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Abstract

Objective—To identify injury patterns and characteristics associated with severe traumatic brain 

injury (TBI) course and outcome, within a well-characterized cohort, which may help guide new 

research and treatment initiatives.

Design—A secondary analysis of a phase 3, randomized, controlled trial that compared 

therapeutic hypothermia versus normothermia following severe TBI in children.

Setting—Fifteen sites in the United States, Australia and New Zealand.

Patients—Children (<18 years old) with severe TBI.

Measurements and Main Results—Baseline, clinical and computed tomography (CT) 

characteristics of patients (n=77) were examined for association with mortality and outcome, as 

measured by the Glasgow Outcome Scale-Extended Pediatrics (GOS-E Peds) 3 months after TBI. 
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Data are presented as odds ratios with 95% confidence intervals (OR [95% CI]). No demographic, 

clinical or CT characteristic was associated with mortality in bivariate analysis. Characteristics 

associated with worse GOS-E Peds in bivariate analysis were two fixed pupils (14.17 [3.38–

59.37]), abdominal abbreviated injury severity (AIS) score (2.03 [1.19–3.49]), and subarachnoid 

hemorrhage (3.36 [1.30–8.70]). Forward stepwise regression demonstrated that AIS spine (3.48 

[1.14–10.58]) and midline shift on CT (8.35 [1.05–66.59]) were significantly associated with 

mortality. Number of fixed pupils (one fixed pupil 3.47 [0.79–15.30]; two fixed pupils 13.61 

[2.89–64.07]), hypoxia (5.22 [1.02–26.67]) and subarachnoid hemorrhage (3.01 [1.01–9.01]) were 

independently associated with worse GOS-E Peds following forward stepwise regression.

Conclusions—Severe traumatic brain injury (TBI) is a clinically heterogeneous disease that can 

be accompanied by a range of neurologic impairment and a variety of injury patterns at 

presentation. This secondary analysis of prospectively collected data identifies several 

characteristics associated with outcome among children with severe TBI. Future, larger trials are 

needed to better characterize phenotypes within this population.
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Introduction

Traumatic brain injury (TBI) is a leading cause of death and disability throughout the world 

and is associated with a high economic burden, with reported annual cost estimates in the 

United States ranging from $56 billion to $221 billion (2009 USD)(1). Significant research 

efforts have led to progress in the care of severe TBI, though breakthrough treatments 

remain elusive. Recent randomized controlled trials have failed to show a benefit for 

previously promising therapies, including progesterone, erythropoietin, and hypothermia (2–

4). Reexamination of such well-conducted negative trials has brought attention to some of 

the intrinsic difficulties associated with adequately categorizing TBI patients for the 

purposes of directing both clinical research and contemporary treatment strategies (5).

The post-resuscitation Glasgow Coma Scale (GCS) score has been associated with outcome 

in childhood severe TBI and is the current standard for measuring injury severity in such 

patients (6). The Brain Trauma Foundation 2012 guidelines for management of childhood 

severe TBI inclusion criteria are selective for patients with a GCS < 9, as do most scientific 

publications within the field (7). However, severe TBI is a heterogeneous disease and is 

commonly accompanied by a spectrum of additional injuries and co-morbidities. A better 

understanding of injury patterns and patient characteristics associated with disease course 

and outcome would aid present-day management, future study design, and is necessary to 

identify unique phenotypes of TBI. The Cool Kids Trial was a multi-national randomized, 

controlled trial examining the effect hypothermia versus normothermia on mortality in 

children with severe TBI but was halted early for futility. We performed a secondary analysis 

of the aggregate, prospectively collected cohort, with the aim of identifying presenting 

patient characteristics and head computed tomography (CT) findings associated with 

outcome among children with severe TBI.
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Methods

Study Design

The Cool Kids Trial was a phase 3, multi-national, randomized, controlled trial designed to 

assess the efficacy of early, moderate hypothermia (32 – 33°C) with slow rewarming on 

mortality after severe TBI in children (3). The study was conducted across 15 centers in the 

United States, New Zealand and Australia. Enrollment criteria included children less than 18 

years of age who sustained non-penetrating brain injury, a post-resuscitation GCS less than 9 

and a GCS motor score of less than 6 who were available for randomization within 6 hours 

of injury. Exclusion criteria were a normal head CT scan, post-resuscitation GCS of 3 with 

concomitant unreactive pupils, non-accidental trauma, hypotension for more than 10 minutes 

(defined as systolic blood pressure less than 5th percentile for age), uncorrectable 

coagulopathy, hypoxia (defined as oxygen saturation less than 90% for greater than 30 

minutes after resuscitation), abbreviated injury severe score (AIS) greater than 3 for organs 

other than the brain, or suspected pregnancy. The Institutional Review Boards of each 

participating center approved the protocol and required either informed written consent or 

allowed emergency waiver of consent (5 of the 15 study sites).

Demographic and clinical data were obtained upon trial entry. Patients randomized to 

hypothermia were rapidly cooled to 32–33°C and maintained for 48 hours, then slowly 

rewarmed by 0.5–1°C every 12–24 hours as part of a slow rewarming protocol. An 

additional 24 hours of hypothermia was maintained if intracranial pressure (ICP) was 

elevated at 48 hours, with subsequent slow rewarming irrespective of ICP levels. Therapeutic 

goals for all patients centered around avoiding hypotension, hypoxia and intracranial 

hypertension. The planned sample size for the trial was 340 patients; however, the study was 

stopped by the Data Safety Monitoring Board after 77 patients were enrolled due to futility.

Computed Tomography (CT) Imaging

Patients underwent head computed tomography (CT) imaging as part of the initial evaluation 

and images were transferred to the Data Coordinating Center at the University of Pittsburgh. 

Clinical interpretations by site personnel were used to assess for inclusion into the study. For 

this secondary analysis, 3 pediatric radiologists independently assessed the images for 

injuries – with each subject’s scans read by 2 radiologists. Discrepancies between the 

independent assessments of the 2 readers were recorded and resolved by consensus. Data 

collection was in accordance with the National Institute of Neurological Disorders and 

Stroke Common Data Elements for Neuroimaging and readers were instructed to categorize 

findings as present, absent or indeterminate for each of the following data fields: skull 

fracture, extra axial hematoma, epidural hematoma, subdural hematoma, intracerebral 

hemorrhage, intraventricular hemorrhage, subarachnoid hemorrhage, supratentorial midline 

shift, cisternal compression, fourth ventricle shift or effacement, diffuse axonal injury (DAI), 

contusion, penetrating injury, cervicomedullary junction or brainstem injury, brain swelling, 

and ischemia, infarction or hypoxic-ischemic injury (see Supplementary Material)(8,9).
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Outcomes and Statistical Analysis

The main outcomes of this study were mortality and Glasgow Outcome Score Extended 

Pediatric Revision (GOS-E Peds) assessed at 3 months after injury. The GOS-E Peds is an 

eight-point scale, ranging from 1 (upper good recovery) to 8 (death), designed to assess 

outcome after TBI in children. Because of limited sample size, the GOS-E Peds was reduced 

to a three-point ordinal scale for all the statistical analyses by collapsing three and four 

levels [GOS-E Peds: 1–4 (1), 5–7 (2) and 8 (3)], as previously reported (10).

Descriptive statistics were summarized as median and interquartile range (IQR) or 

frequencies and percentages for continuous and categorical data, respectivelyBivariate 

logistic regression was applied to assess the strength of association between baseline, 

clinical or CT characteristics (e.g. age, GCS score, etc.) and the dichotomous outcome of 

interest (i.e. mortality). Hypoxia and hypotension were identified as characteristics if present 

but were not sustained long enough to achieve trial exclusion criteria. Apnea and aspiration 

were identified clinically per the discretion of the site principal investigator and reported as 

adverse events into the database. Bivariate proportional odds regression models were used to 

assess the strength of association between baseline, clinical and CT Characteristics (e.g. age, 

GCS score, etc.) and the ordinal outcome of interest (e.g. GOS-E Peds). Separate bivariate 

analyses examined whether a differential effect existed for either morality or dichotomized 

GOS-E Peds based on trial arm (hypothermia versus normothermia). The magnitude of 

associations between the potential predictor variables and each outcome was quantified 

using the odds ratio (OR) and the corresponding 95% confidence interval (CI). Any 

predictor variable with a p < 0.25 for the Wald statistic were selected for model fitting in a 

subsequent multiple logistic regression or multiple proportional odds regression analysis 

using a forward stepwise approach. The level of significance to enter or remain in the model 

was set to 0.10 and 0.05, respectively. Odds ratios and 95% CIs were calculated from the 

beta coefficients. Pearson’s correlation coefficient was computed to determine the 

association between independent variables of interest included in the multivariable 

regression models. Variance inflation factors were also estimated from multivariable 

regression models to assess potential multicollinearity. Performance of the logistic 

regression models was tested by means of Hosmer-and-Lemeshow goodness-of-fit test. 

Performance of the proportional odds regression models was tested by means of Deviance 

and Pearson goodness-of-fit statistics. All analyses were two-sided and the alpha level was 

set to 0.05. Analyses were conducted using SAS, version 9.3 statistical software (SAS 

Institute Inc., Cary, NC).

Results

The analysis included all 77 children who underwent randomization during the trial which 

consisted of 48 (62%) males with a median age of 11 years (IQR 3 – 15) at the time of 

injury. GOS-E Peds data were available for 73 subjects. Overall, 40 subjects (55%) were 

stratified into the favorable outcome group (GOS-E Peds 1–4) with 27 (37%) surviving with 

an unfavorable outcome (GOS-E Peds 5–7) and 6 (8%) deaths (GOS-E Peds 8).

Descriptive statistics for patient demographics and baseline clinical attributes and their 

association with outcomes in bivariate analysis are summarized in Table 1. Among the 77 
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patients, 14 (18%) and 19 (25%) patients showed elevated AIS scores for spine and 

abdominal regions, respectively. No baseline or clinical attribute was significantly associated 

with mortality in bivariate analysis. GCS total score (OR 0.53 [95%CI 0.35–0.79]), AIS 

abdomen (OR 2.03 [1.19–3.49]) and number of fixed pupils (one fixed pupil OR 3.42 [0.89–

13.22]; two fixed pupils OR 14.17 [3.38–59.37]) were significantly associated with GOS-E 

Peds. Stratifying the analyses into hypothermia and normothermia groups did not 

demonstrate any significant differential effects for characteristics associated with outcome in 

the aggregate cohort (Supplemental Tables 1 and 2).

Head CT images were available for 75 patients. Before consensus, the overall average 

percent agreement between the radiologists across all CT findings for all patients was 

excellent (range 83.6–90.6%), and agreement between radiologists was poor to excellent 

(kappa statistic = −0.05–1.00). The intra-rater analysis showed that the overall average 

percent agreement across all CT findings was substantial (range 83.1–90.8%). Table 2 shows 

the frequency distribution of the CT findings and their association with outcomes in bivariate 

analysis. The most common intracranial CT abnormalities were skull fracture, extra axial 

hematoma, subdural hematoma, intracerebral hemorrhage and subarachnoid hemorrhage. No 

individual CT finding was associated with mortality. Subarachnoid hemorrhage was 

associated with GOS-E Peds (OR 3.36 [1.30–8.70]).

Pearson’s correlation coefficient between independent variables of interest included in the 

multivariable regression models ranged from −0.32 to 0.46. Table 3 summarizes the results 

of the forward stepwise regression analyses. AIS spine and midline shift were independently 

associated with mortality in a multivariable stepwise regression model. Subarachnoid 

hemorrhage, hypoxia and the number of fixed pupils were independently associated with 

poor outcome as measured by 3-month GOS-E Peds.

Discussion

In this secondary analysis of a well-described cohort of subjects from the Cool Kids trial, we 

identified several baseline characteristics and injury types associated with outcomes. 

Bivariate analysis of the present cohort demonstrated an association between AIS abdomen, 

GCS, subarachnoid hemorrhage and pupillary reaction, and GOS-E Peds. In multivariable 

analysis, hypoxia sustained for less than 10 minutes, subarachnoid hemorrhage, and 

presence of bilateral unreactive pupils were significantly associated with poor outcome as 

indicated by GOS-E Peds. In addition, higher AIS spine severity score and presence of 

midline shift were associated with mortality. For the purposes of the initial trial, data were 

recorded prospectively soon after injury across multiple international centers, strengthening 

the observed associations between the injury patterns and characteristics identified in this 

study as associated with outcome in severe TBI and furthering efforts to personalize 

approaches to investigation and care of this population.

Both secondary brain injury and accompanying organ trauma are important determinants of 

outcome in patients with TBI. Hypoxia, hypotension, seizures and extracranial injuries have 

been associated with worse outcomes (11–14). Hypoxia is a known determinant of outcome 

in childhood TBI and its presence in the pre-hospital setting has been associated with 
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mortality (15). The prevalence of hypoxia in 13% of this cohort is comparable to the 

occurrence of hypoxia in 17% reported in a recent analysis of the Pediatric Guideline 

Adherence and Outcomes (PEGASUS) cohort (13). That same study reported that all 

patients received timely treatment of hypoxia, reflecting clinical vigilance that may 

favorably reduce the measurable association between hypoxia and outcome in children with 

TBI. Patients hypoxic for more than 30 minutes were excluded from the Cool Kids trial. 

Accordingly, the observed association between hypoxia and outcome in the present study 

suggests that even relatively short periods of hypoxia are likely influential in determining 

outcome among children with severe TBI.

Injury patterns on head CT are also known to have prognostic implications in TBI (16). 

Radiologist evaluations in the present study demonstrated poor to excellent agreement, as 

measured by kappa, but excellent percent agreement. Previous studies have demonstrated 

this paradox of low kappa but high percent agreement, which occurs in situations of 

symmetric imbalance between two assessors and indicates the need to interpret kappa in the 

context of percent agreement rather than as a sole metric of agreement (17). Subarachnoid 

hemorrhage has been previously shown to be an independent predictor of worse outcome in 

children with TBI, as compared to other hemorrhage patterns (18,19). Subarachnoid 

hemorrhage is associated with high energy injury mechanisms conferring overall worse 

initial brain injury (20). Traumatic subarachnoid hemorrhage is also associated with 

deleterious vasospasm, though data regarding the prevalence of this phenomenon in children 

are scarce (21,22). Basilar skull fractures also occur with high energy mechanisms, are 

associated with subarachnoid hemorrhage and have been independently associated with 

mortality in children with severe TBI (23). Skull fractures were not associated with outcome 

in the present analysis, though the CT grading system did not distinguish basilar and non-

basilar fractures.

Pupillary reaction has been associated with outcome in studies of both adult and pediatric 

severe TBI (11,24). However, a recent retrospective cohort study found better outcomes in 

children compared to adults with severe TBI, even amongst patients with fixed pupils and 

GCS score 3 (25). The association observed in the present cohort between the number of 

fixed pupils and 3-month outcome suggests that presenting pupillary reaction is prognostic 

in pediatric severe TBI, though caution is warranted in assigning comparable predictive 

weight to this finding as compared to adult patients. The ORs for bilateral unreactive pupils 

of 7.83 for mortality in bivariate analysis is substantial, yet lower than ORs for mortality 

reported by other studies, and pupillary response was not associated with mortality in this 

study. Other notable multivariable models have demonstrated significant ORs of 20.7, 60.38, 

34.51 and 30.47, respectively.(14,18,23,26) The exclusion of patients with GCS 3 and 

unreactive pupils, as well as the low number of deaths, likely resulted in the lower OR in the 

present study. This is further evidenced by the lack of association between GCS and 

outcome, despite a strong association having been demonstrated in multiple other studies 

(14,18,23,26,27).

AIS spine and midline shift were associated with mortality in multivariable analyses. A 

corollary of the relationship between spine injury and mortality has been previously 

reported; in a review of studies examining patients with traumatic atlanto-occipital 
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dislocation, only TBI was predictive of death. The presence of spinal cord injury, 

polytrauma, and severity of dislocation according to a classification system were not 

associated with mortality (28). Similarly, an examination of 10 years of trauma registry data 

from South Carolina also demonstrated TBI as an independent predictor of mortality in 

patients with spine injury, as did a retrospective review of 33 trauma patients from a single 

center in the Southwestern United States (29,30). A separate registry review reported 

clinically significant cervical spine injuries in 9% of children with severe TBI and 11% of 

children suffering in-hospital trauma deaths (31).

Midline shift has previously been associated with mortality in patients with severe TBI and 

has been incorporated into validated multivariable models for prognostication of adult 

patients with severe TBI (32). Among children with penetrating head injuries, the absence of 

midline shift is a favorable prognostic sign (33). In a study of 100 children with severe head 

injury in India, midline shift was associated with 24 hour mortality in bivariate analysis, but 

only brain edema emerged as a significant predictor in multivariable analysis (34). The 

magnitude of midline shift can be determined by both the volume of extra-axial blood, as 

well as regional parenchymal edema. A recent study of 59 adult patients noted that midline 

shift greater than 3 mm in excess of the thickness of extra-axial blood apparent on initial 

head CT was associated a positive predictive value of 1.0 for mortality (35). Further 

evaluation in children is warranted to determine whether similar measurements may further 

discriminate the prognostic implications of midline shift.

Children with suspected abusive head trauma were excluded from the original Cool Kids 

trial because injury timing in this group can be difficult to discern and acute-on-chronic 

insults are well-described. Despite this exclusion, the enrolled cohort sustained a range of 

types of head and body trauma. The need to address complex heterogeneity present in TBI 

trial design and clinical management is well-recognized. The International Mission for 

Prognosis and Analysis of Clinical Trials in TBI (IMPACT) study merged patient data from 

eight randomized controlled trials and three observational surveys to create prognostic 

models providing improved covariate adjustment and risk stratification for TBI patients as 

young as 14 years (36). Compared to older adolescents and adults, far fewer trials exist for 

younger children with severe TBI and the influence of potentially important demographic, 

injury and illness characteristics on outcome is less clear. For the most recent iteration of the 

guidelines for the management of severe TBI in children, insufficient evidence existed to 

make a Level I recommendation for any of the topics and only four Level II 

recommendations were made for other therapies.(7)

Distinct phenotypes are emerging for sepsis, asthma, and acute respiratory distress 

syndrome, among other diseases (37–39). Within severe TBI, identifying patient-level 

characteristics associated with outcome provides a step towards better understanding the 

pathobiological features of brain and accompanying organ trauma that offer the highest-

impact therapeutic targets in this population. Distinguishing phenotypes of severe TBI also 

has important implications for defining clinical trial cohorts. For example, the results of the 

present analysis suggest that trial arm imbalances in the prevalence of subarachnoid 

hemorrhage or the presence of midline shift may confound an observed treatment effect, 

despite adequately accounting for other markers of illness severity such as AIS score. Larger 

Rosario et al. Page 7

Pediatr Crit Care Med. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cohort sizes than the present study are necessary to further investigate the associations 

observed in the present analysis and to identify other features of children with TBI worthy of 

subcategorization into discrete phenotypes. Analytic approaches such as cluster analysis that 

aim to reduce big, granular datasets into groups characterized by distinct features are 

increasingly used to identify disease phenotypes (40). The ongoing Approaches and 

Decisions in Acute Pediatric TBI (ADAPT) trial to evaluate the impact of various 

interventions on the outcomes of children with severe TBI may eventually lead to new 

insights regarding the effect of these factors on outcomes.

Strengths of the present analysis include the prospective nature of the data collection and the 

original multicenter design. Excluding patients demonstrating early evidence of brain death 

(GCS 3 and unreactive pupils), that may ultimately lead to the diagnosis of “death by 

neurological criteria”, as well as those experiencing sustained periods of hypoxia and 

hypotension, led to a cohort representing a subset of post-resuscitation children with severe 

TBI. Outcomes for this group are thought to be more dependent on post-resuscitation care 

and therefore less confounded by grave injuries or early, significant secondary injury. This 

analysis is limited by the relatively small size of the study cohort secondary to the early 

cessation of the original Cool Kids trial. This study represents a secondary analysis and there 

was no a priori attempt to ensure sufficient power for examining associations between 

outcome and the analyzed patient factors. Management of intracranial hypertension was 

prescribed in the trial and preceded the most recent iteration of the guidelines for 

management of severe TBI in children, though it’s unclear whether current 

recommendations would substantially alter the identified risk factors for poor outcome. 

Factors not examined in the original trial but potentially related to outcome, such as blood 

transfusions, could not be studied in this analysis (14). Generalizability is also somewhat 

limited by the distribution of study site enrollment. While the study was conducted at 30 

international centers, a majority of patients were enrolled at three sites (University of 

Pittsburgh, University of California/Davis, and University of Texas-Southwestern), raising 

the possibility that data are reflective of center-specific practices. The results from this study 

should be interpreted with caution due to the limited sample size and limited number of 

outcome events (i.e. 6 deaths).

In conclusion, the present analysis of a randomized, controlled trial enrolling children with 

severe TBI shows a significant association between mortality and both spine injury and 

midline shift in children with TBI. Additionally, among multiple clinical and head CT 

characteristics, the number of fixed pupils, hypoxia and presence of subarachnoid 

hemorrhage were associated with GOS-E Peds at 3-month follow-up. GCS total score was 

not associated with either mortality or GOS-E Peds in multivariable regression models in the 

present study. Together, these findings indicate the need for additional, larger studies in the 

arena of childhood severe TBI to further define phenotypes of this population by clarifying 

patient characteristics important for risk stratification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 3

Summary of forward stepwise regression models

Outcome of Interest Characteristic OR (95% CI) P

Mortality AIS SpineMidline shift 3.48 (1.14, 10.58)8.35 (1.05, 66.59) 0.030.045

GOS-E Peds Number of Fixed Pupils (reference: None)

 Unilateral 3.47 (0.79, 15.30) 0.10

 Bilateral 13.61 (2.89, 64.07) 0.001

Hypoxia 5.22 (1.02, 26.67) 0.047

Subarachnoid hemorrhage 3.01 (1.01, 9.01) 0.049

GOS-E Peds = Glasgow Outcome Scale – Extended Pediatric Revision; AIS = Abbreviated Injury Severity
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