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ABSTRACT Given its ability to measure multicomponent distance distributions between electron-spin probes, double electron-
electron resonance (DEER) spectroscopy has become a leading technique to assess the structural dynamics of biomolecules.
However, methodologies to evaluate the statistical error of these distributions are not standard, often hampering a rigorous inter-
pretation of the experimental results. Distance distributions are often determined from the experimental DEER data through a
mathematical method known as Tikhonov regularization, but this approach makes rigorous error estimates difficult. Here, we
build upon an alternative, model-based approach in which the distance probability distribution is represented as a sum of
Gaussian components, and use propagation of errors to calculate an associated confidence band. Our approach considers
all sources of uncertainty, including the experimental noise, the uncertainty in the fitted background signal, and the limited
time span of the data collection. The resulting confidence band reveals the most and least reliable features of the probability
distribution, thereby informing the structural interpretation of DEER experiments. To facilitate this interpretation, we also gener-
alize the molecular simulation method known as ensemble-biased metadynamics (EBMetaD). This method, originally designed
to generate maximal-entropy structural ensembles consistent with one or more probability distributions, now also accounts for
the uncertainty in those target distributions exactly as dictated by their confidence bands. After careful benchmarks, we demon-
strate the proposed techniques using DEER results from spin-labeled T4 lysozyme.
INTRODUCTION
Double electron-electron resonance (DEER) spectroscopy is
a pulsed electron-spin resonance technique that is widely
used to measure long-range distances between paramagnetic
species, typically extrinsic probes introduced into biological
macromolecules by some form of site-directed spin labeling
(1–3). The main advantage of DEER lies in its ability to go
beyond measuring the average distance between labels and
resolve complex distance distributions that depend on both
the rotameric states of the spin labels and also on differences
in backbone structure of the protein or other biomolecule. It
is this sensitivity to distinct backbone conformations that
allows DEER experiments to give unique insights into
the structure and functional dynamics of the protein under
study (4).

The translation of an experimental time-domain DEER
signal D(t) into a distance distribution P(R) is, however,
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an ill-posed mathematical problem in that small variations
in D(t) can lead to large variations in the P(R) obtained.
To address this issue, approaches to the analysis of DEER
data impose some degree of smoothness on P(R) either by
adding an adjustable smoothness factor to the fit criteria
via Tikhonov regularization (TR) (5–8) or by assuming
some smooth functional form, such as a sum of Gaussian
components, to model P(R) (9–12).

The experimental DEER time-domain signal is the prod-
uct of a factor arising from the dipolar interactions between
the small number of spins (typically two) within a labeled
molecule, DO(t), and a background signal, DB(t), arising
from a large number of intermolecular dipolar interactions.
Thus,

DðtÞ ¼ DOðtÞ � DBðtÞ: (1)

Properly accounting for the background signal is therefore
necessary to determine the desired intramolecular distance
distributions that are reflected in DO(t).

Application of the TR method requires that an estimate
of the background factor be made a priori by fitting the latter
portion of the time-domain signal D(t). This estimated
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background factor enables the determination of a back-
ground-corrected signal as an estimate of DO(t) that is
then analyzed to give a distance distribution. Error estima-
tions are typically made a posteriori by assessing the effects
of the background correction and of the experimental noise
at an arbitrary statistical-significance level. More recently, a
rigorous Bayesian approach has been developed within the
TR framework for quantifying the uncertainty in P(R) due
to the experimental noise and the uncertainty in the choice
of the optimal regularization parameter (13). This Bayesian
approach does not, as of yet, allow for an estimate in the
uncertainty of P(R) due to the background correction.

An alternative model-based approach, in which P(R) is
represented as a sum of smooth basis functions, e.g.,
Gaussian components, relies on the simultaneous determi-
nation of the best-fit parameters modeling both DB(t) and
DO(t) by a nonlinear least-squares algorithm. The advan-
tages of a model-based approach for the analysis of
DEER data, as opposed to a priori background correction
followed by TR, have been detailed previously (9,10).
One of these advantages is the ability to perform a rigorous
error analysis on the various fit parameters, including those
used to define P(R). For multicomponent distance distribu-
tions, however, it can be difficult to appreciate how the
parameter uncertainties affect the confidence in the result-
ing P(R).

In this work, a robust and computationally efficient algo-
rithm is developed to quantify the uncertainty in P(R) in
terms of a confidence band about the best-fit solution.
This confidence band reflects the influence of both the noise
in the measured data and the uncertainty in the estimate of
the background correction and can be calculated with no
significant increase in computation time.

The algorithm uses the method of propagation of errors,
otherwise known as the delta method, to estimate the vari-
ance in a function, here P(R), of a set of random variables,
here all the best-fit parameters for a given D(t) (14–16). We
demonstrate the validity and robustness of the delta method
as applied to the analysis of DEER data using different sets
of simulated data. Then, we analyze experimental data from
T4 lysozyme (T4L) using the new algorithm. Confidence
bands obtained using the delta method quantify the reli-
ability of each of the features of the distance distributions,
thus permitting an objective comparison of results from
different experiments.

Once estimates of P(R) and its associated error have been
obtained, the next step is to use these data for assessing the
structural dynamics of the biomolecule. This is a nontrivial
task because P(R) reflects both variations in the backbone of
the structure and in the configuration of the spin labels. Even
for a rigid protein, for example, different rotamers of
(1-Oxyl-2,2,5,5-tetramethyl-D3-pyrroline-3-methyl) meth-
anethiosulfonate spin labels can result in 10-Å-wide
distance distributions featuring multiple peaks (17–20). Mo-
lecular dynamics (MD) simulations are arguably the most
rigorous approach to model this variability. Of particular
value are advanced simulation approaches that implement
a bias on the calculated trajectories so as to reproduce the
experimentally determined P(R) while fulfilling the so-
called maximal-entropy condition, i.e., when the bias
applied is the minimum required (17,18). To our knowledge,
however, none of the biasing techniques of this kind con-
siders explicitly the experimental errors in the target data,
which can lead to erroneous interpretations. Here, we gener-
alize one of these advanced simulation techniques, known as
ensemble-biased metadynamics (EBMetaD), precisely so as
to account for the uncertainty of the input data. Like the
original EBMetaD, the method is based on an adaptive
biasing algorithm that gradually constructs a molecular
ensemble consistent with the target distribution. However,
in this version the bias applied is the least required for the
simulated P(R) to be consistent with the experimental con-
fidence bands, rather than with the optimal P(R). The
EBMetaD method can be applied to probability distribu-
tions corresponding to any structural descriptor, either ob-
tained through an experimental measurement or postulated
theoretically. This innovative simulation methodology is
first benchmarked on a small-molecule system using a hypo-
thetical distribution corresponding to a dihedral angle.
Then, EBMetaD is applied to the abovementioned DEER
data for T4L to construct the corresponding structural en-
sembles in explicit water.
METHODS

Simulated and experimental DEER signals

Simulated DEER data were generated using the program DEERsim version

2 running in MATLAB R2017a (The MathWorks, Natick, MA) with artifi-

cial noise added in the form of normally distributed random numbers with a

given SD. DEERsim is based on previously published algorithms for calcu-

lating DEER time-domain signals (9) and is freely available at https://lab.

vanderbilt.edu/hustedt-lab/software. In some cases, 10,000 replicate data

sets were created from the same noiseless time trace and used to evaluate,

via Monte Carlo simulations, the proposed methodologies for estimating

the confidence in the fit parameters and in P(R). The experimental DEER

signals for the three double-labeled mutants of T4L (namely residues

62 and 109, 62 and 134, and 109 and 134) were taken from previously

published work (21,22).
Analysis of DEER data

The simulated and experimental DEER data were analyzed using the pro-

gram DD version 6C running in MATLAB R2017a as previously described

(10) with modifications to allow for 1) the calculation of Bayesian informa-

tion criterion values, 2) the estimation of parameter uncertainties from the

variance-covariance matrix, and 3) the calculation of a confidence band for

the best-fit P(R) using the delta method. Details on each of these three new,

to our knowledge, procedures are provided below. DD is freely available at

https://lab.vanderbilt.edu/hustedt-lab/software.

Assuming an ideal three-dimensional solution, simulated DEER signals,

F(t), are modeled according to

FðtÞ ¼ OðtÞ � EðtÞ; (2)
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where O(t) is the calculated signal for the pair of spins within a molecule,

OðtÞ ¼ ð1� DÞ þ D

Z N

0

PðRÞGðudtÞdR; (3)

and E(t) is an exponential to account for the background intermolecular

interactions,

EðtÞ ¼ e�10lt: (4)

Here, D is the modulation-depth parameter, l is a parameter governing

the exponential background decay rate, P(R) is any probability distribution

for the intramolecular interelectron distance, andG(udt) is a kernel function

defined previously (5,13,23):

GðudtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ S2

p

k
cos

�
udt � tan�1S

C

�

¼ C

k
cosðudtÞ þ S

k
sinðudtÞ; (5)

where C and S are the Fresnel cosine and sine integrals

C ¼
Z k

0

cos
p

2
x2 dx S ¼

Z k

0

sin
p

2
x2dx

k ¼
ffiffiffiffiffiffiffiffiffiffiffi
6udt

p

r
ud ¼ g2m2

Bm0

4pZ

1

R3

(6)

and the symbols in the equation for ud represent the usual physical

constants.

Our analysis of DEER data is based on the assumption that P(R) can be

described by a sum of n Gaussian components:

PðRÞ ¼ a1p1ðRÞ for n ¼ 1 (7)

and

PðRÞ ¼ s
Xn
k¼ 1

fkpkðRÞ for n> 1; (8)

where a1h1, and

fk ¼ ð1� akþ1 Þ
Yk
j¼ 1

aj for k < n (9)

and

fn ¼
Yn
j¼ 1

aj: (10)

The Gaussian components are given by

pjðRÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

rj

q exp

(
��R� r0j

�2
2s2

rj

)
: (11)

Alternative basis functions with non-Gaussian shapes may also be used

(see Supporting Material). The use of the aj > 2 as fit parameters guarantees

that for any value of n and any set of 0% aj > 2 % 1, the resulting P(R) will
1202 Biophysical Journal 115, 1200–1216, October 2, 2018
be normalized. For a given number of components n, the set of 3n � 1 vari-

ables r0j, srj, and aj > 2 define P(R). All of these variables, together with

D, l, and a scale factor, constitute the set of parameters bl ¼ 1,2,.,q that

need to be determined for a given experimental signal and a given model

(i.e., a specific value of n). We define the best-fit values of these parameters

as those that minimize the reduced chi-squared value:

c2
n ¼ 1

ðN � qÞ
XN
i¼ 1

½ DðtiÞ � FðtiÞ�2
s2i

; (12)

where D(t) is the experimental time-domain DEER data, N is the total num-

ber of data points, q is the total number of parameters considered in the fit, si
is the estimated noise level (SD) of the ith data point, and ti is the time value

of the ith data point. Here, the noise level is assumed to be uniform (si¼ s) at

a level estimated from the SD of the imaginary component of the data.

For comparison, the simulated data were also analyzed using

DeerAnalysis2016 (http://www.epr.ethz.ch/software/index) using an a pri-

ori background correction and TR (6). The zero time, phase correction,

and initial start time for background fitting were determined automatically

using the ‘‘!’’ button. When necessary, the regularization parameter was

manually adjusted to match the corner of the L curve. The ‘‘Validation’’

tool was used to estimate the uncertainty in P(R) due to a range of starting

times for background fitting, with results pruned to eliminate those that

increased the root mean-square deviation by more than 15% as recommen-

ded, although the statistical significance of this increase is unknown.
Bayesian information criterion

Previously, the Akaike information criterion corrected for finite sample size

(AICc) has been used to select the optimal model for a given experimental

signal (10). Here, the closely related Bayesian information criterion (BIC)

is used:

BIC ¼ N ln

 PN
i¼ 1½DðtiÞ � FðtiÞ�2

N

!
þ K lnN; (13)

where K¼ q þ 1. BIC can be used to select the optimum number of Gauss-

ians describing P(R) that explain the data without overfitting (24). The

optimal value of n is the one that results in the lowest BIC. BIC differs

from AICc only in the second term of Eq. 13. For typical values of

N and q (i.e., N R 85 and q % 26), BIC will always increase faster

than AICc with increasing q. Thus, BIC will favor the same model or a

more parsimonious model, i.e., a lower value of n, and in our judgement

is preferable. For a given model j, DBICj is given by

DBICj ¼ BICj � BIC0; (14)

where BIC0 is the lowest BIC value obtained for a given data set. AICc,

BIC, and related criteria have also been recently evaluated by Edwards

and Stoll as methods to determine the optimal regularization parameter

for TR analysis of DEER data (25).
Parameter uncertainties

The methodology proposed herein aims to not only identify the best-fit

values of the set of parameters bl ¼ 1,2,.,q but also their uncertainty. This

uncertainty can be rigorously quantified for each parameter by calculating

a series of one-dimensional confidence intervals (26,27) as described in

detail elsewhere (10). Alternatively, under appropriate conditions, the

parameter uncertainties can be estimated from the standard errors

determined from the covariance matrix C ¼ a�1, where a is the curvature

matrix whose elements are

http://www.epr.ethz.ch/software/index


Confidence Bands and EBMetaD for DEER
ajk ¼
XN
i¼ 1

1

s2l

vFðtiÞ
vbj

vFðtiÞ
vbk

; (15)

where the required partial derivatives are determined numerically via the

forward difference method. The standard errors, sl of each of the parame-

ters are determined from the diagonal elements of C,

s2
l ¼ Cu; (16)

and the off-diagonal elements give the covariances between parameters.

The fit parameters and their uncertainties are reported as

bl 5 zsl; (17)

where z ¼ 1, 2, or 3 depending on whether the confidence level desired is

1s (68.3%), 2s (95.4%), or 3s (99.7%). In contrast to the calculation

of confidence intervals, estimating the parameter uncertainties from

the covariance matrix requires little additional computation. The

validity of both approaches will be assessed below using a Monte Carlo

approach.
Confidence bands

The confidence band for a P(R) is calculated from the full covariance

matrix using the delta method (14–16). Given that the best-fit parameters

are themselves random variables obtained from fitting a given data set,

we have

s2
PðRiÞ ¼ LTCL; (18)

where L is a matrix of the partial derivatives of P(R) at a particular distance

Ri with respect to all of the fit parameters bl ¼ 1,2,.,q, i.e.,

Lji ¼ vP Rið Þ
vbj

: (19)

Here, the partial derivatives of P(R) with respect to aj > 2 are deter-

mined analytically; those with respect to r0j and srj are determined

numerically; and those with respect to other parameters such as D, l, and

the scale factor are strictly zero. The confidence band for P(R) is then

given by

PðRÞ5 zdðRÞ; (20)

where

dðRÞ ¼
ffiffiffiffiffiffiffiffiffiffi
s2
PðRÞ

q
(21)

and z ¼ 1, 2, or 3 depending on whether a band at the 1s, 2s, or 3s confi-

dence level is desired.
MD simulations

All MD simulations were carried out with NAMD versions 2.9-2.12 (28).

The force field used was CHARMM27/CMAP (29,30), augmented by a

force field for the spin labels developed by Sezer et al. (31). The simulations

were carried out at 298 K and 1 bar with a 2-fs time step and periodic

boundary conditions. Van der Waals and short-range electrostatic interac-

tions were cut off at 12 Å; the particle-mesh Ewald method was used to
calculate long-range electrostatic interactions. Two molecular systems are

considered, butyramide in a cubic box with 1467 water molecules

and T4L in a truncated octahedral box with 12,013 water molecules and

Cl� counter ions to neutralize the total charge.
EBMetaD: formalism

We introduce a generalization of the EBMetaD technique (18) to take into

account a confidence band around a distance distribution derived from

experimental data. In MD simulations based on the EBMetaD method, a

function of the atomic coordinates X is defined, namely x ¼ xf[X], and a

time-dependent biasing potential V(x,t) is added to the standard energy

function to ensure that the ensemble of conformations explored during

the simulation is consistent with a given target probability distribution,

r(x). The biasing potential is gradually constructed as a sum of Gaussian

functions of x, added at time intervals t and centered on the instantaneous

value of x (18):

V x; tð Þ ¼
Xt

t0�t;2t;::::

w exp � x� x t0ð Þ½ �2
2s2

G

( )

exp Srf gr x t0ð Þð Þ ; (22)

where x(t0) denotes the value of x at time t0, sG is related to the resolution

used to describe fluctuations of x, w is a scaling parameter of the

Gaussians height, and exp{Sr} is the effective volume spanned by

r(x) (i.e., Sr ¼ � R r xð Þ ln r xð Þ½ � dx is the differential entropy of r(x)).

In the original application of the EBMetaD approach to DEER

spectroscopy (18), the collective coordinate is the interlabel distance

(x ¼ R) and the target probability density is the DEER distance distribu-

tion (r(x) ¼ P(R)), thereby assuming that the uncertainty on P(R) is

negligible. Following the same notation, from here on, we denote the

experimental best-fit distribution as P(x), and its uncertainty is repre-

sented by d(x).

To account for this uncertainty, the new EBMetaD approach targets

not P(x) but P(x) 5 d(x). More specifically, the desired simulated

ensemble corresponds to a distribution that satisfies two requirements: first,

it is inside the experimental confidence band; and second, it minimizes the

amount of bias added to the standard energy function, i.e., it resembles the

unbiased probability distribution of a conventional MD simulation as much

as possible. In practice, this approach requires that the simulation be biased

to sample an adaptive distribution, denoted as r(x,t). This distribution varies

as the simulation evolves so as to ensure both conditions are ultimately ful-

filled. An expression for r(x,t) can be derived either from an extended

formulation of the maximal-entropy principle (32) that considers the exper-

imental uncertainty (unpublished data; (33)) or from a Bayesian approach

(34):

r x; tð Þ ¼ P xð Þ þ d xð Þ2
g x; tð Þ

V x; tð Þ � Vth i
kBT

þ CS

� �( )
R0; k::k¼ 1

;

(23)

where kB is the Boltzmann constant, T is the simulation temperature, and CS

is a shift constant. Here, hVit denotes the average value of the biasing po-

tential at time t, i.e. hVit ¼
R
rðx; tÞ Vðx; tÞ dx, which serves as an offset of

the instantaneous biasing potential V(x,t). The term g(x,t) is a scaling factor

of d(x), initially set to 1 and then updated during the simulation, as

discussed below. The notation f.gR0; k:: k¼1 denotes a projection onto

the probability simplex (35) and guarantees that r(x,t) is positive and
Biophysical Journal 115, 1200–1216, October 2, 2018 1203
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normalized, i.e.,
R
rðx;tÞ dx ¼ 1. This normalization condition, in turn, sets

the value of CS. That is,

CS ¼
1� R

r> 0
P xð Þ þ d xð Þ2

g x; tð Þ
V x; tð Þ � hVit

kBT

� � !
dx

R
r> 0

d xð Þ2
g x; tð Þ dx

:

(24)

Note that in Eq. 24, the integration is performed only in the region of

space where r(x,t) is different from zero. At any given time t, Eqs. 23

and 24 are solved iteratively and self-consistently until CS converges to a

specific value. Note that consistent with the criteria stated above, Eq. 23

implies that a negligible error on P(x) leads to r(x,t)¼ P(x), whereas a large

uncertainty on P(x) reduces the amount of bias added to the simulation.

In practice, the target distribution r(x,t) is constantly updated during

the simulation, and after a transient period, it typically oscillates

around an optimal solution. However, a wide confidence band around

P(x) can result in wide fluctuations of r(x,t) during the trajectory,

potentially compromising the convergence of the method. To avoid such
W ¼ �kBT ln

R
exp �G xð Þ=kBTf gexp � V xð Þ � hVi� 

=kBT
� �

dxR
exp �G xð Þ=kBTf gdx ;

¼ kBT ln exp V xð Þ � hVi� 
=kBT

� �
 �
EBMetaD

(28)
instabilities, a variation of Eq. 23 is used to update r(x,t) at a slower

pace, namely

rðx; tþtÞ¼rðx; tÞð1�hÞ þ h�(
PðxÞþ dðxÞ2

gðx; tÞ
�
Vðx; tÞ � hVit

kBT
þ CS

�)
R0; k:: k ¼ 1

;

(25)

where t is the time range after which r(x,t) is updated and 0 < h < 1 is an

update rate (see below).

The parameter g(x,t) in the previous equations is a weight factor of d(x),

leading to an effective noise term dðxÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi
gðx; tÞp

. The scale factor g(x,t) is

set to attain the largest effective error (i.e., the minimal bias applied to the

MD trajectory) that maintains r(x,t) within the confidence band. This is

achieved by imposing the condition j r(x,t) � P(x) j/d(x) ¼ 1, from which

the following update rule for g(x,t) can be deduced:

gðx; t þ tÞ ¼ gðx; tÞð1� hÞþh dðxÞ
				 Vðx; tÞ � hVit

kBT
þ CS

				 :
(26)

When the uncertainty in P(x) is large, update schemes can be also devised

for d(x) and P(x) to further reduce the time oscillations of r(x,t). For

example, if r(x,t) is within the confidence band, d(x) can be varied

so that it matches approximately the difference between r(x,t) and

P(x). Similarly, P(x) can be updated to get closer to r(x,t), provided that
1204 Biophysical Journal 115, 1200–1216, October 2, 2018
the latter distribution remains in the confidence band. Further details and

specific guidelines for the choice of the simulation parameters are discussed

below.

Like in the original version of EBMetaD, the target distribution r(x,t) is

enforced during the MD simulation by adding the biasing potential in

Eq. 22 to the energy function. After an equilibration time te, this potential

converges to a well-defined curve, and the resulting stationary distribution

r(x,t > te), calculated over the simulation, approaches the target with the

precision dictated by the confidence band. At convergence, the average

biasing potential and the calculated probability distribution can be used

to deduce the free energy, G, as a function of x (18):

V x; t > teð Þz� kBT ln r x; t > teð Þ � G xð Þ: (27)

As shown previously (18), the current methodology can simultaneously

target multiple probability distributions determined using independent

experiments (if these distributions can be assumed to be mutually compat-

ible), simply by summing the corresponding biasing potentials.

Finally, a useful metric to compare different structural interpretations

of the experimental data is provided by the reversible work W required to

construct the biased EBMetaD ensemble. This work is related to the total

amount of bias added throughout the simulation:
where <.>EBMetaD stands for a time average over the simulation, again

for t > te, and

VðxÞ � 
V� ¼ 1

ts � te

Z ts

te

�
Vðx; t0Þ � hVit0


dt0; (29)

where ts is the total simulation time. Note that the value of W from

Eqs. 28 and 29 can be derived analogously from the Kullback-Leibler

divergence of the probability distributions sampled by EBMetaD and by

an unbiased, converged MD simulation, i.e., a measure of the distance

between the two ensembles. That is,

WKL ¼ kBT DKL rEBMetaD krMDð Þ

¼ kBT

Z
rEBMetaD xð Þ ln rEBMetaD xð Þ

rMD xð Þ
� �

dx: (30)

EBMetaD: implementation

The extension of EBMetaD described herein can be freely used with NAMD

2.12 (28) and LAMPS (36), specifically through the ‘‘colvars’’ module (37).

This implementation follows the formalism introduced above. As

mentioned, the convergence of this technique is related to the fluctuations

of the target probability density r(x,t) during the trajectory. These fluctua-

tions in turn depend on the value of parameters w, sG, and t in Eq. 22; on

the update rate of r(x,t); and on the width of the confidence band (P(x) 5

d(x)). To optimize the performance of EBMetaD, P(x) and d(x) may be up-

dated on time according to the following criteria:



d x; t þ 1ð Þ ¼ d x; tð Þ 1� hdð Þ þ hdCdjr x; tð Þ � P x; tð Þj if d x; t þ tð Þ< d xð Þ
dx if d x; t þ tð ÞRd xð Þ

�
(31)

and

P x; t þ tð Þ ¼ P x; tð Þ 1� hPð Þ þ hPr x; tð Þ if j r x; tð Þ � P xð Þ j< d xð Þ
P x; tð Þ 1� hPð Þ þ hPP xð Þ if j r x; tð Þ � P xð Þ jRd xð Þ

�
: (32)

FIGURE 1 Fits to simulated DEER data generated using a single

Gaussian to model P(R) (r0 ¼ 32.5 Å and sr ¼ 2.5 Å). Data were simulated
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In these equations, Cd> 1 and was set to 1.5 for all the simulations. The pa-

rameters hd and hP are update rates (0< hd, hP< 1) that must be selected as a

fraction of h in Eqs. 31 and 32. The latter term is also selected as a fraction

(0% Ch % 1) of the biasing potential update rate (18):

h ¼ Ch

wsG

ffiffiffiffiffiffi
2p

p

kBT expfSrg : (33)

The choice of h, hd, and hP in Eqs. 31, 32, and 33 relates to the time

required to reach equilibration; the duration of this equilibration stage is

on the order of t divided by the corresponding rate parameter. To accelerate

convergence, the rate parameters can be selected larger in the first part of

the simulation and then gradually reduced. To assess whether the latter pa-

rameters have been set reasonably, it is useful to monitor the time fluctua-

tions of the constant CS and of r(x,t) (Eqs. 23 and 24). Large oscillations in

CS, associated with intermittent values of r(x,t) that become zero, are an

indication of poor convergence, implying that the value of the rate param-

eters must be reduced.

In the butyramide simulations described below, the variable biased by

EBMetaD is the dihedral angle defined by atoms N, C, Ca, and Cb.

Gaussians of height w ¼ 0.025 kcal/mol and width sG ¼ 5 Å were added

every 2 ps and were scaled by the target distribution according to Eq. 22.

The rate parameters were set as Ch ¼ 1 and hd ¼ hP ¼ h/10. During the

initial equilibration stage, lasting 30 ns, the Gaussian height and the rate

parameters were gradually reduced to w ¼ 0.01 kcal/mol, hd ¼ h/10, and

hP ¼ h/40.

In the simulation of T4L, the variables biased by EBMetaD are the dis-

tances between the centers-of-mass of the nitroxide groups in the spin la-

bels. Gaussians of width sG ¼ 5 Å were added every 2 ps. The parameter

w was initially set to 0.05 kcal/mol and gradually reduced to 0.01 kcal/

mol during equilibration (first 100 ns of simulation). The sampling of the

spin interlabel distance was restricted using flat-bottom potentials in the

ranges [21.8, 38.6 Å], [37.2, 46.3 Å], and [12.3, 48.8 Å] for spin-labeled

pairs 62/109, 62/134, and 109/134, respectively. To avoid the onset of

systematic errors at the boundaries of these intervals, the Gaussians

added to the biasing potential were reflected beyond the boundaries

(38), which translates into a flat biasing potential at the ends of those

intervals. Accordingly, the biasing forces were set to zero outside the

boundaries. In the EBMetaD simulations including the confidence

band, the rate parameters were set according to Ch ¼ 0.25, hd ¼ hP ¼
h/10, and then in the production run, they were scaled down to hd ¼
h/10 and hP ¼ h/40.
for t ¼ �128 to þ2400 ns with a time increment of 8 ns. Normally distrib-

uted random numbers with SD of either 0.005 or 0.050 were added as noise.

(A) The simulated data (blue dots), the fits (solid black lines), and the

best-fit background factor (dashed black lines) are shown. (B) The best-fit

P(R) (solid black lines), the confidence band (2s, shaded gray regions), and

the true P(R) (dashed red lines) used to generate the simulated signal are

shown. Only a portion of the full range (0–100 Å) of R is shown. The values

of each of the fit parameters and their uncertainties are given in Table 2. To

see this figure in color, go online.
RESULTS

Influence of noise level on the confidence band
for a P(R)

We first evaluate, using simulated DEER signals, how the
noise level of the data is reflected in the estimated uncer-
tainties of the fit parameters and the confidence band for
the distance distribution. Fig. 1 shows results obtained
from fitting a simulated signal at two different noise levels
using DD (https://lab.vanderbilt.edu/hustedt-lab/software).
Consistent with the fact that they were simulated for a unim-
odal distance distribution, the n ¼ 1 model gives lower BIC
values for both data sets and is thus favored (Table 1). The
best-fit P(R) for the low-noise example agrees very well
with the true distribution, whereas the best-fit P(R) for the
high-noise case is shifted from the true distribution because
of the higher variance in the fit parameters.

The best-fit parameters from these fits are given in Table 2
along with the parameter uncertainties estimated from the
covariance matrix (Eqs. 15, 16, and 17) and the upper and
Biophysical Journal 115, 1200–1216, October 2, 2018 1205
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TABLE 1 Model Selection for Fits to Simulated DEER Data

Generated Using a Single Gaussian

Noise n c2
y DBIC

0.005 1 0.984 0.0

2 0.982 13.3

0.050 1 1.054 0.0

2 1.0581 15.5

Model selection was for fits in Fig. 1.

Hustedt et al.
lower parameter bounds estimated from confidence-interval
calculations. Example confidence intervals for the parame-
ters r0 and sr are shown in Fig. 2 A. The values reported
for the upper and lower parameter limits are measured
where each c2

n curve intersects the dashed line correspond-
ing to the 2s confidence level.

To ascertain the validity of these parameter uncertainties
and confidence bands, we analyzed fits for 10,000 replicate
signals generated using a Monte Carlo procedure from the
same model and with the same level of added random noise.
Examining all of these results, three important conclusions
can be drawn. First, the distribution of parameter values ob-
tained from 10,000 replicate fits are typically well described
by a Gaussian distribution (Fig. 2 B) and the parameter un-
certainties estimated from a single fit (at the 2s confidence
level) match (twice) the value of the SD of these parameter
distributions (Table 2), as expected. At the highest noise
level, the best-fit parameters for a fit to a single data set
are shifted from the true values because of the increase in
the parameter variance, and both the confidence interval
from the single fit and the histogram from 10,000 fits for
the sr parameter are slightly distorted by the zero lower
TABLE 2 Best-Fit Parameters for the Simulated DEER Data Genera

Noise ¼ 0.005 D l

Best-fit values 0.2992 4.9970

Uncertaintiesa 50.0022 50.0063

CI lower limitb �0.0022 �0.0064

CI upper limitb þ0.0022 þ0.0063

Average of 10,000 best-fit valuesc 0.3000 5.0000

2� std. dev. of 10,000 best-fit valuesd 0.0022 0.0063

Average of 10,000 uncertaintiese 50.0022 50.0063

Noise ¼ 0.050 D l

Best-fit values 0.315 5.024

Uncertaintiesa 50.024 50.061

CI lower limitb �0.024 �0.065

CI upper limitb þ0.023 þ0.057

Average of 10,000 best-fit valuesc 0.301 4.998

2� SD of 10,000 best-fit valuesd 0.023 0.065

Average of 10,000 uncertaintiese 50.022 50.064

True valuesf 0.3 5.0

Signal parameters are for Fig. 1. NA, not applicable
a2s uncertainties estimated using Eqs. 15, 16, and 17.
bUpper and lower parameter bounds determined from confidence intervals as sh
cAverage best-fit parameters for 10,000 replicate simulated data sets.
dTwice the SDs of the best-fit parameters for 10,000 replicate simulated data se
eAverage of the 2s uncertainties estimated from fits to 10,000 replicate simulat
fThe true parameters used to simulate data.
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bound on the parameter (Fig. 2, far right). Second, as long
as the errors are Gaussian, the uncertainties estimated
from the covariance matrix match the results of the more
rigorous confidence interval calculations. Finally, the
parameter uncertainties increase linearly as the noise level
increases.

Confidence bands (P(R) 5 2d(R); Eqs. 18, 19, 20, and
21) for the best-fit distance distributions are shown in
Fig. 1 B as gray shaded regions, and the d(R) themselves
are plotted in Fig. 3 (red dotted lines). Fig. 3 also includes
the SD of the P(R) obtained from fitting 10,000 replicate
data sets (solid gray lines) and the average value of d(R)
from these fits (dashed black lines). The results for the
lower noise level (Fig. 3, upper) show that the d(R) ob-
tained from fitting a single data set overlays the SD in
P(R) that would be obtained from fitting a large number
of replicate data sets. The results at the higher noise level
(Fig. 3, lower) show that the d(R) from a single fit gives a
reasonable order-of-magnitude estimate of this SD that de-
pends linearly on the noise level.

In summary, the results shown in Figs. 1, 2, and 3
demonstrate that the parameter uncertainties and the confi-
dence bands for P(R) both properly account for the noise in
the data and give reasonable estimates of the distributions
that would be obtained from fitting multiple replicate
data sets.
Background correction uncertainty

In addition to random noise, other factors can influence the
magnitude of parameter uncertainties and confidence band
ted Using a Single Gaussian

Scale r0 sr c2
y

1.0024 32.555 2.513 0.984

50.0024 50.084 50.105 NA

�0.0024 �0.083 �0.103 NA

þ0.0024 þ0.083 þ0.107 NA

1.0000 32.500 2.499 1.000

0.0024 0.084 0.105 0.160

50.0024 50.084 50.106 NA

Scale r0 sr c2
y

1.005 31.16 3.14 1.054

50.028 50.93 51.27 NA

�0.027 �0.95 �0.97 NA

þ0.029 þ0.93 þ1.24 NA

1.001 32.50 2.52 1.000

0.025 0.87 1.13 0.159

50.025 50.83 51.04 NA

1.0 32.5 2.5 NA

own in Fig. 2. Values given correspond to the 2s confidence level.

ts.

ed data sets.



FIGURE 2 Comparison of one-dimensional

confidence intervals (A) for r0 and sr from the

fits in Fig. 1 to histograms (B) from fitting

10,000 replicate data sets. The four panels on the

left were obtained for the lower noise level

(0.005); the four on the right were obtained for

the higher noise level (0.05). (A) Gray dots were

obtained by fixing the parameter r0 or sr to a series

of values and allowing the other four fit parameters

to vary to minimize c2
n . The horizontal lines give

the 1s (solid), 2s (dashed), and 3s (dotted) confi-

dence levels. Lower and upper bounds on the pa-

rameters at a particular confidence level are

determined by where the c2
n curve intersects the

appropriate horizontal line. (B) Histograms of

10,000 parameter values obtained from repetitive

fits to data similar to that in Fig. 1 are shown.

The solid black lines are normal (Gaussian) distri-

butions calculated for the mean and SD of the dis-

tribution of parameter values (see Table 2).

Confidence Bands and EBMetaD for DEER
for P(R). In particular, the maximal observed dipolar evolu-
tion time determines to what degree the background factor
can be resolved at the tail of the full DEER signal. In
Fig. 4 A, a ‘‘stress test’’ is performed using DD to fit simu-
lated DEER signal with an extremely short dipolar evolution
FIGURE 3 Comparison of the d(R) (red dotted line) calculated (Eqs. 18,

19, 20, and 21) for the fits in Fig. 1 to the average d(R) (black dashed line)

and the SD (solid gray line) of all of the P(R) obtained from fitting 10,000

replicate data sets. The results in the upper panel were obtained for the

lower noise level (0.005) and the results in the lower panel for the higher

noise level (0.05). Only a portion of the full range (0–100 Å) of R is shown.

To see this figure in color, go online.
time generated using the same model parameters and noise
level as that in Fig. 1 (upper). The simulated data are
well fitted using a single Gaussian to model P(R), whereas
a two-component model gives a larger BIC value (see
Table S1).

Despite the fact that the background is not resolved for
this simulated signal, DD is able to determine a reasonable
estimate of the background correction, as can be seen by
comparing the best-fit background (Fig. 4 A, dashed black
line) with the true background factor (dotted red line) or
by comparing the best-fit l and D parameters to the true
values (see Table S2). Nonetheless, there is considerable un-
certainty in the parameter l as determined by either the
covariance matrix (4.83 5 0.88) or the one-dimensional
confidence interval (Fig. 4 B). This confidence interval for
l and those for most of the other fit parameters (data not
shown) strongly deviate from the parabolic shapes seen in
Fig. 2. Accordingly, analysis of the 10,000 replicate signals
reveals a broad range of l values (Fig. 4 C), which in turn
leads to large variations in the other fit parameters
(Fig. S1). Most of these histograms strongly deviate from
the Gaussian shapes seen in Fig. 2. The lack of precision
in determining the background correction leads to a confi-
dence band for P(R) that is dramatically larger than that ob-
tained for data collected for a longer dipolar evolution time
(cf. Fig. 1 upper panel). However, the calculated d(R)
(dotted blue line) gives a reasonable estimate of the SD in
P(R) that would be obtained from fitting a large number
of replicate data sets (solid gray line). Finally, even under
the extreme conditions presented by the simulated data in
Fig. 4 A, the best-fit P(R) is very close to the true P(R),
demonstrating that the distance distribution and the back-
ground factor can be simultaneously estimated using our
approach.
Biophysical Journal 115, 1200–1216, October 2, 2018 1207



FIGURE 4 Fit to simulated DEER data generated

using a single Gaussian to model P(R) (r0 ¼ 32.5 Å

and sr ¼ 2.5 Å) and a short dipolar evolution time.

Data were simulated for t ¼ �32 to þ600 ns with a

time increment of 2 ns. Other parameters are given

in Table S2. Normally distributed random numbers

with SD of 0.005 were added as noise. (A) The

simulated data (blue dots), the fit (solid black

line), the best-fit background factor (dashed black

line), and the true background (dotted red line) are

shown. The inset shows the best-fit P(R) (solid black

lines), the confidence band (2s, shaded gray re-

gions), and the true P(R) (dashed red lines) for the

simulated data. (B) The one-dimensional confidence

interval (gray dots) obtained by fixing l to a series

of values and allowing the other four fit parameters

to vary to minimize c2
n is shown. The green dashed

horizontal line gives the 2s confidence level. (C)

Histograms of 10,000 l values obtained from repet-

itive fits to replicate data similar to that in (A) are

given. (D) The d(R) (blue dotted line) calculated

for the fit A compared to the average d(R) (black

dashed line) and the SD (solid gray line) of all of

the P(R) obtained from fitting 10,000 replicate

data sets is shown. Only a portion of the full range

(0–100 Å) of R is shown. To see this figure in color,

go online.
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Multimodal Gaussian distribution

Of critical importance is the performance of the proposed
analysis method for DEER signals originating from multi-
modal distance distributions as is typical for systems of
biological interest. Fits to simulated DEER signals calcu-
lated for two different trimodal distance distributions are
shown in Fig. 5 A. As expected for both data sets, the
optimal model based on BIC values is a sum of three
1208 Biophysical Journal 115, 1200–1216, October 2, 2018
Gaussians (n ¼ 3, Table S3). The parameter uncertainties
estimated from the covariance matrix are in excellent agree-
ment with the results from one-dimensional confidence in-
terval calculations and with the SDs of the parameter
values resulting from fitting 10,000 replicate signals (Table
S4). Likewise, the d(R) used to calculate the confidence
band for P(R) for each fit closely agrees with the SD of
P(R) obtained from fitting 10,000 replicates (Fig. 5 B).
For both simulated signals, neither the parameter
FIGURE 5 Fits to two simulated DEER signals

generated using three Gaussians to model P(R).

Data were simulated for t ¼ �128 to þ2400 ns

with a time increment of 8 ns. Other parameters are

given in Table S4. Normally distributed random

numbers with SD of 0.005 were added as noise. (A)

The simulated data (blue dots), the fits (solid black

lines), and the best-fit background factor (dashed

black lines) are shown. The insets show the best fit

P(R) (solid black lines), the confidence bands (2s,

shaded gray regions), and the true P(R) (dashed red

lines) for the simulated data. (B) A comparison of

the d(R) (solid black lines) calculated for the fits in

A to the average d(R) (dotted blue lines) and the

SD (dashed red lines) of all of the P(R) obtained

from fitting 10,000 replicate data sets is shown.

Only a portion of the full range (0–100 Å) of R is

shown. To see this figure in color, go online.
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uncertainties nor the widths of the confidence bands depend
on the r0 values of the individual components in a straight-
forward way. For the data in the upper panel of Fig. 5 A for
which the true sr values of the three Gaussians are equal, the
parameter uncertainties and width of the confidence band
are roughly equal for the three components. For the data
in the lower panel of Fig. 5 A, the parameter uncertainties
for r0 and sr increase as the value of sr increases for the
three components. However, the width of the confidence
band decreases as sr increases.

To further clarify how the uncertainty in a component of
P(R) varies as its average distance value increases, addi-
tional calculations for a unimodal simulated signal were
performed as summarized in Table S5. For r0 up to 45 Å,
the uncertainties in r0 and sr do not vary significantly,
whereas for r0 ¼ 55 Å and beyond, for which a full modu-
lation period is not completed within the dipolar evolution
time of 2400 ns, the uncertainties in both r0 and sr increase
dramatically.

In summary, the results in Fig. 5 together with Tables S3
and S4 demonstrate that all of the, to our knowledge, new
methods presented here perform as expected when DEER
data is derived from complex, multimodal distributions.
Comparison to DeerAnalysis

For comparison with the TR method, fits to the simulated
signals in Fig. 1 obtained using DeerAnalysis2016 are
shown in Figs. S2 and S3. At the lower noise level, the
two approaches give similar results and similar estimates
of the uncertainty in P(R). At the higher noise level, the
DD estimate is considerably larger. This may be due, at least
in part, to the fact that, as is commonly done, only the
background starting time option was used here in the
validation tool of DeerAnalysis2016. For the simulated
signals in Fig. 4, it is difficult to find a convincing a
priori background correction given the short dipolar
evolution time of the data, and therefore this signal cannot
be interpreted using DeerAnalysis2016. For the multicom-
ponent simulated signals in Fig. 5, fits obtained with
DeerAnalysis2016 are shown in Figs. S4 and S5. For the
signal generated from a P(R) calculated as the sum of three
Gaussians of equal width, both DD and DeerAnalysis2016
give similar results.

For the data generated from a P(R) using three Gaussians
of varying widths, DeerAnalysis2016 adds a fourth compo-
nent at r0 z 40Å, apparently to account for the component
with the broadest width (Fig. S5). This result is due to the
fact that TR tends to produce multicomponent distributions
with equal component widths. It is important to note that the
confidence bands for P(R) obtained from DD (Figs. S4 F
and S5 F) do not strictly follow the color-coding scheme
for reliability in DeerAnalysis2016 (Figs. S4 D and S5 D).
Evaluation of generalized EBMetaD for a
small-molecule system

Having established the validity of our signal analysis algo-
rithm, we evaluated the performance and accuracy of the
generalized EBMetaD method. We first considered a simple
molecular system, namely a butyramide molecule in water.
The conformational descriptor considered in this evaluation
is the dihedral angle (J) around the Ca-C bond, i.e., x¼J in
Eq. 22 (Fig. 6).We first calculated a 400-ns trajectory using a
standard MD simulation so as to obtain a well-converged
probability distribution along J. This distribution is sym-
metric around 0� with peaks at J z 570� (Fig. 6). We
then designed an artificial target distribution for the
EBMetaDmethod that is substantially different from that ob-
tained above, as well as several confidence bands of
increasing width around this hypothetical target distribution,
such that the widest of these bands encompass the unbiased
MD distribution partially or fully (Fig. 6). Using each of
these confidence bands as input, we then calculated a
320-ns trajectory with EBMetaD using the same simulation
parameters employed for the conventional MD trajectory.
FIGURE 6 Evaluation of the generalized

EBMetaD method for butyramide in water. The

torsional angle J defined by atoms Cb, Ca, C,

and N is considered. The probability distribution

obtained from a conventional unbiased MD simu-

lation, rMD(J) (black), is compared with those ob-

tained using EBMetaD simulations, rEBMetaD(J)

(red), in four independent calculations. Each of

these calculations¼ target a, hypothetical distribu-

tion and its uncertainty band (gray), i.e.

PðJÞ5εPðJÞ, where ε ¼ 0:1; 0:25; 0:5; 2:5.

Note that rMD(J) is partially encompassed by

the target confidence band at ε ¼ 0:5 and fully en-

compassed at ε ¼ 2:5.

Biophysical Journal 115, 1200–1216, October 2, 2018 1209



FIGURE 7 Evaluation of the generalized

EBMetaD method for butyramide in water. (A)

EBMetaD biasing potential is shown as function

of J for each of the calculations shown in Fig. 6,

i.e., with increasing confidence-band widths (de-

noted by the scaling factor ε). The biasing potential

was calculated with Eq. 29, using te ¼ 30 ns and

t ¼ 320 ns (solid curves), and compared with a

calculation using Eq. 27 (dashed lines), in which

G(J) ¼ �kBT ln rMD(J), where rMD(J) is the

unbiased probability distribution obtained from

an unbiased MD trajectory (Fig. 6). (B) Shown

are the values of the reversible work required to

enforce the EBMetaD biasing potential for each of the four simulations mentioned above. The work values are derived from the Kullback-Leibler divergence

of rMD(J) and rEBMetaD(J) (Fig. 6) using Eq. 30 and compared with calculations based on the biasing potentials in (A) using Eq. 28. The error bars in the

work values, based on from a five-block analysis, range from 10�3 to 10�4 kcal/mol.
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The distributions along J obtained after equilibration
illustrate the performance of the proposed method. The
EBMetaD distributions draw along the edges of the confi-
dence band so as to fulfill the target data while remaining
as close as possible to the unbiased distribution (Fig. 6).
Accordingly, when the confidence band is wide enough to
encompass the unbiased probability density, the EBMetaD
approach does not bias the sampling and produces the
same distribution as a standard MD simulation. By contrast,
when the confidence band is narrow, the EBMetaD distribu-
tion deviates from the unbiased distribution as needed.

Analysis of the converged biasing potential developed by
the EBMetaD algorithm for each of the input confidence
bands using Eq. 29 explains these results (Fig. 7 A). It is
apparent that the magnitude of the bias added to the simu-
lation is not uniform along J but depends on the difference
between the target and unbiased distribution. The overall
bias also decreases as the uncertainty of the target distribu-
tion is greater; when the input confidence band encom-
passes the unbiased distribution from standard MD, the
EBMetaD potential is nearly flat, i.e., no conformational
bias is applied (Fig. 7 A). This result, consistent with the
minimal-information condition, can be further quantified
by calculating the reversible work performed to enforce
the EBMetaD biasing potential using Eq. 28 (Fig. 7 B).
Consistent with the data in Fig. 7 A, the value of the
work diminishes as the confidence band widens, becoming
negligible when the unbiased MD distribution is within the
uncertainty.

Like with any enhanced-sampling simulation method, it
is important for EBMetaD to preserve the inherent thermo-
dynamics of the molecular system. To evaluate whether this
is the case, the biasing potentials derived with Eq. 29 were
compared with calculations based on Eq. 27, i.e., from the
free-energy function ¼ G(J) ¼ �kBT ln rMD(J), which
for this simple system can be calculated exactly from an un-
biased trajectory (Fig. 7 A). Similarly, the work values
calculated using Eq. 28 were contrasted with those deduced
from the Kullback-Leibler divergence (Eq. 30) of the unbi-
ased and biased distributions (Fig. 7 B). Both evaluations
1210 Biophysical Journal 115, 1200–1216, October 2, 2018
demonstrate the proposed methodology is robust qualita-
tively and quantitatively.

In summary, this application demonstrates that EBMetaD
constructs a conformational ensemble compatible with the
confidence band of a target probability distribution and
with the underlying free-energy landscape of the system,
and that it does so by applying the minimal bias required.
This application also shows that the EBMetaD work is an
accurate descriptor of the degree to which an unbiased
conformational ensemble might be compatible with a given
set of target data. We posit that these features make the
EBMetaD method an ideal tool to formulate well-founded
molecular interpretations for a range of experimental infor-
mation e.g. DEER data.
Model-based fitting and EBMetaD simulations for
T4L DEER data

After demonstrating the validity of the extended EBMetaD
method on a simple system, we applied this approach to
spin-labeled T4L in explicit water. Following our previous
work (18), we considered three double-labeled T4L mutants
with labels introduced at positions 62, 109, and 134. Exper-
imental DEER data along with the corresponding fits ob-
tained using DD are shown in Fig. 8. Based on BIC
values, a three-Gaussian model was found to be optimal
for T4L 62/109, whereas a two-Gaussian model was better
suited for both T4L 62/134 and T4L 109/134 (Table 3).
The best-fit parameters are given in Table S6. Note that
the confidence bands for pairs T4L 62/109 and T4L
109/134 are relatively narrow over the entire distance
range, whereas that for T4L 62/134 is very broad for the
component at the longest distance. These data sets,
therefore, constitute a nontrivial test case of EBMetaD
methodology.

To model the DEER data for T4L using EBMetaD, we
considered the distance between the centers-of-mass of the
nitroxide groups as the reaction coordinate (x ¼ R). For
simplicity, we enforced the three experimental distance dis-
tributions simultaneously, even though the DEER signals



FIGURE 8 DEER signals and associated proba-

bility distributions for three spin-labeled pairs in

T4L. The DEER data are shown as blue dots, and

the fits as solid black lines. The insets show the

best fit P(R) (solid black lines), along with the

newly obtained confidence bands (2s, shaded red

regions). Best-fit parameters are given in Table

S6. To see this figure in color, go online.
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were measured for one pair of spin labels at a time. We are
implicitly assuming, therefore, that the relative dynamics of
any two spin labels is not influenced by the presence of a
third spin label. This assumption seems plausible in this
case, but it is not a prerequisite for the EBMetaD method,
which can be applied to single spin-labeled pairs, as
mentioned. To evaluate the new methodology, three
calculations were carried out: a 600-ns conventional MD
simulation, a 400-ns EBMetaD simulation in which the
experimental error is not considered, and a 670-ns
EBMetaD simulation that does consider the confidence
bands. The resulting distance distributions after equilibra-
tion are reported in Fig. 9 (see caption for details). Overall,
the unbiased probability distributions obtained with stan-
dard MD are outside the confidence bands, particularly for
T4L 109/134 (Fig. 9 A). By contrast, and consistent with
our previous work (18), the distributions calculated with
EBMetaD while neglecting the error match the target with
great accuracy (Fig. 9 A). However, when the confidence
bands are targeted, the EBMetaD results no longer match
the optimal-fit distributions and instead draw nearer the un-
biased data while being fully consistent with the experi-
mental confidence bands (Fig. 9 B). A compelling
example is the T4L 62/134 pair, for which the second
peak near 45 Å in the experimental probability distribution
TABLE 3 Model Selection for T4L Data Sets

T4L Mutant n c2
y DBIC

62/109 1 3.741 377.0

62/109 2 0.713 4.1

62/109 3 0.662 0.0

62/109 4 0.654 10.5

62/134 1 1.395 9.4

62/134 2 1.220 0.0

62/134 3 1.243 15.1

109/134 1 1.400 25.8

109/134 2 1.049 0.0

109/134 3 0.977 2.1
is not fully realized in the results of the EBMetaD sampling
(red lines, Fig. 9 B) precisely because the confidence bands
(black bands, Fig. 9 B) indicate a very large uncertainty in
this region.

Consistent with the maximal-entropy principle underlying
our methodology, the overall magnitude of the EBMetaD
biasing potential is smaller when the simulation targets the
confidence bands. Specifically, the work value calculated
using Eq. 28 changes from 0.96 to 0.77 kcal/mol when the
confidence bands are targeted rather than the optimal-fit
distributions. The small magnitude of these values reflects
the limited structural dynamics of T4L, which implies that
the unbiased MD distributions are not entirely unlike those
measured. Indeed, at the structural level, the ensemble
produced by EBMetaD differs from the unbiased simulation
primarily in the distribution of rotameric states of the spin-
labels (Figs. 9 C and 10 A). Nevertheless, the work values
derived from the biasing potential are in good agreement
with those predicted from the Kullback-Leibler divergence
(Eq. 30) of the unbiased and target distributions (Fig. 9,
A and B), namely 0.99 and 0.83 kcal/mol, respectively. It
seems clear, therefore, that this methodology will be
sufficiently sensitive to conformational changes of a larger
scale.

The molecular ensembles produced by the generalized
EBMetaD method not only facilitate a structural interpreta-
tion of the DEER data; they also provide a self-consistency
check for the model-based analysis of the DEER signal
described above and the resulting confidence bands. That
is, from each of the simulated EBMetaD ensembles, it is
possible to derive the DEER time trace for each of the
spin-labeled pairs (9,10,13), which can then be compared
with the actual experimental measurements. As shown in
Fig. 10 B, in the T4L case the EBMetaD ensembles pro-
duced for each spin-labeled pair by targeting the confidence
bands are in excellent agreement with the DEER measure-
ments, demonstrating the cross-consistency of the model-
based analysis and the EBMetaD method. This result is
Biophysical Journal 115, 1200–1216, October 2, 2018 1211



FIGURE 9 Evaluation of generalized EBMetaD for spin-labeled T4L. (A) Best-fit probability distributions obtained for each of the three experimental data

sets (black) are compared with those calculated with standard MD simulations (green bands) or with EBMetaD when the experimental distribution is the

target and the confidence bands are not considered (cyan). (B) Confidence bands from Fig. 8 (black bands) but shown at 1s are compared with probability

distributions calculated with EBMetaD now targeting these confidence bands (red) and the unbiased MD data. The standardMD data in (A) and (B) are shown

as a band whose width is the standard error over five consecutive blocks of 100 ns each. The standard errors of EBMetaD distributions are barely visible and

therefore not shown for clarity. (C) Probability distributions of the distance between the Ca atoms for each of the spin-labeled pairs, either from standard MD

(green bands) or from the EBMetaD simulations (red lines) targeting the confidence bands shown in (B), are shown.
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particularly worth-noting for T4L 62/134, for which, as
mentioned, the uncertainty band is very broad for the
component at the longest distance.
FIGURE 10 Evaluation of generalized EBMetaD for spin-labeled T4L. (A) A

labels at positions 62, 109, and 134. Red and green surfaces encompass the reg

lations, respectively. The root mean-square deviation of the protein backbone (g

cases. (B) For each of the three spin-labeled pairs, the experimental DEER sign

signals calculated (Eqs. 2, 3, 4, 5, and 6) from the simulated EBMetaD distribu

calculated signals from the unbiased MD data are also shown for comparison (gr

are provided in Table S7.
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In summary, atomistic simulations of T4L demonstrate
that the combined use of the model-based analysis and
EBMetaD is a rigorous, self-consistent methodology to
closeup of T4L in the MD simulation system is given, highlighting the spin

ions occupied by the nitroxide groups during the EBMetaD and MD simu-

ray cartoons) relative to the initial x-ray structure (46) is within 2 Å in both

als (cyan) and the corresponding fits (black) are compared with theoretical

tions (red) in Fig. 9 B, i.e., in consideration of the confidence bands. The

een bands). The D and l parameters for each of these calculated time-traces
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efficiently generate conformational ensembles that opti-
mally represent DEER spectroscopic data.
DISCUSSION

Although the importance of defining experimental uncer-
tainty and estimating errors in derived quantities is well
established in science, practitioners of DEER spectroscopy
have been slow to adopt methods for estimating the uncer-
tainty in the distance distributions obtained from DEER
data (13). Within the context of the model-free TR approach
to the analysis of DEER data, Jeschke and co-workers (6)
have developed a validation tool for estimating the uncer-
tainty in P(R) due to variation in the background correction
and the noise in the data. Edwards and Stoll have developed
a Bayesian approach for estimating the uncertainty in P(R)
due to the noise in the data and the regularization process
(13). Alternatively, DEER data can be analyzed by
modeling P(R) as a sum of Gaussian components (9,10).
The advantages of this model-based approach include the
ability to analyze the data without the need for a priori back-
ground correction; the ability to perform global analysis of
multiple data sets (e.g., to model functionally relevant
ligand-induced conformational changes (39–42)); and the
ability to perform rigorous statistical analysis of the fit re-
sults. The major disadvantages are the need to specify
particular basis functions that may deviate from the shape
of the true distance distribution, and the need to ensure
that c2

y space has been fully explored to find the true global
minimum.

In this work, we have extended our model-based
approach to allow for a direct estimation of a confidence
band for P(R) using propagation of errors, i.e., the delta
method. By construction, this confidence band includes con-
tributions due to both the noise in the data and the
uncertainty in the background factor. The robustness of
the methodology has been demonstrated through an
extensive Monte Carlo analysis of simulated data. In partic-
ular, these results establish how the noise level and the
maximal observed dipolar evolution time, tmax, influence
the uncertainty in the fit parameters and P(R). From the re-
sults in Fig. 5 and Tables S4 and S5, it is evident that precise
estimates of the contribution of a given component to P(R)
can be obtained as long as one full modulation period can be
observed within tmax, i.e., r0 ð�AÞ<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tmaxðsÞ � 5:2� 10103

p
.

This equation is similar to one proposed by Jeschke for the
minimal tmax required to determine an r0 (mean) value (3).
Even under less than optimal conditions, with extremely
short tmax, reasonable estimates of P(R) can be obtained
(see Fig. 4; Table S2). It should be noted that different
analysis methods can influence the reliability of the deter-
mined P(R) as much as the information content in the data
itself.

In conjunction with our approach for determining confi-
dence bands on distance distributions obtained from fitting
DEER data, we have also proposed an atomistic simulation
method that imposes a minimal-information bias on an MD
trajectory so that the conformational ensemble explored re-
produces one or more experimental probability distributions
as precisely as dictated by their confidence bands. This tech-
nique is an extension of the EBMetaD method (18), refor-
mulated here to include the confidence bands in the target
distributions. Although there exist other enhanced-sampling
approaches that use probability distributions as input data
(17,18), to our knowledge this is the first report of a meth-
odology that also considers the uncertainties in those
distributions.

The proposed methodology was evaluated for T4L in
explicit water, simultaneously targeting the distance distri-
butions obtained from three spin-labeled double mutants.
It was clearly shown how the EBMetaD ensembles deviate
from those obtained from conventional MD simulations pre-
cisely so that the calculated probability distributions draw
inside the experimental confidence bands. For values of R
for which the experimental uncertainty of P(R) is small,
the simulation approaches the best-fit distributions as accu-
rately as required by their confidence bands. In poorly
defined regions, EBMetaD behaves comparably to an unbi-
ased MD simulation. Needless to say, MD trajectories are
inexact on account of the many approximations and simpli-
fications inherent to this technique. Thus, although the
EBMetaD method guarantees that the simulated ensemble
will reproduce the input experimental data, it does not guar-
antee that this ensemble is free of error otherwise, or that it
represents the only possible solution. It follows that the bias
required for an MD simulation to reproduce a given exper-
imental target is not universal but will vary depending on the
intrinsic accuracy of the underlying force field (e.g.,
CHARMM versus AMBER, all-atom versus coarse-grained,
etc.) and dedicated simulation time. For any one particular
choice, however, EBMetaD will apply the minimal bias
required to meet the experimental probability distribution
(or uncertainty band), consistent with the maximal-entropy
principle. Finally, it is also worth noting that the EBMetaD
method is not limited to the interpretation of DEER data.
Indeed, this approach may be used for any observable for
which a probability distribution can be derived experimen-
tally (or postulated theoretically), as long as it is computable
during run-time from the set of atomic coordinates in the
molecular system.

The EBMetaD simulation methodology is based on the
fundamental concept of maximal entropy. This is to say
that the simulation uses the minimal information required
to reproduce the target data, and therefore the bias intro-
duced to modify the simulated ensemble is also minimal.
This notion becomes clear when the magnitude of the bias
applied is transformed into a quasi-equilibrium work value:
specifically, the smaller the uncertainty, the greater the
amount of work required to reproduce a given experimental
distribution. It is worth pointing out that not all structural
Biophysical Journal 115, 1200–1216, October 2, 2018 1213
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refinement methods satisfy this intuitive minimal-informa-
tion principle. Standard procedures to construct structural
ensembles from NMR data, for example, impose distance
restraints on pairs of atoms that imply specific distributions
around the target value (43). In doing so, these computa-
tional approaches utilize more information than the experi-
ment actually provides, which is only the ensemble-average
value of those distances and not their distribution. We
therefore anticipate that variations of this maximal-entropy
paradigm, together with high-end molecular simulation
methods, will become increasingly used to derive a rigorous
interpretation of a variety of spectroscopic data.

From a mechanistic standpoint, a notable feature of
EBMetaD is that it permits quantifying the minimal work
required to generate a conformational ensemble that is
most consistent with a given experimental probability distri-
bution. It is not uncommon that different structures are
known for a biomolecule, often presumed to represent
distinct and interconverting functional states. Using DEER
spectroscopy under different experimental conditions,
different components of P(R) can be assigned to these
different functional states. EBMetaD simulations provide
a means to relate structural and spectroscopic data: the
experimental structure that, when simulated, requires the
least amount of work to reproduce a given set of DEER
data can be assumed to be the best representative of the con-
ditions used to collect that spectroscopic signal. It should be
noted, though, that the distance between two or more spin
labels might not be an appropriate reaction coordinate to
drive the reversible exploration of large-scale or intricate
conformational changes. In such cases, the EBMetaD
approach ought to be combined with other strategies devised
to enhance the sampling of those conformational changes.
Multiple-walker algorithms such as bias-exchange metady-
namics (44,45) would be a natural choice to integrate
EBMetaD with other biasing schemes, but other options
are also possible.

Although there are compelling reasons to interpret the
P(R) obtained in terms of components corresponding to
distinct functionally relevant structures, there are a number
of factors that can give rise to artifactual components in the
P(R) that do not, in fact, correspond to distinct structural
states. These factors include imperfect background correc-
tion and orientation-selection effects. The TR approach
biases the P(R) obtained to have an equal degree of smooth-
ness across all R. Thus, in situations in which the true P(R)
may contain a mix of narrow and broad components, TR
will split a single broad component into a sum of multiple
narrow components (see Fig. S5D). As a result, an approach
that first fits the time-domain data using TR and then fits the
P(R) obtained to a sum of Gaussians can overestimate the
number of components.

Instead, our approach directly fits the time-domain data
using a sum of components of varying width and uses BIC
values to select the optimal number of components based
1214 Biophysical Journal 115, 1200–1216, October 2, 2018
on the principal of parsimony. To lend credence to the struc-
tural and functional relevance of these components, a global
analysis of multiple DEER signals may reveal how the am-
plitudes of these components change with conditions that
can be manipulated experimentally. Otherwise, care must
be taken when assigning structural and biological relevance
to terms in the mathematical equation used to model P(R).
When using a model-based approach, particularly for high
signal/noise data, additional terms may be required for an
optimal fit to account for deviations from Gaussian shapes.
For example, each of the T4L data sets can be fit using one
fewer component (see Fig. S6; Table S8) using alternate
basis functions (see Supporting Material). Although these
non-Gaussian functions yield very similar fits with compa-
rable c2

n values, they are favored by BIC by virtue of their
lower number of fit parameters. The differences in the distri-
butions obtained using different basis functions or TR that
are shown in Fig. S6 highlight the inherent uncertainty in
the shape of P(R) regardless of the method used. Ultimately,
molecular simulations based on the EBMetaD method can
clarify the interpretation of multicomponent distance distri-
butions inferred from DEER experiments in terms of
distinct molecular conformations while taking into account
rigorously determined uncertainties in the experimental
results.
CONCLUSION

In this study we propose two complementary computational
strategies that, taken together, provide a compelling
methodology to derive an objective structural interpretation
of DEER measurements for a dynamic biomolecular sys-
tem. Ultimately, both methodologies underscore the impor-
tance of a rigorous error estimate for a correct interpretation
of the experimental data.
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