terminants that dictate this selective shedding
(Brakebusch et al. 1994; Thomas 2002; Haya-
shida et al. 2010).

Signaling Pathways

Studies of the mechanisms of signaling for apo-
ptotic and for necrotic cell death as well as for
activation of NF-κB transcription factors by
TNF family members provided the foundation
for exploring the regulation of these functions by
external inducers. These activities of the TNF
family are the most extensively studied to date.
However, several others are known, including
signaling for activation of the extracellular sig-
nal-regulated kinase (ERK), c-Jun amino termi-
nal kinase (JNK), and p38 mitogen-activated
protein (MAP) kinase cascades, other serine/
threonine kinases, the phosphoinositide 3-ki-
nase (PI3K)/Akt pathway, superoxide genera-
tion, soluble Src-family tyrosine kinases, the
neutral and acidic sphingomyelinases, andphos-
pholipase C. Space constraints preclude further
attention in this review to these signaling mech-
anisms, which have been extensively reviewed
elsewhere (Eissner et al. 2004; Hayden and
Ghosh 2012; Juhasz et al. 2013; Li et al. 2013;
Sessler et al. 2013; So and Croft 2013; Sabio
and Davis 2014; Wallach 2016b).

FOREIGN ENCOUNTERS: NONCANONICAL
CORECEPTORS AND LIGANDS

The information presented above delineates a
shared set of mechanistic principles by which
the different members of the TNF ligand and

receptor families associate. However, several
members of the families can also participate in
unique interactions with coreceptors and li-
gands, including some that do not belong to
the TNF ligand and TNF/NGFR families. Ex-
amples of these noncanonical associations,
some extensively documented and others for
which the evidence is limited and requires con-
firmation, are presented in Figure 4. Although
such interactions have been noticed for only a
few members of the TNF ligand and receptor
families up to now, theymight be found to occur
with other members as well.

HOW IS REGULATION BY THE TNF FAMILY
REGULATED?

As in the case of other cytokines, signaling by
members of the TNF family is triggered when
ligand and receptor molecules are brought close
enough to allow their binding to each other. This
approximation was found to be dictated at mul-
tiple mechanistic levels. In most cases, it occurs
by induced up-regulation of the ligand mole-
cules, allowing them to bind to receptor mole-
cules that are constitutivelyexpressed. Such is the
casewithTNF,whose inductionmostlyoccurs in
a transient manner, although TNFR1 towhich it
binds is widely expressed constitutively. Howev-
er, the inverse type of modulation is also ob-
served. TWEAK, for example, is a ligand that is
constitutively expressed inmacrophages, where-
as the expression of its receptor Fn14 is induced
in injured tissues. Up-regulation of the expres-
sion of both ligands and receptors is induced by
specific signaling pathways that are activated in
response to insults or developmental cues. The
best-documented mode of up-regulation is by
enhanced transcription. However, it also occurs
on other mechanistic levels, including splicing,
RNA transport, and altered messenger RNA
(mRNA) stability and mRNA translation rates.
Also contributing to this regulation are associa-
tions of proteins, microRNAs and long noncod-
ing RNAswith transcripts (Wallach 2016a;Wal-
lach andKovalenko2016).Once synthesized, the
ligands and receptors can be subjected to further
regulation by mechanisms controlling their
translocation to the cell surface (Bossi and Grif-
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Figure 4.Noncanonical associations of the tumor necrosis factor (TNF) ligand and the TNF/ nerve growth factor
receptor (NGFR) families. Most of the interactions of ligands and receptors of the TNF ligand and TNF/NGFR
families are known to occur between homotrimeric molecules of a particular ligand andmolecules of a particular
receptor. A few exceptions, however, are known: (1) Lymphotoxin β (LTβ) functions only within heterotrimers
that it forms with lymphotoxin α (LTα). Whereas homotrimers of LT bind to the TNF receptors, the LTα1β2
heterotrimer binds to the LTβ receptor (LTβR) (Ware 2005). (2) B-cell-activating factor of the tumor necrosis
factor family (BAFF) and a proliferation-inducing ligand (APRIL) also form heterotrimers (so far discerned only
in patients with autoimmune diseases), and these heterotrimers apparently activate only transmembrane acti-
vator and calcium-modulating cyclophilin ligand interactor (TACI) (Roschke et al. 2002; Dillon et al. 2006;
Schuepbach-Mallepell et al. 2015). (3) Although APRIL is constitutively shed and its trimers therefore occur only
in soluble form, its gene also yields a fused joint splice variant with the neighboring TWEAK gene. The protein
encoded by this transcript—TWE-PRIL—is anchored to the cell membrane (Pradet-Balade et al. 2002). (4)
Association of molecules of TRAIL-R2 and the membrane-anchored truncated receptor DcR2 through their
preligand assembly domain (PLAD) dictate association of TRAIL with the two receptors in mixed complexes
wherein TRAIL-R2 signaling is suppressed by DcR2 (Clancy et al. 2005). (Legend continues on following page.)
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fiths 1999) and, in the case of their soluble forms,
by the proteolytic activity through which these
forms are generated. For some family members,
this proteolytic activity is exerted constitutively
(Lopez-Fraga et al. 2001), whereas for others it is
activated by specific signals (Black et al. 1997;
Moss et al. 1997; Becker-Pauly and Rose-John
2013). Approximation of receptors to mem-

brane-bound ligands can also be dictatedmerely
by induced juxtapositioning of the cells that ex-
press the receptors and ligands.

Some of the ligands accumulate within in-
tracellular reservoirs. Signaling initiation by
these ligands is thus dictated by their exocytotic
secretion (Gordon and Galli 1990; Bossi and
Griffiths 1999; Koguchi et al. 2007).

Figure 4. (Continued) (5) Molecules of the two receptors for TNF (TNFR1 and TNFR2) reportedly also associate
on their binding to ligand. However, this association does not occur through binding of the two receptors to the
same ligand molecule. In fact, the two receptor species are incapable of binding simultaneously to the same TNF
molecule; molecules of the two receptors rather associate only after binding independently to distinct TNF
molecules (Pinckard et al. 1997). (6) Molecules of TNFR2 reportedly also associate with molecules of IL-17
receptor D, a member of an unrelated cytokine-receptor family. This association, which occurs on triggering by
the ligands of the two receptors, imposes assembly of aggregates of the two receptors and functional cooperation
between them (Yang et al. 2015). (7) Another example of functional interaction with a structurally unrelated
receptor is the association of the ligand for 4-1BB with a coexpressed TLR4–MD2 complex. This apparently
occurs through the TMs of 4-1BBL and Tlr4 and the consequent potentiation of lipopolysaccharide (LPS)-
induced Tlr4 signaling in a way that depends on the function of the intracellular domain (ID) of 4-1BBL but
independently of the association of 4-1BBL with 4-1BB (Kang et al. 2007; Ma et al. 2013). (8) A different kind of
noncanonical association is observed in the function of herpesvirus entry mediator (HVEM), a receptor of the
TNF family. Besides its association with two TNF family ligands (with LIGHT, and [weakly] with LT homo-
trimers) it also binds to B- and T-lymphocyte attenuator (BTLA) and CD160, two cell-surface proteins of the
immunoglobulin superfamily, thereby triggering inhibitory signaling by those two proteins (Shui et al. 2011). (9)
Whether this association also triggers signaling by the ID of HVEM is not known. (10) RANKL, besides binding
to RANK and to the soluble receptor osteoprotegerin (OPG), also binds to the seven-transmembrane (TM),
leucine-rich repeat containing G protein-coupled receptor 4 (LGR4), which also serves as receptor for R-spon-
dins and for Norrin. It thus triggers signaling antagonistic to that initiated by RANK (Luo et al. 2016). (11)
Binding of soluble CD40L to integrin αIIbβ3 and to integrin α5β1 triggers signaling by those two membrane–
protein complexes (Andre et al. 2002; Leveille et al. 2007). (12) Binding of the cell-adhesion lectin, E-selectin, to
DR3-linked sialic-acid-linked sugar chains triggers signaling by DR3 (Porquet et al. 2011). Juxtaposition and
activation of the two TRAIL receptors, DR4 and DR4, by TRAIL also depends, for a reason not yet clear, on
glycosylation of these receptors (Wagner et al. 2007). Themost elaborate known set of noncanonical associations
is observed in the function of theNGFR, a receptor of the TNF/NGF family for which no ligand of the TNF family
is known. NGFR contributes to signaling for different effects in response to different inducers through associ-
ation with a series of different coreceptors. (13) It contributes to signaling for death in response to proneuro-
trophins, to which it binds in association with a sortilin family receptor. (14) When associating with a Trk
tyrosine kinase receptor, apparently through the TMs and IDs of both receptors (Esposito et al. 2001), NGFR
contributes to high-affinity binding of NGF, and signals for cell survival and for pain sensation. (15) NGFR is also
found to form, through extracellular domain (ED) associations, a ternary complex with the glycosylphosphati-
dylinositol (GPI)-linked Nogo-66 receptor (NogoR) and the TM receptor LINGO-1. In response to myelin-
associated inhibitory factors (a 66-amino-acid fragment of the oligodendrocyte-derived growth inhibitory pro-
teinNogo, the oligodendrocytemyelin glycoprotein [OMgp] or themyelin-associated glycoprotein [MAG]), this
complex signals for arrest of axonal regeneration following injury (Hempstead 2002; Chao 2003; Ibanez and Simi
2012). (16) In that complex, NGFR can be replaced by the orphan TNF family receptor TROY (Shao et al. 2005).
(17) Finally, direct binding of amyloid-β to NGFR (Hempstead 2002; Chao 2003; Ibanez and Simi 2012), and
probably also to a complex of NGFR and another orphan receptor of the TNF/NGF family, DR6 (Hu et al. 2013),
reportedly triggers signaling for neuronal death. (18) DR6 was found to bind to a carboxyl-terminal region in the
ED of the amyloid precursor protein (APP). APP and DR6 cooperate in the induction of axonal pruning. The
mechanism underlying this cooperation is not clear, nor is it known whether the cooperation occurs between
proteins expressed in the same cell, as illustrated in the figure, or in distinct cells (Olsen et al. 2014). BCMA, B-cell
maturation antigen.
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Increased expression of the receptors or li-
gands, either artificially (Boldin et al. 1995) or in
response to natural stimuli (Lu et al. 2014), is in
some situations sufficient to allow the IDs of
these molecules to encounter one another and
hence to trigger signaling independently of li-
gand–receptor association.

CONCLUDING THEOLOGICAL REMARKS

Members of the TNF cytokine family and of the
TNF/NGFR family are used by almost all meta-
zoan phyla. Some of their activities have been
well preserved over more than 500 million years
of evolution (Igaki and Miura 2014; Quistad
et al. 2014). Their major proximal signaling
enzymes originated even earlier (Uren et al.
2000; Zapata et al. 2007; Yuan et al. 2009; Zma-
sek and Godzik 2013; Sakamaki et al. 2014).
Nature, it would seem, had good reason to pre-
serve this cytokine family so well and for so
long. At face value, however, the known activ-
ities of this family do not seem to be sufficiently
unique to warrant such preservation. Other
than in the case of the cytotoxic activity of a
few family members, the various individual cel-
lular effects of the TNF family and the signaling
mechanisms that account for them do not seem
to differ radically from those of various other
cytokines. The pattern of cellular effects of IL-1
in inflammation, for example, as well as the
signaling mechanisms that it activates, greatly
resemble those of TNF. Why would nature pre-
serve two cytokines that seem to serve the same
set of functions, and why would it choose to use
them differentially in different situations?

Also puzzling is the remarkable similarity
among the ranges of signaling activities trig-
gered by the various family members. How
can the heterogeneous and distinct biological
activity patterns of the different familymembers
be explained in terms of a set of mechanisms so
limited and so invariant? These enigmas suggest
that the mechanisms of action of the TNF fam-
ilies possess a greater degree of sophistication
than has so far met the eye.

An example of the insight gained in attempt-
ing to deepen our perception of this area was the
discovery that, although all TNF family mem-

bers signal for activation of NF-κB, some are
able to do so via a distinct route, the so-called
“alternative pathway,” which yields molecular
targets and functional consequences that differ
from those of the more widely used “canonical
pathways” (Hayden and Ghosh 2012). The al-
ternative pathway, and the protein kinase NF-
κB-inducing kinase (NIK) that initiates it, ap-
pear to have evolved relatively late in the history
of the TNF family, contemporaneously with
emergence of the vertebrates and of their adap-
tive immunity that this pathway regulates. Other
signaling pathways shared by different TNF
family members may likewise be found to have
evolved into several different forms that are af-
fected differentially by these different members
and serve distinct functions.

The various “noncanonical” interactions of
the TNF and TNF/NGF families (Fig. 4) doubt-
less also endow individual members of the fam-
ily with unique mechanisms of action. An ex-
ample of a unique mechanism that might
depend on such noncanonical interactions is
presented in Figure 1C. As opposed to the usual
mode of signaling initiation by the TNF/NGF
family (by induced juxtaposition), NGFR—
which participates in several such noncanonical
associations—was suggested rather to trigger
signaling by imposing separation of the receptor
IDs. This mechanism is dictated by covalent
linkage of a conserved cysteine in the TM of
NGFR. Conserved cysteines also occur in the
TDs of several other TNF/NGF family mem-
bers. It was therefore suggested that portions
of these other receptors also occur as covalently
linked dimers and serve similarly to mediate
unique functions, which likewise may depend
on some noncanonical associations (Vilar et al.
2009).

We have come a long way in clarifying
some general mechanisms of action of the var-
ious families of cytokines, including the TNF
family. It is now time to focus on clarifying the
mechanisms that endow each family, and each
family member, with uniqueness. Progress in
this regard will undoubtedly increase our abil-
ity to design selective therapeutic modulation
of specific functions of these fascinating mol-
ecules.
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