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Ribosomal repeats occupy 5% of a plant genome, yet there has been little study of their diversity in the modern age of

genomics. Ribosomal copy number and expression variation present an opportunity to tap a novel source of diversity.

In the present study, we estimated the ribosomal DNA (rDNA) copy number and ribosomal RNA (rRNA) expression

for a population of maize inbred lines and investigated the potential role of rDNA and rRNA dosage in regulating global

gene expression. Extensive variation was found in both ribosomal DNA copy number and ribosomal RNA expression

among maize inbred lines. However, rRNA abundance was not consistent with the copy number of the rDNA. We have

not found that the rDNA gene dosage has a regulatory role in gene expression; however, thousands of genes are identified

to be coregulated with rRNA expression, including genes participating in ribosome biogenesis and other functionally rel-

evant pathways.We further investigated the potential roles of copy number and the expression level of rDNAon agronomic

traits and found that both correlated with flowering time but through different regulatorymechanisms. This comprehensive

analysis suggested that rRNA expression variation is a valuable source of functional diversity that affects gene expression

variation and field-based phenotypic changes.

[Supplemental material is available for this article.]

Ribosomes are the indispensable machinery for protein synthesis
in all domains of life. They are assembled from four kinds of ribo-
somal RNA (5S rRNA, 5.8S rRNA, 18S rRNA, and 25S rRNA in
plants), around 80 ribosomal proteins, and many other factors
functioning in processing, modifying, and transporting rRNA
and preribosomal particles (Klinge et al. 2011; Rabl et al. 2011;
de la Cruz et al. 2015). The 18S, 5.8S, and 25S rRNAs are produced
as a long primary transcript by polymerase I from the 45S rRNA loci
and processed into mature forms by removing intergenic spacers
(ITS1 and ITS2), whereas 5S is transcribed by polymerase III from
a separate locus. In many higher organisms, 5S and 45S are usually
physically separated in the genome (Garcia et al. 2017). However,
the fate of 5S and two other components (5.8S and 18S) are bio-
logically connected, because they cooperatively assembly the large
ribosomal subunit. Recently, the 5S and 45S loci were reported to
have evolved in a concerted fashion in the human genome
(Gibbons et al. 2015). In addition, rRNA genes (also termed
rDNA) are tandemly organized with hundreds or thousands of
nearly identical copies, accounting for >5% of plant genomes,
for example, in Arabidopsis (Rogers and Bendich 1987). In spite
of the high conservation level of their sequence and function,
the copy number (CN) of rDNA is quite variable both between
and within species (Gerlach and Bedbrook 1979; Rogers and
Bendich 1987; Long et al. 2013). The biological benefits from
CN variation (CNV) of rDNA are not well understood (Weider

et al. 2005). Some argue that the rDNA tandem array structure
may favor transcription efficiency for the large demand for rRNA
(Prokopowich et al. 2003), while others propose that the amount
of rDNA amount is actually far beyond the actual number required
for rRNA transcription because not every copy of the rRNA genes
are actively transcribed; e.g., some copies are epigenetically si-
lenced in the human genome (McStay and Grummt 2008), and
numerous rRNA genes are selectively silenced during development
in Arabidopsis (Chandrasekhara et al. 2016).

Although our understanding of the potential significance of
CNV of rRNA genes is incomplete, the change in CN of rRNA
has been documented to have epigenetic effects on global chroma-
tin regulation (Paredes and Maggert 2009) or gene expression
(Paredes et al. 2011). Recently, a genome-wide study involving
the 45S rRNACN in a human population reported that expression
level of 1371 genes was significantly associated with rDNA dosage.
Furthermore, those genes are functionally enrichedwithin the reg-
ulation of rDNA expression and ribosome biogenesis (Gibbons
et al. 2014). This interesting observation inspired us to ask another
basic question: How does rDNA dosage affect gene expression?
Most associated genes were found to be functionally connected
with rDNA expression, which is very similar to the situation of
the coexpressed genes within the same pathway (herein, the ribo-
some biogenesis pathway); therefore, we hypothesized that the
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connection between rDNA CN and gene expression is a mimic of
the association among rDNA CN, rRNA expression, and coex-
pressed genes. Two recent studies reported that an artificially en-
hanced 45S rRNA expression level could lead to an increase
in expression by up to twofold of 37 genes, including a ribo-
somal protein gene and several transcription factors, with obvious
effects on aboveground plant growth, reinforcing our speculation
about the coregulation between rDNA and protein coding genes
(Makabe et al. 2017a,b).

Maize (Zea mays L.), one of the most important cereals world-
wide, provides valuable resources for human food, livestock feed,
and industrial production. Maize is also an ideal genetic model
to understand genetic variation because of the large and diverse
set of available germplasms (Buckler et al. 2006). However, CN
and the expression abundance of ribosomal repeats still represent
unexploited sources of genetic variation in maize. In the present
study, by analyzing the DNA resequencing data and RNA-seq
data for a maize inbred population, we comprehensively explored
the rDNA CNVs and rRNA expression variation; the inherent con-
nections between rDNAdosage, rRNA expression level, and related
gene expression; and the potential biological function of the nat-
ural variation in the CN of ribosomal RNA and its expression
abundance.

Results

Estimation of ribosomal RNA gene CN using a maize

inbred population

First, we estimated the ribosomal RNA gene CN for the maize 282
association panel population (282 panel) representing a maize
germplasm with extensive phenotype and genotype diversity
(Flint-Garcia et al. 2005) using the methods previously described
(Gibbons et al. 2014) with some modifications (see Methods;
Supplemental Fig. S1). Briefly, we estimated the sequencing depths
for single-copy (SC) genomic regions (introns and exons) and re-
petitiveDNA regions (e.g., rRNA), respectively, and then calculated
the CN by calculating the ratio between them after normalization.
In the maize B73 reference genome, 4459 SC exons and 2982 SC
introns were identified and used to calculate background per-
base read depth (bRD) (Supplemental Table S1). The read depth
we estimated between SC exons and introns was highly correlated
and nearly identical (Pearson’s r=0.987, P-value <2.2 ×10−16)
(Supplemental Fig. S2). For 256 maize inbred lines (bRD>1×),
the 45S rRNAwas estimated to be present in 1061 to 17,347 copies
(�x = 4411), and CN for 5S rRNAwas estimated to be between 1005
and 8208 (�x = 3246) (Supplemental Dataset 1). Our estimate is
comparable with previous results generated using different exper-
imental approaches; e.g., 3300–23,000 (Buescher et al. 1984). The
45S CNV could contribute at most 138 Mb (∼7%) to the genome
size variation among maize inbred lines, reinforcing the positive
relationship between genome size and the CN of rRNA repeats
(Prokopowich et al. 2003; Long et al. 2013). CNs for the three com-
ponents of 45S (5.8S, 18S, and 25S) were also assayed separately
and found to be highly correlated with each other, as expected
(Supplemental Fig. S3).

We also performed this analysis workflow on the third-gener-
ation maize haplotype map (HapMap3) data set, which is a larger
data set with over 900 maize lines; however, the data were collect-
ed from an international consortium over ∼10 yr (Bukowski et al.
2018). We found that different library preparations could dramat-
ically affect the sequencing data and further caused different

estimates of absolute CN (Supplemental Table S2). In contrast, dif-
ferent sequencing runs from the same library usually give rise to
similar estimates (Supplemental Table S2). We found that some
samples had quite abnormal estimates for the 5.8S CN
(Supplemental Table S3). However, other closely connected com-
ponents (18S or 25S) showed relative normal estimates; therefore,
we suspected that this was likely caused by inefficient PCR ampli-
fication during library preparations owing to the high complex
secondary structure of the rRNA (Gottschling and Plotner 2004).
Forty-one HapMap3 lines have previously been used to estimate
knob abundance using a different approach (Chia et al. 2012).
Thus, we compared these results with ours and found that both es-
timates were highly consistent (Supplemental Fig. S4). This result
provided additional indirect evidence to support the accuracy of
our method for CN estimation of repetitive elements.

To further validate our CN estimate on rDNA, we conducted
qPCR experiment to quantify relative rDNA CNs for 24 maize
lines (seeMethods).We found qPCR results are consistentwith our
expectations under certain conditions (Supplemental Fig. S5A).
Although qPCR generated different absolute rDNA CNs for each
line (Supplemental Table S4), both approaches can give relatively
similar estimates (Pearson’s r=0.792, P-value= 4.098×10−6); the
maize lines with highest CN estimate by NGS data also have signif-
icant higher CN based on qPCR analysis (Supplemental Fig. S5B).

Maize inbred lines can be roughly divided into subgroups
(Flint-Garcia et al. 2005). To examine the population structure ef-
fect, we compared the CNs of 45S among different maize sub-
groups and found that the 45S repeats were significantly more
abundant in tropical/subtropical (ts) lines compared with some
temperate lines (stiff stalk [ss]; P<0.01); however, there were not
significantly different from non-ss (nss) and admixed lines (Fig.
1A). In addition, 5S (P<0.001) and two other kinds of knob repeats
(P<0.0001) were also significantly more abundant in ts lines (Fig.
1B–D), which was consistent with previous observations of more
repeat sequences and larger genome sizes in these populations
(Chia et al. 2012; Diez et al. 2013).

For the maize genome, only single 45S and 5S rRNA loci were
identified on Chromosome 6 and Chromosome 2, respectively (Li
and Arumuganathan 2001). We detected significant correlation
between the 5S and 45S CN (Pearson’s r= 0.240, P<0.0001) (Fig.
2A), which was not as strong as that observed in humans (Gibbons
et al. 2015). Similar to the finding in humans, 5S also showed a
slightly stronger correlation with both 5.8S and 25S than with
18S (Fig. 2B–D), which has been viewed as further evidence for co-
evolution. We identified 10 taxa with abnormal CN estimates as
outliers. After removing these outliers, similar results were ob-
tained (Supplemental Fig. S6).

Inheritance of 45S rRNA genes

To understanding whether 45S rRNA could be stably transferred
through generations, we estimated the narrow sense heritability
(h2) for 45S CN using a mixed linear model (MLM; see Methods).
Both 45S (h2 = 0.780) and 5S (h2 = 0.788) were highly heritable
(Supplemental Table S5). In addition, two kinds of knob repeats
and centromere repeats also showed high heritability (0.565–
0.902) (Supplemental Table S5).

To detect whether we could capture significant associa-
tions in cis for 45S copy dosage in maize, we first conducted a ge-
nome-wide association study (GWAS) to identify genomic loci
associated with the 45S CN. However, GWAS could not identify
the known 45S cluster but detected some significant SNPs across
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the genome (Supplemental Fig. S7A).
Alternatively, it is still possible that these
associated SNPsmight have arisen from a
false-positive association.

Studies in Arabidopsis concluded
that the 45S CN is a bona fide case of
“missing heritability” (Rabanal et al.
2017). To test this hypothesis, we used
variance component analysis (Speed
et al. 2012; Gusev et al. 2013) to estimate
the total variance explained by all com-
mon SNPs by detecting the total con-
tributions from all chromosomes (see
Methods). The results showed that all
variants could explain >98% of total
45S CNV, of which the known cluster
(Chromosome 6) independently could
explain ∼80% of the variance, and the
other nine chromosomes together con-
tributed ∼20% (Supplemental Fig. S7B).
This result suggested that the largest con-
tribution to 45S rDNA CN actually origi-
nated from 45S array on Chromosome
6; however, it could not be detected by
GWAS when testing each SNP one at a
time, which is consistent with the find-
ings in Arabidopsis with natural and con-
trolled populations (Long et al. 2013;
Rabanal et al. 2017).

Quantifying 45S rRNA gene expression

Recently, we generated 3′mRNA-seq data
for seven tissues among 299 maize lines
(Kremling et al. 2018). Because thismeth-
od used a poly(T) primer to perform spe-
cific reverse transcription on mRNA
transcripts with poly(A) tails, rRNA read
contamination should be quite low in
these RNA-seq data. We found that 4%–

15% of the total reads from different
RNA-seq libraries could be mapped onto
the 45S rRNA gene. We found >95% of
the reads were originated from five re-
gions across the 45S region (Fig. 3).
Among the five regions, Region 2 (nt
4058–4144) had the most mapped reads
(∼50% of total reads mapping on whole
45S region). We tested a total of 1923
RNA-seq libraries and observed the same
landscape for all mapping patterns
(Supplemental Figs. S8, S9), highlight-
ing the excellent repeatability of rRNA
sequencing.

Next, we tested whether mapped
reads number within Region 2 can be
treated as RNA-seq reads mapped on
mRNAand calculated normalized expres-
sion value to represent the expression of
45S rDNA (see below and Discussion).
The 3′ mRNA sequencing approach is de-
signed to avoid rRNA amplification and
sequencing, because only mRNA with

BA

DC

Figure 1. Comparisons of the copy number (CN) for 45S rRNA and other common repeat types
among different subgroups of maize inbred lines. (A) 45S rRNA. Pairwise comparison showing that
only the tropical/subtropical (ts) and stiff-stalk (ss) lines are significantly different (P=0.025). (B) 5S
rRNA. The ts are significantly different to the ss (0.0009) and nss lines (0.0011). (C,D) Two kinds of maize
knob repeats. Knob 180 and Knob TR1 are significantly more abundant in the ts lines compared with any
other subgroups (P<0.0001). (nss) Non-ss lines. (∗) P<0.05, (∗∗∗) P<0.001, (∗∗∗∗) P<0.0001.

BA

DC

Figure 2. Evidence for the coevolution of 5S with 45S rRNA. (A) Correlation analysis between the CN of
5S and 45S rRNA (P-value = 0.0001). (B–D) Correlations between the CN of 5S and three components of
45S, including 5.8S (P=3.366 ×10−5), 18S (P=0.0003), and 25S (P=7.942×10−5). The population size
was n=256, and r is the Pearson’s coefficient.
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poly(A) tails can be sequenced (see Methods). Thus, we thought
that mismatch between poly(T) primer and some regions across
45S rRNA is the reason for initializing the reverse transcription
and finally being sequenced. Combined with sequence analysis,
we found that poly(A) motifs (more than three continuous A nu-
cleotides) occurred more frequently in the sequence upstream of
the five regions (Fig. 3). Although the amplification rate of
Region 2 should be much lower than mRNA because of imperfect
match with poly(T) primer. However, if the amplification rate is
consistent among different libraries (e.g., in each RNA-seq library,
50% 45S rRNA transcripts can be amplified and sequenced),
the RPKM for Region 2 can be treated as relative expression abun-
dance of rDNA and compared among samples. Despite lacking di-
rect evidence, several other analyses have been used to indirectly
validate whether our method to measure rDNA expression is
possible. First, conserved upstream sequences across different
RNA-seq libraries have been verified by checking for sequence var-
iation.We found only two SNPs (without affecting the poly(A)-like
motif) that were present in less than five maize lines around
Region 2 (the 350-bp upstream region) based on the results of
SNP screening across the whole 45S rDNA (Supplemental Fig.
S10). Thus, the poly(A)-like genomic regions are identical in the
different maize lines, which may ensure a similar PCR efficiency
around Region 2.

Second, we observed that Region 2 shows high correlations
with other peak regions in terms of mapped read number, which
is another indicator that Region 2 is themost robust representative

of the 45S expression level (Supplemen-
tal Fig. S11A). Third, we assumed that if
the mapped read number from Region 2
is randomly produced across different li-
braries caused by random amplification
(i.e., different libraries with different
PCR amplification rates), we would ex-
pect to see a low correlation between
the mapped reads number and the total
reads number. However, we observe a
high correlation between the mapped
reads number and the total reads num-
ber, suggesting the mapped reads num-
ber was increased by the increase of
read depth. We also compared this re-
sult with 1000 randomly chosen genes.
These results showed that the differences
in 45S expressionmainlyoriginated from
differences among libraries, which was
very similar to the results for most of
the genes (Supplemental Fig. S11B). Tak-
en together, we eventually decided to
treat Region 2 as an mRNA gene and
used the normalized read count per mil-
lion (RPM) within Region 2 as a proxy
for 45S expression levels in the seven dif-
ferent tissues for each maize inbred line
(Supplemental Dataset 2).

rRNA abundance is highly

developmentally dynamic

Our intra-species comparisons of ex-
pression revealed that maize 45S rRNA
expression may not be as conserved as

previously thought, butmay be differentially expressed among tis-
sues and is unexpectedly variable among maize individuals (Fig.
4A). Generally, L3Base, GRoot, and GShoot, which represent
young tissues, expressed more rRNA than old tissues, consistent
with the fact that during rapid developmental stages, a larger
amount of rRNA is required for ribosome production. Moreover,
along one single maize leaf gradient, the 45S rRNA level gradually
decreased from the leaf base (young) to the leaf tip (mature) (Fig.
4B), similar to the expression pattern of hundreds of mRNAs (Li
et al. 2010). Cluster analysis based on 45S rRNA expression shows
that the Kernel and L3Tip showed themost similar expression pat-
tern, perhaps because both are mature tissues (Supplemental Fig.
S12). We further investigated the relationships among 45S rRNA
expression levels in different tissues. The results showed that ex-
cept for the leaf base and leaf tip (likely because of their physical
connections), no significant correlations for 45S abundance were
found among the tissues (Fig. 4C), which suggested that 45S
rRNA expression may be regulated independently in each tissue.

To investigate the relationship between 45SCNand 45S rRNA
expression abundance, we analyzed 240 maize lines for their 45S
CN and expression data. The results indicated that there is no cor-
relation between 45S rRNA CN and expression in any tissues, ei-
ther for the whole population (Fig. 5) or for the subgroups
(Supplemental Figs. S13, S14), suggesting that maize lines with
more rRNA copies might not have a higher overall rRNA expres-
sion level, possibly owing to the existence of many nonfunctional
copies.

A

B

C

Figure 3. 45S rRNA can be sequenced by 3′mRNA-seq. (A) 3′mRNA-seq data (from one B73 GRoot
sample) mapped on the maize 45S rDNA reference sequence shows five obvious peaks. Each peak rep-
resents a region that could be highly amplified using poly(T) primers and sequenced. A higher peak in-
dicatesmore reads generated from these regions, implying higher reverse transcription efficiency. (B) The
entire 45 rDNA gene locus with intergenic spacer region (IGS). (C) The bar plot indicates the frequency of
the poly(A)-like motif across the 45S region. The y-axis represents the count of the motif.
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Ribo-coregulated genes are abundant and functionally enriched

in coherent gene sets

The 45S copy dosage was revealed to trans-regulate global gene ex-
pression in humans (Gibbons et al. 2014); thus, we expected to
identify gene loci that could be regulated by 45S CN in the maize
genome. However, only 32 gene expression variants (in seven tis-
sues) were found to be significantly correlated (P<1×10−5) with
45S CN changes (Supplemental Fig. S15A).

We then conducted an association test between 45S expres-
sion abundance and individual gene expression levels in the seven
tissues. We identified 1198 genes that were highly coexpressed
with rDNA in GRoot (P<6.5 ×10−6; false-discovery rate [FDR] =
0.001, gene number [n] = 17,770) (Supplemental Fig. S15B). Based
on the same criteria, we discovered 1231 genes in GShoot (n=
18,521), 819 in Kernel (n=17,745), 815 in L3Base (n=17,843),
1266 in L3Tip (n=15,306), 44 in LMAD (n=16,677), and 1610 in
LMAN (n=16,357) (Supplemental Table S6). Furthermore, 817
genes remained highly significant after stringent Bonferroni cor-
rection (P<8.5 ×10−8; FDR=0.0001). Consistent with our expecta-

tions, positively correlated genes were
significantly more abundant than nega-
tively correlated genes in most samples,
except for LMAN (Supplemental Table
S6). The important role of 45S rRNA in ri-
bosome assembly prompted us to investi-
gatewhether these45S-coregulatedgenes
were functionally enriched in ribosome
biogenesis. As expected, we identified
1438 coregulated genes (shared by two
or more tissues) for gene functional en-
richment analysis by excluding tissue-
specific genes. To assign these 1438 genes
into functional categories, we performed
Gene Ontology (GO) analysis. The top
five GO terms are exclusively related to
protein synthesis or ribosome biogenesis
(Fig. 6), suggesting that a considerable
number of genes coexpressed with rRNA
play roles in assisting rRNA into the
ribosome complex. Further Kyoto Ency-
clopedia of Genes and Genomes (KEGG)
pathway analysis also identified 112
rRNA-coexpressed genes belonging to
the ribosomal protein (r-protein) gene
family (Supplemental Table S7; Supple-
mental Fig. S16). This synchronous ex-
pression in both rRNA and r-protein
genes implied that ribosome biogenesis
is a highly regulated and coordinated bio-
logical pathway.

Besides ribosome biogenesis, GO
analysis revealed that rRNA-coexpress-
ed genes were also enriched within
other functional categories, yet these
show great differences among tissues. In
GRoot, the significantly enriched gene
functional categories fall within the de-
fense response. Moreover, we found that
the establishment of the defense system
is a complex process that involves a
wide spectrumof functions, including re-

sponse to wounding (16 correlated genes, P-value=6.8 ×10−6), re-
sponse to bacterium (26 genes, 7.1 × 10−6), response to biotic
stimulus (41 genes, 7.7 × 10−6), response to acid chemicals (41
genes, 0.00027), and response to other organisms (39, 2.3 × 10−5)
(Supplemental Table S8). The genes thatwere assigned to defensive
function were mostly positively correlated with rRNA expression.
Similarly, we found that genes that were positively correlated
with rDNA in GShoot were also enriched in defensive functional
groups (Supplemental Table S9). These results may indicate that
in plants at very young stage, the primary requirement is to build
a self-defense system for protection; thus, these categories of genes
will be more active and productive at this stage. For maize kernels,
however, unique functional categories of genes were found to be
coexpressed with rDNA (Supplemental Table S10). Many genes in-
volved with cellular macromolecule metabolic pathways and re-
productive system development are highly expressed, which
correlates with the fact that chemical compounds are synthesized
and stored during the seed formation. In addition, we observed a
considerable number of functionally enriched genes that have a
role in gene regulation, including gene silencing and epigenetic

A

B C

Figure 4. The rDNA expression pattern among tissues. (A) Variable expression of rDNA between tis-
sues. (B) From the leaf base to the leaf tip, the 45S rDNA expression decreased gradually (tested with
26 samples). (C) Pearson’s correlation analyses of 45S expression in different tissues. (GRoot)
Germinated plant root; (GShoot) germinated plant shoot; (L3Base) basal part from the third flag leaf;
(L3Mid) middle part from the third flag leaf; (L3Tip) top part from the third flag leaf; (Kernel) maturing
kernel; (LMAD) mature leaf under daylight; (LMAN) mature leaf at night.
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regulation (Supplemental Table S10). These genes may regulate
rDNA transcription by repressing its transcription or post-tran-
scriptional degradation (e.g., GRMZM2G047949, which functions
in RNA degradation).

We also observed some differences between L3Base and L3Tip
by comparing the associated GO terms. In L3Base, most genes that
positively correlated with rDNA were functionally enriched for
translation and ribosome biogenesis (Supplemental Table S11), in-
dicating the basic infrastructure (e.g., the ribosome) for protein
translation is required in high amounts in very young cells. In
L3Tip, however, ribosome assembly is not a priority pathway; in-
stead, photosynthesis and starch export are themost important bi-
ological processes for the mature leaf cells (Supplemental Table
S12). GO analysis in LMAN revealed a possible change during
the shift between day and night. During the night, photosynthesis
is weakened, while genes involved in response to external stimuli
becomemore active, especially those related to adapting to chang-
es in light and temperature (Supplemental Table S13).

Tissue-specific ribosome biogenesis

Our coexpression analyses revealed two features for the interaction
between the transcription of 45S and r-protein genes. First, we
identified 66, 11, 51, 98, and 106 r-protein genes in the GRoot,
GShoot, Kernel, L3Base, and L3Tip libraries, respectively (Supple-
mental Table S14). However, no single gene was shared by all
five tissues (Fig. 7A). Second, despite most ribosomal genes being
positively correlated with the rRNA expression level, unexpectedly
large numbers of ribosomal genes showed a negative correlation
with rRNA in some tissues, especially in mature tissues. For exam-
ple, 62 of 106 r-protein genes were negatively correlated with
rDNA in L3Tip, and 40 of 51 genes showed a negative correlation
with rDNA expression in the kernel. However, in very immature
tissue, such as L3Base, almost all r-protein genes (97/98) showed

a positive correlation with rDNA ex-
pression. Additionally, we identified 29
r-protein genes that were coexpressed
with rDNA in both L3Base and L3Tip
(Fig. 7B). Among these genes, 17 showed
a positive correlation in both tissues, but
the remaining 12 genes showed a nega-
tive correlation from L3Base to L3Tip
(Supplemental Table S15). We observed
an rRNA expression decrease from
L3Base to L3Tip (Fig. 4B); therefore, we
continued to investigate whether the in-
creased expression of these 12 genes from
L3Base to L3Tip is the reason for reverse
direction of correlation. We therefore
explored the pattern of expression alter-
ation and found that the 29 shared r-pro-
tein genes, as well as rDNA, demonstrated
an overall decrease in expression among
most maize taxa during the transition
from L3Base to L3Tip (Fig. 7C,D).

Tests on the potential role of 45S

in phenotypic variation

To investigate whether 45S rRNA can
cause phenotypic variation by CN varia-
tion or expression changes or both, we
first investigated the relationship be-

tween the CN of 45S and phenotype measurements. CN of 45S
showed no significant correlation with most measured agronomic
traits, except for flowering time–related traits, which showed a
weak positive correlation (Supplemental Fig. S17). We also test-
ed this association for three other types of tandem repeats:
Knob 180, Knob TR1, andCentC. As expected, the knob-related re-
peats had a very significant positive association with flowering
time and the centromere repeats also showed a weak positive cor-
relation (Supplemental Fig. S17). This result suggested that large
amounts of repeat sequences within the maize genome might de-
lay flowering by an unknown mechanism, as previously reported
(Rayburn et al. 1994).

A

B

Figure 5. The relationship between 45S rDNACN and 45S rRNA expression. (A) Correlation of 45S CN
and expression in seven tissues. (B) Spearman’s correlation coefficients between 45S rRNA CN and ex-
pression data in seven different tissues.

Figure 6. Gene Ontology (GO) enrichment analysis of 1438 coregu-
lated genes. The top five GO terms in three different categories are exclu-
sively enriched within ribosome biogenesis and protein synthesis.
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Correlation analysis between rRNA expression variation and
phenotypic variation among maize taxa revealed a significant
negative association between flowering time and rDNA expression
level in leaves collected at night (LMAN) (Fig. 8). We hypothesized
that rDNA might not regulate flowering time directly, but the
genes that are coregulated with rDNA might play such a role.
Therefore, we investigated the function of 1610 rDNA coregulated
genes in LMAN and identified 40 genes that were functionally en-
riched in reproductive system development (related to flowering
timing). Notably, all 40 genes showed positive correlations with
rDNA expression. We further tested the correlation between
flowering time and gene expression and showed that 22 of them
have a significant negative correlation with days to silk (DTS)
and days to pollen shed (DTA; Pearson’s coefficient between
−0.22 and −0.58) (Supplemental Table S15). We further tested
the effects of expression variation of these genes in other tissues;
however, no strong association was detected other than in LMAN,
suggesting that these genes might specifically contribute to the
genetic variation of maize flowering time under night condi-
tions. KEGG analysis identified three genes (GRMZM2G107945,
GRMZM2G172152, and GRMZM5G844173) that are involved in
the blue light–triggered circadian rhythm pathway, which regu-
lates the downstream flowering pathway (Supplemental Fig.
S18). GRMZM2G107945 is homolog of a clock-controlled gene,
FKF1, which regulates the transition to flowering in Arabidopsis.
The fkf1 mutant shows a late-flowering phenotype (Nelson et al.
2000). GRMZM2G172152 is a homolog of CRY2, encoding crypto-
chrome-2, a photoreceptor regulated by blue light and involved
in floral initiation (Liu et al. 2013). GRMZM5G844173 is a homo-

log of the GIGANTEA (GI) gene in Arabidopsis, which is a circadian
clock–controlled gene that delays flowering under long day con-
ditions when it is mutated (Fowler et al. 1999). Taken together,
these multiple gene expression variants might play a role in
controlling natural variation of flowering time among diverse
maize lines.

Discussion

The reasonability of utilizing 3′mRNA-seq data to quantify

rRNA expression

To use 3′mRNA-seq data to quantify 45S rRNA requires two facts:
First, the total rRNA is entirely maintained in RNA samples for li-
brary preparations. This can be ensured with our 3′ mRNA se-
quencing technique, because there is no rRNA removal process
and started with equal amount of total RNA. Second, the regions
within 45S for generating reads can be repeatedly and robustly se-
quenced with the same efficiency to make the reads generated
from different samples comparable. This is now difficult to be val-
idated by experiments. However, in theory, several reasons are pro-
posed to support this hypothesis.

First, we have proven these mapped reads are truly generated
from rRNA. The reads, which can be mapped onto 45S gene locus,
have two possible origins: one from genomicDNA contamination,
the other from transcribed 45S rRNA. From the mapped positions
of reads (Fig. 3), there are no reads mapped on the IGS (not tran-
scribed intergenic spacer), excluding the possibility of DNA
contamination.

BA

D

C

Figure 7. Tissue-specific expression of r-protein genes. (A) Venn diagram shows shared r-protein genes among different tissues. (B) The expression pat-
tern of 17 shared r-protein genes with same direction of correlation with rRNA between L3Base and L3Tip, suggesting that most genes in most maize lines
show decreased expression from L3Base to L3Tip. (C) Twenty-nine r-protein genes were identified to be shared between L3Base and L3Tip. (D) The expres-
sion pattern of 12 shared r-protein genes, which show different directions of correlation with rRNA expression between L3Base and L3Tip. Similarly, these
genes also showed decreased expression levels. Color key indicates log2 (E1/E2), where E1: rpm (reads per million) (L3Base); E2: rpm (L3Tip) for each gene.
The blue bar indicates an expression level decrease, and the red bar indicates an expression level increase. Gene details can be found in Supplemental Table
S15.
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Second, based on the methodology of 3′mRNA-seq, the most
possible cause of unexpected 45S rRNA readswas themismatch be-
tween poly(T) primer and some regions within 45S rRNA (Supple-
mental Fig. S19). Although we have no direct evidence, this
mispriming should happen very often. For example, when trying
to isolate mRNA with oligo(dT), a considerable amount of rRNA
will be transferred together with mRNA. However, compared
with poly(A) on mRNA, the poly(A)-like sequence regions are
not as efficient as poly(A) and finally cause the unevenness of
the sequencing coverage across the whole 45S. Actually, when
checking the context of genomic sequence of rRNA, positive con-
cordance between frequency of poly(A) like motif and read depth
has been found, which is an indirect piece of evidence to support
our hypothesis.

Third, this amplification by misguide of poly(T) is not
accidental but repeatedly occurred among approximately 2000
samples. More importantly, we investigated the SNP pattern up-
stream of Region 2; there is no variation within all tested samples.
That means the sequencing efficiency should be comparably sim-
ilar among samples and made the normalized reads number
comparable.

rRNA expression, not rDNACN, affects gene expression in maize

In maize, we observed the lack of a correlation between the rRNA
gene CN and the rRNA expression level, which is possible because

rRNA transcription is regulated not only genetically but also epige-
netically and because the expression level is potentially indepen-
dent of the absolute number of 45S copies (Chen and Pikaard
1997; Zillner et al. 2015). A previous study also revealed there is
not necessarily a positive correlation between CN and expression
(Buescher et al. 1984). Another possible reason is that different
maize inbred lines accumulate different proportional amounts of
nonfunctional copies of 45S, which eventually leads to disruption
of the correlationbetweenCNand the expression level. First,many
45S copies have been found outside the cluster on Chromosome
6.Thesecopiesmaygraduallydegrade intopseudogenesor silenced
copies without the correction of gene conversion (Benevolenskaya
et al. 1997; Ganley and Kobayashi 2007). Second, we found a con-
siderable numberof SNP types in45Smonomers that cannot beob-
served in45S transcripts by comparinggenomicdatawith theRNA-
seq data (Supplemental Fig. S20). This observation directly sup-
ports the notion that a large number of 45S copies in the maize ge-
nome cannot be transcribed, at least under our tested conditions.

Our initial expectation was to detect the genes whose expres-
sion can be regulated by 45S CN in maize, as revealed in a human
population (Gibbons et al. 2014); however, our results indicated
that rRNA expression, not rDNACN, plays such a role in regulating
gene expression in maize. Actually, we suspected that the correla-
tion detected between 45S CN and gene expression in humans
might reflect the coexpression between rRNA and related genes
because these correlated genes behaved as coexpressed genes and

F
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E

Figure 8. Flowering time is negatively correlated with the rDNA expression level and the coexpressed gene expression level among maize 282 panel
(comprising 244 inbred lines). (A,B) Correlation between rDNA expression and best linear unbiased predictions (BLUPs) for days to silk (DTS) and days
to pollen shed (DTA). The x-axes represent the CN of rRNA, and the y-axes represent phenotype measurements (BLUPs). (C–F) Correlation between
BLUPs for DTS and three genes, and the mean expression value of 22 negatively correlated genes. The x-axes represent the RPM of individual genes,
and the y-axes represent phenotype measurements (BLUPs).
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were enriched within the same pathway.We deduced that the rea-
son why the investigators observed an association between rDNA
CN and individual gene expression in humans was perhaps a re-
flection of a positive correlation between human rDNA CN and
the rRNA expression level. However, this correlation is disrupted
in maize, and no association between rRNA CN and gene expres-
sion could be observed.

Coregulated pathways between protein-coding genes

and rRNA

Ribosome biogenesis requires the collaborative effort of cotran-
scribed rRNA and r-proteins (Nomura et al. 1984), but which one
is the upstream regulator remains an open question. The rRNA
and ribosomal proteins result from different transcription path-
ways; therefore, this cooperative behavior suggests that transcrip-
tion via Pol I, Pol II, and Pol III may be well connected. In
mammalian cells, rRNA transcription is the limiting step in ribo-
some biogenesis (Kopp et al. 2007), indicating the rRNA expression
is an upstream regulator. After rRNA transcripts are generated, the
r-proteins need to be translated to hierarchically bind on rRNA
to protect it from degradation and eventually form a completely
functional ribosome (Nomura et al. 1984; Kressler et al. 2010),
implying that rRNA transcription precedes that of some r-protein
genes.

In addition to genes participating in ribosome assembly,
we also detected a large number of genes enriched within other
functional groups that correlated with 45S expression. It is not
well understood how coexpression between these genes and 45S
rRNA is achieved. However, manipulation of rRNA transcription
indeed affects gene expression (Derenzini et al. 2017; Makabe
et al. 2017b). Notably, the coregulated genes are highly enriched
within important functional groups, such as ribosome biogenesis
in the developing leaf base, or photosynthesis in the mature leaf
tip. Furthermore, a previous studymeasured the protein/mRNA ra-
tios across a maize leaf gradient and found that protein/mRNA ra-
tios are higher for proteins with critical functions at specific
developmental stages (Ponnala et al. 2014), implying the genes
coregulated with rRNA expression (or ribosome amount) maybe
promote protein synthesis.

Methods

Maize data resources

Themaize reference genome used in this study refers to the assem-
bly B73 RefGene_v3. Genome sequences and the gene annotation
GFF3 (v3.27) file were downloaded from ftp://ftp.ensemblge
nomes.org/pub/plants/release-27/gff3/zea_mays. Whole-genome
resequencing (WGS) data for the 282 panel were described on
http://www.panzea.org/ and can be accessed in the NCBI
BioProject database (https://www.ncbi.nlm.nih.gov/bioproject)
under accession number PRJNA389800. Phenotypic data for the
282 panel used in this study, including best linear unbiased pre-
dictions (BLUPs) for some traits, can be found at https://www.
panzea.org/phenotypes. All 3′ mRNA sequencing data used in
this study can be accessed in the NCBI Sequence Read Archive
(SRA; http://www.ncbi.nlm.nih.gov/sra) under accession number
SRP115041 and in the NCBI BioProject database (https://www.
ncbi.nlm.nih.gov/bioproject) under accession number PRJNA
383416. Methods and any other details about 3′ mRNA sequenc-
ing data can be found in our previous paper (Kremling et al. 2018).

Single-copy and multiple-copy data set

We initially identified SC exons and introns within the maize ge-
nome using the following procedures: (1) We extracted all exons
and introns from the maize genome annotation from the longest
mRNA for each gene model (300–5000 bp in length); (2) we con-
ducted All-To-All BLASTN (E<10−6) for exons and introns sepa-
rately and kept the exons and introns if they could be aligned
only to themselves (15,877 exons and 12,538 introns passed this
filter); and (3) these potential SC exons and introns were aligned
back to the reference genome (10 chromosomes and 511 scaf-
folds), and the exons and intronswith only one hit (to themselves)
were retained. Reference repeat sequences in the maize genome,
including 5S rRNA, 45S rDNA, CentC (maize centromere repeat),
and Knob 180 and Knob TR1 (two specific repeats enriched within
maize knob heterochromatin regions), were downloaded from
NCBI and verified by aligning with the B73 reference genome.
Each kind of refined repeat sequence was then mapped onto the
reference to recover all copies within the reference using BLASTN
(E<10−6). Repeat units <100 bp were excluded from repeat data
set. Finally, several BED-formatted files were created to record
the genomic positions of SC DNA and repeat DNAs. The 45S
rRNA is too long (∼8 kb) to accurately identify every SC within
the whole genome; therefore, structural elements, including 18S,
ITS1, 5.8S, ITS2, and 25S, were aligned separately onto the B73 ref-
erence to determine the complete distribution of 45S rRNA. The
custom Perl scripts for this part of the work can be accessed in
Supplemental Text S1.

CN estimation

An overview of the pipeline to estimate the rDNACN is illustrated
in Supplemental Figure S1. This method has previously been used
to calculate the 45S CN for a human population (Gibbons et al.
2014). Our method involved some modifications as follows:
First, we started with whole-genome alignment BAM files, not
the 45S rRNA reference alignment files. WGS reads were mapped
onto the B73 reference sequence by using BWA with default pa-
rameters and allowed any reads with multiple best-quality hits to
be randomly placed on the genome.We then identified all possible
regions (repeat copies) that were aligned to retrieve all reads gener-
ated from a certain kind of repeat. This approach has the benefit of
saving computing time and data storage space because you do not
need to maintain large FASTQ files. Second, we used the multicov
function in BEDTools (Quinlan and Hall 2010) to count the
mapped read number and then calculated the read depth but did
not use thempileup function in SAMtools (Li et al. 2009) to directly
calculate the read depth. This is because computing mpileup com-
binedwith awhole-genome BAM file is too expensive. The custom
Perl scripts for this part of the work can be accessed in Supplemen-
tal Text S2. We removed 5% of the SC DNAwith the maximum or
minimum RD, because these SC DNA represent genomic regions
either showing CNV among individual taxon or with greatest se-
quencing bias. This normalization resulted in a slight increase in
the correlation between SC exons and introns. By using this ap-
proach, the CNs for 5S, 45S, Knob 180, Knob TR1, and CentC
were estimated.

qPCR validation of rDNA CN results

We initially made a series of diluted genomic DNA templates (10–
160 ng, by twofold increase) and tested whether qPCR result can
reflect a twofold template increase in different samples.We collect-
ed seeds for 30 maize lines from 282 panel population (each of 10
have highest, medium, and lowest rDNA CN, respectively) and
grew them in a climate control chamber. Of them, six maize lines
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had no germination, and genomic DNA for other 24 lines was ex-
tracted from the leaves from young plants (9 d after germination)
by using a plant genomic DNA kit (catalog no DP305) provided by
Tiangen Biotech. qPCR primers were designed for rDNA and SC
gene in B73 reference (Supplemental Table S16). All PCR products
were first checkedwith 1.5% agarose gel. After all primerswere suc-
cessfully validated, qPCR assays were conducted on a CFX real-
time system with SsoFast EvaGreen supermix kit (Bio-Rad) follow-
ing standard protocol. For each sample, three technique repeats
were used to reduce the variation from the template input amount.
The relative CN amount for rDNAwas calculated based on the fol-
lowing equation:

Relative CN of rDNA = 2(Ct0−Ct1),

where Ct0 is themean of Ct value for rDNA, andCt1 is themean of
Ct value for SC gene. The correlation analysis of CNs of rDNA be-
tween qPCR results and NGS results was used to measure the con-
sistency of two methods.

GWAS and variance component analysis

Genome-wide association mapping of the 45S rDNA CN was
implemented in TASSEL 5.0 (Bradbury et al. 2007) with the
HapMap3.1 unimputed SNP data set. The details about the vari-
ance component analysis (or variance partitioning) were the
same as those in a previous study (Rodgers-Melnick et al. 2016).
We separately estimated the genetic contributions to the rDNA
copy dosage explained by individual chromosomes. Maize 45S
rDNA is mainly located on Chromosome 6; therefore, we first par-
titioned 50 Mb HapMap3.1 unimputed SNPs into two groups:
SNPs fromChromosome 6 and SNPs from the other chromosomes.
Each kinship matrix for the 282 panel population was calculated
within the subgroup SNP data using the “Scaled_IBS” method in
TASSEL 5.0. Partitioned variance between Chromosome 6 and
the other chromosomes for the CN of 5.8S, 18S, and 25S rDNA
was computed using the MultiBLUP method implemented in the
LDAK package, version 4.5 (Speed and Balding 2014).

Estimate of the narrow sense heritability for the CN of repeats

Narrow sense heritability (h2) was calculated based on the follow-
ing equation:

h2 = s2
g 4 (s2

g + s2
e ),

where s2
g represents additive variance, and s2

e represents environ-
mental variance. For each trait, s2

g and s2
e were calculated by using

TASSEL 5.0 with a MLM.

Identifying SNPs within 45S rDNA among maize inbred lines

WGS clean data (after removing adapters and low-quality reads)
were aligned onto one B73 45S reference sequence using Bowtie
2 (Langmead and Salzberg 2012) with default parameters.
The alignments were processed using the mpileup function in
SAMtools with –d 1000000 to extract polymorphic information
for each base for the 45S rDNA. In the 282 panel population, we
counted the number of lines for each polymorphic site and sum-
marized the density for different structural segments.

Quantifying 45S rDNA expression level

We selected 1923 RNA-seq data fromGRoot (291 samples), GShoot
(295), Kern (254), L3Base (302), L3Tip (295), LMAD (210), and
LMAN (276) by matching taxa names with 282 panel data and
mapped these reads onto the 45S and 5S B73 sequences using
Bowtie 2. No reads from the 5S rDNA were found in our data.

Thus, further research was only conducted on 45S rDNA expres-
sion. We counted mapped read numbers for each peak region
using the idxstats function within SAMtools. To test the relation-
ship between rDNA CN and expression, we matched two data
sets by selecting taxa with both CN estimates and expression
quantity.

Genome-wide association test between 45S rRNA

and gene expression

Mapped read counts were generated for 39,625 maize reference
gene models (including 153 miRNAs) (Kremling et al. 2018). To
perform a correlation test between gene expression and rRNA ex-
pression, we first integrated rRNA read counts with gene read
counts for each library and normalized the data using geometric
mean implanted in the R package “DESeq2” (Love et al. 2014).
Normalized gene expression data were used to perform the correla-
tion analysis, with the requirement that any gene must have ex-
pression data for over 50 individuals. Gene expression data were
first correlated with the CN of the rDNA and then correlated
with rRNA expression data in seven tissues. Bonferroni correction
was applied for multiple comparison P-value adjustments (Dunn
1961). Data analyses were performed using R (R Core Team 2016).

Coregulated gene function analysis

GO analysis were used to test the biological functions of the en-
riched genes using PlantRegMap (http://plantregmap.cbi.pku.
edu.cn/go_result.php) (Jin et al. 2017). Biological pathwayanalysis
was conducted using KOBAS 2.0 (http://kobas.cbi.pku.edu.cn/),
which is an online tool developed for KEGG pathway analysis
(Xie et al. 2011). For r-protein gene annotation, we refer to GO
analysis results. Within this result, some r-protein gene could be
assigned to very specific function, e.g., small subunit ribosomal
protein S3e; some were just functionally annotated into r-protein
groups.

Cluster analysis of r-protein genes from different tissues

Genes annotated as ribosomal protein coding genes fromdifferent
tissues were clustered to identify shared genes. For the 29 shared
genes between L3Base and L3Tip, we separated them into two sub-
groups (based on the correlation direction with the rRNA). To test
the expression pattern of r-protein genes between L3Base and
L3Tip, we calculated the ratio of expression between L3Base and
L3Tip for each gene and generated heat maps to illustrate the
gene expression patterns.
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