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Abstract

Objective: Lymphatic vessel dysfunction and increased lymph leakage have been directly 

associated with several metabolic diseases. However, the underlying cellular mechanisms causing 

lymphatic dysfunction have not been determined. Aberrant insulin signaling affects the metabolic 

function of cells, and consequently impairs tissue function. We hypothesized that insulin resistance 

in lymphatic endothelial cells (LECs) decreases eNOS activity, disrupts barrier integrity increases 

permeability, and activates mitochondrial dysfunction and pro-inflammatory signaling pathways.

Methods: LECs were treated with insulin and/or glucose to determine the mechanisms leading to 

insulin resistance.

Results: Acute insulin treatment increased eNOS phosphorylation and NO production in LECs 

via activation of the PI3K/Akt signaling pathway. Prolonged hyperglycemia and hyperinsulinemia 

induced insulin resistance in LECs. Insulin resistant LECs produced less NO due to a decrease in 

eNOS phosphorylation and showed a significant decrease in impedance across an LEC monolayer 

that was associated with disruption in the adherence junctional proteins. Additionally, insulin 

resistance in LECs impaired mitochondrial function by decreasing basal-, maximal-, and ATP-

linked-oxygen consumption rates and activated NF-κB nuclear translocation coupled with 

increased pro-inflammatory signaling.

Conclusion: Our data provide the first evidence that insulin resistance disrupts endothelial 

barrier integrity, decreases eNOS phosphorylation and mitochondrial function, and activates 

inflammation in LECs.
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Introduction

Insulin resistance, defined as the inability of insulin to optimally stimulate the transport of 

glucose into the body’s cell, is one of the major risk factors for the development of 
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metabolic diseases [1]. In addition to its target tissues, such as liver, skeletal muscle, and 

adipose tissue, the vascular endothelium has emerged as an early responder to the 

development and progression of metabolic insulin resistance [2,3]. It has been shown that 

vascular endothelial cells respond more rapidly to insulin compared to other insulin target 

tissues in the obesity model induced by a high-fat-diet regimen [2,4]. Hence, the vasculature 

is believed to be the most susceptible to nutrient overload and changes in insulin, which 

significantly contributes to the progression of pathology [4]. Although a wealth of evidence 

exists for the role of blood vascular endothelium and its response to high insulin conditions 

[5–7], there is almost nothing known about how lymphatic endothelial cells (LECs) respond 

under similar conditions. In addition, LECs are central players in the process of 

inflammation and immune responses and participate in multiple signaling processes [8,9], so 

LEC dysfunction could have important consequences for health.

It has been shown that lymphatic dysfunction and increased vessel permeability are 

associated with metabolic disorders and obesity [10,11]. Mice heterozygous for Prox1, a key 

lymphatic endothelial transcription factor, showed leakage of lymph due to impaired 

endothelial tight junctions and exhibited late-onset obesity [10]. Apolipoprotein E deficient 

mice (ApoE−/−) on a high-fat diet regimen exhibited leaky and dilated lymphatic vessels 

leading to tissue swelling [12]. Further, decreased lymphatic vessel integrity and 

permeability in a type 2 diabetic mouse model suggested the importance of lymphatic 

endothelial barrier function in the progression of metabolic diseases [13]. We previously 

demonstrated that lymphatic vessels exhibit impaired intrinsic contractile activity and 

reduced force generation during conditions of metabolic syndrome (MetSyn) [14–16]. 

Further, the lymphatic vessels from MetSyn rats showed a significant decrease in the relative 

levels of endothelial nitric oxide synthase (eNOS) that could be associated with endothelial 

dysfunction [14]. We also showed that insulin resistance directly altered cellular 

bioenergetics and inflammatory signaling, coupled with impairment of a key contractile 

regulatory molecule in lymphatic muscle cells (LMCs) [17]. We hypothesized that insulin 

resistance in LECs would decrease eNOS activity and would activate mitochondrial 

dysfunction and pro-inflammatory signaling pathways, consequently disrupting barrier 

integrity and increasing permeability. To test this hypothesis, we induced insulin resistance 

in LECs by prolonging hyperglycemic and hyperinsulinemic culture conditions and 

determined the effects of insulin or insulin resistance on: a) eNOS activity and NO 

bioavailability, b) endothelial barrier function, C) mitochondrial function and d) 

inflammatory signaling pathways in LECs.

MATERIALS AND METHODS

Materials

Phospho-eNOS (Ser1177), eNOS, Phospho-Akt (Thr308), Phospho-Akt (Ser473), Akt, and 

β-actin antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA). A 

β-catenin antibody was purchased from Santa Cruz Biotechnology (Dallas, TX, USA). 

LY294002 and L-N-Nitroarginine methylester (L-NAME) were purchased from EMD 

Millipore (Billerica, MA, USA). The 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-

deoxyglucose (2-NBDG, 11046), DAN Reagent (780070), NaOH (780068), Nitrite Standard 
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(780016), cell-based assay buffer, and Akt inhibitor XI (902779–59-3) were purchased from 

Cayman Chemical (Ann Arbor, MI, USA). Endothelial Cell Growth Medium (EGM2 MV) 

and phenol red-free Endothelial Basal Medium (EBM) were purchased from Lonza (Basel, 

Switzerland). Human dermal lymphatic endothelial cells (HDLECs) were purchased from 

Promo Cell (Heidelberg, Germany). High pore density PET track-etched membrane cell 

culture inserts for permeable supports were purchased from Corning (#353495, Corning, 

NY, USA). ProLong™ Gold Anti-fade mounting medium with DAPI was purchased from 

ThermoFisher Scientific (Waltham, MA, USA). S961, an insulin receptor antagonist, was 

purchased from Phoenix Pharmaceuticals, Inc. (Burlingame, CA, USA). All other chemicals 

and reagents were from Sigma-Aldrich (St. Louis, MO, USA).

Cell culture and treatments

LECs were grown directly on cell culture dishes in EGM2 MV medium containing 5% FBS, 

(Lonza) and maintained at 37°C in a 5% CO2 incubator, as described previously [9]. LECs 

were plated in 24-well culture plates and grown to confluence. The cells were then treated 

with different doses of insulin (1, 10, 100, 150, 200 and 300nM) for various periods of time 

(5 min, 20 min, 1, 12, 48 and 72 h) to determine the effect of insulin on Akt and eNOS 

phosphorylation in LECs. Cells were also treated with an insulin receptor antagonist, S961 

(100nM), a PI3K inhibitor, LY294002 (20μg/ml), and an Akt inhibitor, Akt inhibitor XI 

(20μM), to identify insulin signaling pathways in LECs. LECs were pretreated for 2 h with 

inhibitors and then treated in the presence or absence of insulin for 20 mins. LECs were also 

treated with high glucose (HG, 25mM) or mannose (25mM) for various periods of time to 

examine the effect of high glucose or osmolality on LECs. Osmolality was measured for 

EGM and complete EGM media with or without glucose, mannose, or insulin using a micro-

osmometer, Model 3300 (Advanced Instruments Inc. Norwood, MA, USA). TNF-α 
(20ng/ml) treatment was utilized in some experiments as a positive control for inflammatory 

conditions in LECs.

Glucose transport assay

Insulin sensitivity in LECs was assessed by measuring glucose uptake using 2-NBDG, as 

described previously [17]. To determine the optimal incubation time, LECs were grown in 

the presence of 2-NBDG and the 2-NBDG uptake was measured at various time points from 

10min to 6 h. Results showed that 2NBDG fluorescence intensity reached a maximal level in 

LECs at the 1-h incubation time point. Hence, we used 1-h 2-NBDG incubation for 

subsequent glucose transport assays. Following completion of the HG, insulin or insulin + 

HG treatments, cells were incubated with 2-NBDG (150μg/ml) in phenol red-free EBM 

medium for 1 h and the plate was centrifuged for 5 min at 400g at room temperature. The 

supernatants were removed and the cells were washed twice with the cell-based assay buffer 

(Cayman Chemical). Buffer was added to each well and the plate was centrifuged for 5 min 

at 400g at room temperature, and the supernatants were removed. After the final wash, the 

cell-based assay buffer was added to the cells and the amount of 2-NBDG taken up by LECs 

was measured at 485/535 nm wavelengths using a plate reader. All experiments were 

repeated a minimum of three times. Data were normalized to corresponding controls and the 

data presented as mean fold change ± SEM.
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Trans-endothelial electrical resistance (TEER) measurement

TEER was measured as described [18]. LECs were seeded on 6.4mm polyethylene 

terephthalate Transwell™ inserts with a 0.4μm pore size (Corning Inc. Corning, NY, USA). 

Cells were incubated for at least 48 h in order to ensure a completely confluent monolayer. 

TEER measurements were made with an Epithelial Volt/Ohm Meter (EVOM2) and STX2 

chopstick electrode (World Precision Instruments, Sarasota, FL, USA), just before and after 

the addition of treatments (20 min, 1h, 12h, 24h, and 48h). Resistance (ΔTEER, Ω × cm2) of 

the LEC monolayers under the different conditions was calculated by subtracting the mean 

resistance of control inserts. To compare independent experiments, normalized ΔTEER 

values were calculated in relation to the ΔTEER in basal conditions before the treatment. 

Data were presented as mean fold change ± SEM.

LEC permeability assay

The LEC monolayer barrier function assay was performed as previously described [19]. 

LECs were grown to confluent monolayers on the 6.4mm Transwell™ inserts and then 

treated with EBM containing either insulin (100nM), high glucose (25mM), mannose 

(25mM), TNFα (20ng/ml) or left untreated. EBM2 medium was then added to the upper 

and lower chambers. FITC-labeled bovine serum albumin (10 mg/ml) was added to the 

upper chamber. Cells were incubated at 37 °C for 30 min and then aliquots of medium were 

removed from the lower chamber, diluted with Milli-Q water and fluorescence measured at 

494nm/518nm wavelengths using a plate reader. All experiments were repeated three times. 

Data were corrected for background and reported as the percent of control. Data were 

presented as mean fold changes ± SEM.

Nitric oxide production

The production of NO was assessed by measuring the concentration of nitrite in LEC-

conditioned culture medium [20] using a sensitive nitrite fluorometric assay kit (Cayman 

Chemical). Briefly, LECs were plated and grown to completely confluent monolayers in 48-

well cell culture plates and then treated with HG, insulin, mannose, L-NAME (a NOS 

inhibitor, 10μM, 24h), or TNF-α (24h), as described earlier [19]. Nitrite measurement was 

carried out according to the manufacturer’s instructions. The fluorescence was monitored at 

dual wavelengths of 375 and 415 nm. Experiments were repeated nine times and data were 

presented as mean ± SEM.

Mitochondrial bioenergetics

Mitochondrial function in LECs was assessed using the XFe96 Extracellular Flux Analyzer 

(Seahorse Bioscience, North Billerica, MA, USA), by measuring the rate changes in the 

extracellular flux of dissolved oxygen and protons, as previously described [17]. The LECs 

were seeded in 96-well XFe microplates at 50 × 103 cells/well in EGM2 MV at 370C in a 

5% CO2 incubator and grown to confluence. The LECs were treated as described above 

(n=4/group). The medium was replaced with the assay medium and corresponding 

treatments (i.e., glucose, insulin) for 1 h before beginning the assay at 37°C. The oxygen 

consumption rates (OCRs) were measured with the following sequential reagents: 

oligomycin (5μM, mitochondrial complex V inhibitor), FCCP (1μM, an uncoupling agent), 
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and rotenone (5μM, mitochondrial complex I inhibitor). On completion of the assay, the 

number of cells was counted for normalization of the values. All the OCRs are expressed in 

picomoles per minute of oxygen consumed. Reserve capacity was calculated as the 

difference between basal OCR and that obtained in the presence of FCCP. Maximum 

respiratory capacity was calculated as the difference in OCR between rotenone-treated and 

FCCP-treated cells.

Glycolytic capacity analysis

Cellular glycolytic rates in LECs were estimated by measuring extracellular acidification 

rate (ECAR), as described in our previous study [17]. The LECs were treated as described 

above (n=4/group). The extracellular acidification (milli-pH per minute) was measured at 

basal and maximal levels by injection of oligomycin (5μM). Values were normalized by cell 

number. Glycolytic capacity was determined as the difference between basal ECAR and that 

obtained in the presence of oligomycin.

Cytokine analysis in LECs using real-time PCR

LECs were plated in 24-well culture plates and serum starved for one hr. Cells were then 

treated with glucose (25mM) or insulin (100nM) for 48h, as described previously. Total 

RNA was extracted using the RNeasy kit (Qiagen, Valencia, CA, USA), according to the 

manufacturer’s instructions. The quality and quantity of RNAs were determined using a 

NanoDrop (ThermoFisher Scientific, Wilmington, DE, USA). RNA was converted to cDNA 

using a Superscript III cDNA synthesis kit (ThermoFisher Scientific). The cDNA was mixed 

with SYBR Green PCR master mix (ThermoFisher Scientific). Primers specific to IL-1β, 

IL-4, IL-6, iNOS, TNFα, monocyte chemoattractant protein (MCP)-1, and macrophage 

inflammatory protein (MIP)-2, CXCR2, CFOS, c-Jun were designed and used for real-time 

PCR [9,17]. RPL19 amplification was used as a control for all samples and the differences in 

the relative expression of cytokines between groups was calculated using the 2-ΔΔCt method.

Immunofluorescence

Immunofluorescence experiments were performed as described earlier to determine β-

catenin and NF-κB localization [9,17]. In brief, the treated LECs were fixed with 2% 

paraformaldehyde. Cells were then permeabilized and incubated with the corresponding 

primary antibodies, β-catenin or NF-κB. Corresponding normal IgG was used as a control. 

After washing off the primary antibody, cells were incubated with a fluorescence-conjugated 

secondary antibody, followed by washing, and cells were then mounted in ProLong™ Gold 

Antifade solution containing DAPI (ThermoFisher Scientific). Images were taken with an 

Olympus BX41 fluorescence microscope using an UPlan Apo x20 (NA=0.7) or Uplan FLN 

× 40 objective (NA=1.3). NIH Image J edge finder and plug-in co-localization were used to 

quantify adherent junction fluorescence signal intensity and nuclear localization, 

respectively [21].

Protein isolation and western blot analysis

Protein expression was quantified by western blot analysis [9,22]. Protein lysates from LECs 

were separated on a 4–20% gradient SDS-polyacrylamide gel, and western blot analysis was 
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performed with antibodies for the following: p-eNOS (Ser1177), total eNOS, p-Akt 

(Ser473), p-Akt (Thr308), total Akt, β-catenin, and β-actin. Appropriate secondary 

antibodies were used and protein detection was carried out using a chemiluminescence 

system (ThermoFisher) followed by using the Fuji LAS-4000 Mini image processor (GE 

Healthcare Bio-Science, Pittsburgh, PA, USA). Densitometry analyses were carried out with 

Image J (National Institutes of Health, Bethesda, MD, USA) [21]. All experiments were 

repeated in triplicate and mean fold change ± SEM was calculated.

Statistical analysis

Time-dependent and dose-dependent effects of insulin, glucose uptake assays, permeability 

assays, NO measurements and TEER measurements were analyzed using one-way ANOVA. 

Mean differences were compared to control LECs or basal levels using the Dunnett’s post 

hoc test (SPSS19.0; IBM Corp., Armonk, New York, USA). Effects of S961, Akt inhibitor 

XI, L-NAME, and prolonged HG and insulin treatments were analyzed using two-way 

ANOVA, followed by Bonferroni’s post hoc test. If there were any significant interactions or 

main effects between treatments, mean differences between test groups were assessed using 

one-way ANOVA with Fisher’s Least Significant Difference (LSD) post hoc test. 

Mitochondrial OCR data were analyzed using a two-tailed t-test. NF-κB co-localization data 

were analyzed using one-way ANOVA with Fisher’s LSD post hoc test. All values are 

expressed as mean ± SEM; p=0.05 was considered as significant. All graphs were generated 

with Prism 5 (GraphPad Software, La Jolla, CA, USA).

Results

Acute insulin treatment activates Akt/eNOS phosphorylation in LECs.

Insulin regulates endothelium-derived NO production via Akt signaling in blood 

endothelium [23,24]. To determine whether insulin also stimulates eNOS phosphorylation in 

LECs via the Akt pathway, we treated LECs with various concentrations of insulin and 

quantified Akt and eNOS phosphorylation. Results showed a dose-dependent increase in Akt 

serine and threonine phosphorylation in LECs treated with insulin (Figures 1A & B). While 

10nM of insulin increased Akt (Ser473) phosphorylation (+2.34 fold vs. Control, p<0.002), 

100nM of insulin had significant effects on Akt (Thr308) phosphorylation (+2.37 fold vs. 

Control, p<0.034). Additionally, 100nM or higher doses of insulin significantly induced 

eNOS (Ser1177) phosphorylation (+4.58 fold vs. Control, p<0.0001, Figure 1C). We next 

examined the effect of insulin (100nM) on Akt and eNOS phosphorylation at various time 

points (5 min, 20 min, 1 h, 12 h, 24 h, 48 h, 72 h) (Figures 1D, E, F). As shown in Figure 

1D, Akt (Ser473) phosphorylation was significantly elevated following 20 min of insulin 

treatment (+1.09 fold vs. Control, p<0.03) and decreased to the basal level within 24 hours. 

Phosphorylation of Akt (Thr308) was upregulated after 5 min of insulin treatment (+0.57 

fold vs. Control, p<0.014) and downregulated to the basal level within 12 hours (Figure 1E). 

Insulin treatment also significantly increased eNOS phosphorylation after 20 min (+0.83-

fold vs Control, p<0.004). Compared to the basal level, insulin treatment longer than 24h did 

not induce any significant differences in eNOS phosphorylation (Figure 1F).
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Insulin-mediated eNOS phosphorylation is regulated by PI3K/Akt pathways.

To ascertain whether insulin-induced eNOS phosphorylation is mediated via the insulin 

receptor (IR), LECs were treated with S961, an insulin receptor antagonist, and evaluated for 

Akt/eNOS phosphorylation. In the presence of this IR inhibitor, insulin-induced Akt and 

eNOS phosphorylation levels remained at basal levels (Figure 2A). To elucidate the specific 

roles of PI3K and Akt in modulating eNOS phosphorylation as a downstream signaling 

pathway of insulin, we also used a PI3K inhibitor (LY294002) or Akt inhibitor (Akt 

Inhibitor XI) in conjunction with insulin treatment of LECs. Inhibition of PI3K blunted 

insulin-mediated eNOS phosphorylation (−1.22 fold vs. Insulin, p<0.001). Treatment with 

PI3K inhibitor alone did not influence eNOS phosphorylation compared to untreated 

controls (Figure 2B). Similarly, Akt inhibitor caused a significant reduction of insulin-

induced eNOS phosphorylation (−0.54 fold vs. Insulin, p<0.005), while Akt inhibitor alone 

did not alter the eNOS phosphorylation level compared to the control group (Figure 2C). 

These results suggest that insulin activates eNOS phosphorylation via the PI3K/Akt 

signaling pathway in the LECs.

Prolonged hyperinsulinemia and hyperglycemia cause insulin resistance in LECs.

One of the key pathological determinants of insulin resistance is impairment of insulin 

sensitivity that reduces glucose uptake into peripheral tissues or cells, including endothelial 

cells [25,26]. We measured glucose uptake level using fluorescently labeled 2-NBDG to 

determine whether prolonged hyperinsulinemia and/or hyperglycemia induces insulin 

resistance in LECs. Acute insulin treatment significantly increased LEC glucose uptake at 5 

minutes (+2.47 fold vs. Control, p<0.001), 20 minutes (+2.83 fold vs. Control, p<0.001) and 

12 hrs (+0.56 fold vs. Control, p<0.008). After 12 hrs there was no significant change in 

glucose uptake in LECs treated with insulin (Figure 3A). In contrast to insulin, 

hyperglycemia did not alter glucose uptake at any of the time points (Figure 3B). Previous 

studies showed both hyperglycemia and hyperinsulinemia were necessary to develop insulin 

resistance in various cell types, including LMCs [17,27,28]. In the presence of insulin and 

HG, LECs showed an increase in glucose uptake within 5 minutes (+2.46 fold vs. Control, 

p<0.001). This effect was found to last until 12 h (+0.65 fold vs. Control, p<0.05) and was 

found to decrease to the basal level at 24 h (Figure 3C). LECs that were exposed to 

hyperglycemic and hyperinsulinemic conditions for 48h showed a significant reduction 

(−0.52 fold vs. Control, p<0.022) in glucose uptake (Figure 3C). Therefore, we chose 

100nM insulin with 25mM glucose treatments for 48h to investigate the effects of insulin 

resistance in LECs. Hyperglycemia- and hyperinsulinemia-induced insulin resistance in 

LECs was reversed by removing glucose and insulin from the culture medium. Insulin 

resistant LECs returned to basal LEC culture medium for 48h showed increased glucose 

uptake (+0.15 fold vs. HG+Ins 48h, p<0.05), but it was still lower than control LECs (−0.17 

fold vs. Control, p<0.05, Figure 3D). Glucose uptake was similar to control LECs in insulin 

resistant LECs after returning to LEC culture medium for 72 h (Figure 3D).
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Hyperglycemia- and hyperinsulinemia-induced insulin resistance impairs insulin-
dependent PI3K/Akt/eNOS signaling in LECs.

We previously demonstrated that MetSyn rats showed a decrease in eNOS expression 

coupled with impaired flow responses in thoracic duct lymphatics [14]. Therefore, we 

investigated the mechanisms by which insulin resistance impairs eNOS regulation in LECs. 

Phosphorylation of both Akt (Ser473) and Akt (Thr308) was significantly reduced by 48 h 

HG and insulin treatments (−0.39 fold vs. Control, p<0.003 and −0.43-fold vs. Control, 

p<0.05, respectively) compared to all other groups (Figures 4A and B). Additionally, eNOS 

phosphorylation (Ser1177) was significantly decreased in insulin resistant LECs (−0.43 fold 

vs. Control, p<0.01) (Figure 4C). To confirm whether the decreased eNOS phosphorylation 

impaired NO production in insulin resistant LECs, we measured levels of nitrite, a stable 

metabolite of NO, in conditioned medium as a direct index of NO production in LECs. 

When eNOS was blocked by a NOS inhibitor (i.e., L-NAME), nitrite content in LECs was 

significantly reduced (0.63 ± 0.1nM/hour/105 cells, p<0.05 vs. Control) compared to the 

control group (2.27 ± 0.29nM/hour/105 cells, Figure 4D). Acute insulin treatment elevated 

the medium nitrite content (3.57 ± 0.32nM/hour/105 cells, p<0.01 vs. Control), and insulin-

induced nitrite production was glucose-independent (3.63 ± 0.33nM/hour/105 cells, p<0.01 

vs. Control). In contrast, insulin resistant LECs showed a significantly diminished nitrite 

level (1.45 ± 0.08nM/hour/105 cells, p<0.05 vs. Control). To rule out possible effects of 

osmolality on NO production, we treated LECs with 25mM mannose-containing medium, 

with or without insulin. The osmolality of each solution (mOsmol/Kg) was measured: 

control, 277.1±2.91; HG, 302.1±2.81; Mannose, 302.2±2.74. The mannose-treated LECs did 

not show any significant difference in nitrite level (2.05 ± 0.24nM/hour/105 cells) compared 

to control LECs, ruling out an effect of osmolality.

Insulin resistance mechanisms impair mitochondrial function and cellular energetics in 
LECs.

Mitochondria play an important role in maintaining endothelial function by producing 

essential cellular energy and by regulating cellular Ca2+ homeostasis. Unlike blood 

endothelial cells (BECs), LECs are more dependent on mitochondria as a source of energy 

than on glycolysis [29]. However, the mechanisms regulating LEC metabolism and 

mitochondrial function during insulin resistance conditions have not been previously 

investigated. We first compared the energetic phenotypes of LECs with the highly energetic 

LMCs. LECs showed significantly lower basal- (19.96 ± 0.82 vs. 2.11±0.20pmol/min/104 

cells, LMCs vs. LECs, p<0.05), maximal- (37.18 ± 2.77 vs. 6.06 ± 0.27pmol/min/104 cells, 

LMCs vs. LECs, p<0.05) and ATP-linked OCR values when compared to LMCs (14.7± 1.32 

vs. 1.87± 0.12pmol/min/104 cells, LMCs vs. LECs, p<0.05, Figure 5B–C). When compared 

to control LECs, insulin resistant LECs exhibited significant decreases in the basal (2.368 

± 0.12 vs. 1.392 ± 0.07pmol/min/104 cells, p<0.001), maximal (3.65 ± 0.65 vs. 1.734 

± 0.04pmol/min/104 cells, p<0.021), and ATP-linked OCR (1.72 ± 0.09 vs. 0.803 

± 0.19pmol/min/104 cells, p<0.001) values (Figure 5E–F); no significant differences were 

observed between HG- or insulin-treated LECs. Additionally, there were no significant 

differences between groups in maximal glycolytic capacity (Figure 5G).
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Lymphatic permeability is increased in insulin resistant LECs.

Metabolic diseases are accompanied by disrupted lymphatic barrier function and increased 

lymph leakage [10,11,30]. Since LECs are actively involved in the regulation of lymphatic 

permeability [19,30–32], we wanted to determine whether insulin resistance brought about 

by hyperglycemic and hyperinsulinemic conditions in LECs directly impaired LEC barrier 

integrity. Glucose or acute/prolonged insulin treatment did not affect permeability in LECs 

(Figure 6A). Notably, hyperglycemic and hyperinsulinemic conditions caused a significant 

increase in permeability in LECs (+0.96 fold vs. Control, p<0.05). TNF-α, a well-known 

pro-inflammatory mediator that increases lymphatic endothelial permeability [19,32], was 

used as a positive control and it significantly increased lymphatic permeability (+2.36 fold 

vs. Control, p<0.0001).

To further determine at what time point hyperglycemia and hyperinsulinemia begin to 

disrupt the LEC barrier, we employed trans-endothelial electrical resistance (TEER) 

measurements to assess barrier integrity. We found that insulin or glucose alone did not 

affect TEER throughout the time periods tested (Figure 6B). High glucose and insulin 

treated-LECs exhibited significantly decreased TEER at 48h (−0.32 fold vs. Basal, p<0.05), 

matching the time point at which LECs displayed insulin resistance. TNF-α-treated LECs 

showed a steady decline in TEER with a significant decrease at the 24h time point (−0.56-

fold vs Basal, p<0.001, Figure 6B). In order to determine whether changes occur in the 

adherens junction, we examined the localization of β-catenin in the insulin resistant LECs. 

Insulin resistant LECs showed a decrease in β-catenin expression at the junctional regions 

(−0.48 fold vs. Control, p<0.05) when compared to control LECs, while insulin- or glucose-

treated LECs did not show any significant differences (Figures 6C and D). No significant 

changes were observed in the total amount of β-catenin in the LECs from the different 

groups (Figure 6E).

Insulin resistance causes activation of NF-κB and increased cytokine gene expression in 
LECs.

Obesity and insulin resistance are associated with chronic systemic inflammation [33]. Our 

previous data demonstrated an increase in inflammatory signaling in insulin resistant LMCs 

[17] and in the lymphatic vessels from MetSyn animals [15,16]. Therefore, we investigated 

whether insulin resistance also promotes pro-inflammatory signaling in LECs. TNF-α-

treated LECs showed robust NF-κB nuclear translocation (Figures 7A and B), indicating 

activation of inflammation, as we have shown previously [9]. HG and high insulin 

conditions also led to a significant increase in NF-κB nuclear translocation in LECs (+0.85 

fold vs. Control, p<0.05). ICAM-1, one of the key attractants for inflammatory leukocytes, 

was significantly upregulated in the HG- and insulin-treated LECs (+0.74 fold vs. Control, 

p<0.05) compared to all other groups, while there was no significant difference between 

control, insulin-, and glucose-treated LECs (Figure 7C). Furthermore, we analyzed gene 

expression for the inflammatory cytokines MCP1, IL1β, IL6, TNF-α, iNOS, MIF, MMP2, 

CXCR2, CFOS, CJUN, and MIP2 in the LECs under the different treatment conditions 

described above. MCP1 and MIP2 showed significant increases in expression in insulin 

resistant LECs, while no other cytokines showed a significant increase in expression (Figure 

7D).
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Discussion

The mechanistic relationship between insulin resistance and lymphatic endothelial 

dysfunction is not clearly understood. Lymphatic vascular integrity has been shown to be 

disrupted in diabetic db/db mice, and these conditions were associated with low NO 

bioavailability and increased permeability [13]. However, the specific molecular 

mechanisms governing this physiological response have not been investigated and is the 

highlight of the present study. In this study, we provide the first evidence to our knowledge 

that while acute insulin exposure promotes eNOS phosphorylation and consequently 

increases NO production via PI3K/AKT signaling in LECs, insulin resistance activates 

proinflammatory signaling in LECs, decreases cellular bioenergetics, and decreases NO 

production, thereby impacting lymphatic barrier function, junctional integrity and increasing 

LEC permeability (Figure 8). In the following section, we justify the concentrations of 

glucose and insulin used in this study and correlat our data with the available literature on 

insulin resistance in BECs.

The level of glucose used as our control (5mM) is similar to the physiological glucose level, 

while our HG level (25mM) is higher than the published in vivo pathological value (e.g.,8.1 

± 2.5mM). The insulin concentration (100nM) used in our study has been widely used in 

several in vitro studies [34–37] and is also within the range of insulin concentrations used to 

treat various types of BECs (Tables 1 and 2).

Previous studies have shown comparable levels of gastrointestinal hormones, including 

insulin, within lymph and plasma in canine and rodent models [38,39]. Other studies have 

shown higher glucose and lower insulin levels in the lymph compared to blood plasma [40–

42] (Tables 3 and 4). The insulin levels in human lymph and plasma are similar under basal 

conditions, and there is a strong positive correlation between whole-body glucose uptake and 

lymph insulin, supporting comparable levels of insulin in the lymph and systemic circulation 

[43]. Insulin sensitivity was higher in the lymphatic vessel (i.e., thoracic duct) compared to 

right jugular vein, while plasma insulin level achieved at a steady state faster than the lymph 

insulin following insulin infusion [39]. However, this temporal difference could be due to 

the spatial gap between venous and lymphatic vessels since the insulin was infused via the 

hind limb vein.

We previously showed that the collecting lymphatic vessels from MetSyn animals 

demonstrated increased constriction with reduced contractile frequency, resulting in 

decreased lymph transport [15,16]. In addition, the lymphatic thoracic duct from MetSyn 

animals exhibited insensitivity to shear stress due to downregulated eNOS expression [14]. 

NO plays a critical role in the flow/shear-mediated regulation of lymphatic contractility [44–

46]. The data presented in this study demonstrate that insulin increases eNOS and NO 

production in LECs via activation of the PI3K/Akt signaling pathway (Figures 1 and 2). 

However, under insulin resistance conditions, eNOS phosphorylation and NO production 

were reduced significantly compared to the basal condition (Figure 4). Hence, we proposed 

that the reduced lymphatic contractile activity and the smaller diameter lymphatic vessels 

observed in MetSyn rats could be caused by the diminished eNOS phosphorylation and NO 

production in the insulin resistant LECs of MetSyn animals. Table 1 provides the data from 
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various studies showing the effects of insulin on eNOS phosphorylation in BECs from 

different sources [6,7,47,48]. Though these studies used different insulin concentrations on 

various BECs, the results of Akt signaling and eNOS phosphorylation are similar to the 

present study with LECs (Table 1 and Figures 1 and 2).

BECs predominantly rely on glycolysis to regulate bioenergetics due to easy access to 

glucose [49,50]. Although insulin plays a vital role in endothelial function by regulating 

eNOS phosphorylation [23,24,51], it is not directly linked with energy metabolism in BECs 

[52,53]. Table 2 indicates the differential effect of insulin on glucose uptake in diverse 

BECs. In contrast to BECs, very little is known about metabolic pathways in LECs [2]. 

Wong et al [29] had shown that fatty acid β-oxidation was higher in LECs than in arterial, 

venous and microvascular ECs, whereas glycolytic flux was lower, suggesting the important 

role of mitochondrial oxidation in LEC metabolism. Studies have also shown that mitogen 

activated protein kinase kinase kinase kinase 4 (Map4k4) impairs energy metabolism in ECs 

and promotes insulin resistance during high-fat diet-induced obesity and its systemic loss 

improves insulin sensitivity [54–56]. Primary ECs that were a mixture of lymphatic and 

blood ECs showed enhanced glycolytic and mitochondrial respiration in the absence of 

MAP4K4. However, specific signaling mechanisms and metabolic effects in the blood and 

lymphatic endothelium that may be contributing to the observed effects were not delineated 

[55]. In this study, we have shown that while insulin resistance promotes mitochondrial 

dysfunction in LECs (Figures 5E and F), glycolytic capacity (Figure 5G) is not altered, 

suggesting that LECs may utilize mitochondria as a predominant energy source. LECs 

exhibit a reduced cellular energetics status when compared to LMCs (Figures 5A–C), which 

might be due to the higher mitochondrial content in LMCs. LEC mitochondria might play a 

prominent role in cellular signaling responses to environmental cues [57], as well as in 

regulating NO bioavailability [58,59]. Further studies are warranted to determine the 

mechanisms by which insulin resistance impairs mitochondrial function more severely than 

glycolytic capacity in LECs and to identify the source and mechanisms of energy 

metabolism in LECs under physiological and pathological conditions.

Maintaining lymphatic endothelial barrier function is crucial for maintenance of lymphatic 

functions and limiting inflammation [13,19,31,60,61]. The lymphatic endothelial barrier is 

controlled by the cell-cell junction that controls physiological lymphatic function [61]. 

While BECs are impermeable to albumin and other large molecules in a steady state 

condition [62], lymphatics constitutively leak a portion of the fluid and solute [63,64]. 

Elevated lymph leakage due to disrupted LEC junctions aids development of obesity with 

hyperinsulinemia and with increased leptin levels [10]. Further, diabetic mice exhibited 

increased permeability in mesenteric collecting lymphatic vessels, suggesting that 

compromised lymphatic barrier function would lead to severe leakage of lymph into the 

tissue [13]. In the present study, our results demonstrate that there is a significant increase in 

permeability in insulin resistant LECs (Figure 6A). This is consistent with the decreased 

TEER across LECs in response to prolonged hyperglycemia and hyperinsulinemia 

conditions (Figure 6B). In addition, the expression of the adherence junction protein, β-

catenin, which is one of the essential molecules for endothelial integrity and the stabilization 

of cadherin [32,65], is significantly lower in the junctional area of the insulin resistant LECs 

compared to control cells (Figures 6C–E). Thus, our data suggest that the decreased 
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impedance across the LECs and increased LEC permeability under insulin resistance 

conditions may be due to the disruption of β-catenin at the junctional areas of the cells. In 

the current study, we were not able to assess the initial step of increase in solute flux that 

reflects more quantitative permeability. In addition, the increased permeability may be due 

to changes in active albumin transport as the FITC-albumin assay is reflective of the rate of 

transport of albumin across the endothelial monolayer via passive diffusion through cell 

junction and active ATP-dependent transcytosis [66,67].

NO is also known as a crucial regulator for permeability in endothelium. Studies have 

provided evidence that NO increases or decreases the blood microvascular or lymphatic 

permeability [68–71]. For instance, inhibition of NO increased blood vascular permeability 

in the rat [72] and cat [73]. In contrast, eNOS-derived NO was necessary for VEGF-induced 

permeability in endothelial cells [74]. The role of NO in the lymphatic endothelial barrier 

integrity is poorly understood. iNOS- derived NO brought about by pro-inflammatory 

cytokines increased permeability in rat mesenteric LECs [19]. Scallan et al. [13] performed a 

more direct assessment of the role of NO and permeability using the mouse lymphatic 

vessel, and the results were a paradox. In healthy lymphatics, NO increased permeability. In 

contrast, inducing NO synthesis using L-arginine supplementation decreased permeability in 

the lymphatics of diabetic animals [13]. Our data presented in this study show that insulin 

induces NO in LECs but does not decrease permeability; whereas NO is decreased in insulin 

resistant LECs and those cells show an increase in permeability (Figure 6).

The MetSyn condition is characterized by a mild, but chronic inflammatory state [33]. We 

found that conditions of high glucose and high insulin caused NF-κB nuclear trans-

localization in LECs (Figure 7A–B), which is also associated with the induction of 

inflammatory chemoattractant molecules, such as MCP1 and MIP2, that play an important 

role in recruitment of inflammatory M1 macrophages [75,76]. In addition, insulin resistant 

LECs showed increased ICAM-1 expression, which is involved in recruiting innate and 

adaptive immune cells and mediating LEC permeability [77–79]. In LECs, ICAM-1 is one 

of the critical adhesion molecules facilitating dendritic cell transmigration in response to 

inflammatory cytokines [78]. ICAM-1 blockage inhibited flow-dependent dendritic cell 

migration and permeability, suggesting an important role of ICAM-1 in both immune cell 

regulation and lymphatic permeability [77]. Inflammation increased ICAM-1 expression in 

LECs [19,80] and increased permeability [19,32]. We have previously shown that the dietary 

endotoxin, LPS, increased innate immune cell recruitment that was associated with an 

ICAM-1 upregulation [22]. Therefore, we speculate that increased ICAM-1 by insulin 

resistance in LECs would promote immune cell recruitment into the collecting lymphatic 

vessels, similar to what we observed in the mesenteric collecting lymphatic vessels of 

MetSyn rats [15]. Our data did not show significant changes in several other key 

inflammatory molecules, such as IL-1β, IL-6, and IL-4, indicating a mild inflammatory 

activation under insulin resistance conditions in LECs. Therefore, it is plausible that insulin 

resistant LECs exhibit an increase in permeability due to decreased lymphatic endothelial 

barrier integrity caused by mild chronic inflammatory signaling. Indeed, animals with 

MetSyn or related diseases (i.e. Type 2 diabetes) exhibited leaky lymphatic vessels [13] and 

impaired pumping activity with reduced intrinsic force generation [16], altered inflammatory 

signaling [15] and decreased eNOS expression [14].
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In conclusion, this study provides the first direct evidence that prolonged hyperglycemia and 

hyperinsulinemia conditions induce insulin resistance in LECs. As seen in Figure 8, insulin 

resistance impairs the PI3K/Akt pathway that dysregulates eNOS phosphorylation and 

decreases NO production. These changes are also associated with alterations in the 

mitochondrial function of the LECs. Disruption of LEC barrier function during insulin 

resistance increases permeability. Insulin resistance also activates pro-inflammatory 

signaling in LECs (Figure 8). We acknowledge that the LECs in the present study were 

grown directly on cell culture plastic. Numerous cell types are affected by their 

microenvironment, including types of extracellular matrix (ECM) composition and physical 

properties [81]. BECs showed different vascular structure properties and angiogenic 

characteristics in response to various extracellular microenvironments [82–87]. A recent 

study showed that decreased ECM stiffness mediates lymphangiogenesis both in vivo and in 
vitro [88]. Therefore, further studies are warranted to understand how the remodeling of 

ECM and other changes in the microenvironment occurring in the in vivo conditions 

influence the molecular mechanisms of the complex inflammatory, mitochondrial and 

metabolic signaling in the lymphatic endothelium in response to nutrient overload.

Perspectives

Insulin promotes nitric oxide production via the PI3K/Akt/eNOS pathway in lymphatic 

endothelial cells. In insulin resistance conditions, nitric oxide production is diminished due 

to impaired signaling via the PI3K/Akt pathway in the lymphatic endothelial cell. 

Additionally, insulin resistance disrupts lymphatic endothelial barrier integrity and induces 

inflammation. Thus, impairments in the insulin resistant lymphatic endothelial cell 

functional mechanisms would weaken lymphatic vessel pumping activity, and consequently, 

lymph flow in metabolic syndrome or other related metabolic diseases.
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Abbreviations

ANOVA Analysis of variance

eNOS Endothelial nitric oxide synthase/nitric oxide synthase 3

ECAR Extracellular acidification rate

FCCP Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone 2

HG High glucose

ICAM-1 Intercellular adhesion molecule 1

IL-1β Interleukin 1 beta

IL-4 Interleukin 4
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IL-6 Interleukin 6

iNOS Inducible nitric oxide synthase/nitric oxide synthase

LECs Lymphatic endothelial cells

L-NAME L-NG-Nitroarginine methylester

LPS Lipopolysaccharide

MCP1 Monocyte chemoattractant protein-1

MetSyn Metabolic syndrome

MIF Macrophage migration inhibitory factor/glycosylation-inhibiting 

factor

MIP Macrophage inflammatory proteins

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

NO Nitric oxide

OCR Oxygen consumption rate

PI3K Phosphatidylinositol-4,5-bisphosphate-3-kinase

SDS Sodium dodecyl sulphate

TEER Transendothelial electrical resistance

TNF-α Tumor necrosis factor alpha
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Figure 1. 
Acute insulin treatment activates Akt/eNOS phosphorylation in LEC. LECs were treated 

with different doses of insulin (1–300nM) for 20 minutes. Representative western blots are 

shown: (A) Akt (Ser473) phosphorylation, (B) Akt (Thr308) phosphorylation, and (C) eNOS 

(Ser1177) phosphorylation. The relative expression of p-Akt (Ser473)/Akt, p-Akt (Thr308)/

Akt, and p-eNOS (Ser1177)/eNOS were quantified and plotted (n=4/group). LECs were 

treated with insulin (100nM) for varying time periods (5 min-72 h). Representative western 

blots are shown: (D) Akt (Ser473) phosphorylation, (E) Akt (Thr308) phosphorylation, and 

(F) eNOS (Ser1177) phosphorylation. The relative expression of p-Akt (Ser473)/Akt, p-Akt 

(Thr308)/Akt, and p-eNOS (Ser1177)/eNOS were quantified and plotted (n=4/group). Data 

represent mean fold changes ± SEM. *p<0.05 vs. control.
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Figure 2. 
Insulin-mediated eNOS phosphorylation is regulated by PI3K/Akt pathways. LECs were 

treated with insulin (100nM) and S961(100nM), as described in the Materials and Methods, 

and representative western blots are shown: (A) Akt (Ser473) phosphorylation, (B) Akt 

(Thr308) phosphorylation, and (C) eNOS (Ser1177) phosphorylation. The relative 

expression of p-Akt (Ser473)/Akt, p-Akt (Thr308)/Akt, and p-eNOS/eNOS was quantified 

and plotted (n=3/group). Data represent mean ± SEM. #p<0.05 vs. Control; $p<0.05 vs. 

insulin. LECs were treated with insulin (100nM) and (D) LY294002 (20μg/ml) or (E) Akt 

inhibitor XI (20μM), as described in the Materials and Methods, and representative western 

blots are shown. The p-eNOS/eNOS expression was quantified and plotted (n=3/group). 

Data represent mean fold changes ± SEM. #p<0.05 vs. control; $p<0.05 vs. insulin.
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Figure 3. 
Prolonged hyperinsulinemia and hyperglycemia conditions induced insulin resistance in 

LECs. Glucose uptake was measured to test insulin sensitivity using 2NBDG in LECs at 

different time points (5 min-72 h): (A) insulin (100nM) treatment in low glucose (5mM), (B) 

HG (25mM), and (C) insulin (100nM) and HG (25mM) combined (n=6/group). (D) Glucose 

uptake was also measured after returning cells to standard growth medium following 48h of 

HG and insulin treatment of LECs. Data represent mean fold changes ± SEM (n=4/group). 

#p<0.05 vs. control.
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Figure 4. 
Hyperglycemia- and hyperinsulinemia-induced insulin resistance impaired insulin-

dependent PI3K/Akt/eNOS signaling in LECs. LECs were treated with HG (25mM) and 

insulin (100nM) for 48h and representative western blots are shown: (A) Akt (Ser473) 

phosphorylation, (B) Akt (Thr308) phosphorylation, and (C) eNOS (Ser1177) 

phosphorylation. The relative expression of p-Akt (Ser473)/Akt, p-Akt(Thr308)/Akt, and p-

eNOS/eNOS were quantified and plotted (n=3/group). Data represent mean fold changes ± 

SEM. #p<0.05 vs. Control; $p<0.05 vs. insulin; *p<0.05 vs. HG. (D) Nitrite level was 

measured in LECs treated with HG (25mM), insulin (100nM), and L-NAME (10μM) as 

described (n=7–9/group). Data represent mean ± SEM. #p<0.05 vs. control.
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Figure 5. 
Insulin resistance conditions impaired mitochondrial function in LEC. A) Graph of the 

mitochondrial bioenergetics test detailing the three key parameters of mitochondrial function 

(basal respiration, ATP-respiration, and maximal respiration) with the sequential treatment 

of oligomycin (ATP synthesis inhibitor), FCCP (mitochondrial uncoupler), and rotenone 

(mitochondrial complex I inhibitor). B) Graphic representation showing real-time analysis of 

mitochondrial OCRs in LMCs and LECs (n=4/group). Arrows point to where oligomycin, 

FCCP, or rotenone were applied to demonstrate basal, maximal, and ATP-linked OCR. C) 

Metabolic phenogram. Basal OCR and ECAR rates were plotted in LMCs and LECs. D) 

Basal, maximal, and ATP-linked OCR were quantified and plotted. # p<0.05 vs. LMCs. E) 

Real-time analysis of OCR in LECs after 48 h HG and insulin treatments (n=4/group). 

Arrows; oligomycin, FCCP, and rotenone application. F) Basal, maximal, and ATP-linked 

OCR were quantified and plotted (n=4/group). G) Glycolytic capacity was quantified and 

plotted (n=4/group from triplicate). Data represent mean ± SEM. # p<0.05 vs. control, $ 

p<0.05 vs. control + insulin, *p<0.05 vs. HG.
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Figure 6. 
Insulin resistance affects LEC permeability. (A) Permeability of LEC monolayers to FITC-

labeled bovine serum albumin was measured in the LECs treated with insulin (100nM), HG 

(25mM), or TNF-α (20ng/ml) as described. Data represent mean fold changes ± SEM. 

#p<0.05 vs. control (n=9/group). (B) LEC were treated with insulin (100nM), HG (25mM), 

and TNF-α (20 ng/ml) and time-dependent TEER was measured. Data represent mean fold 

changes ± SEM. #p<0.05 vs. basal level (n=3/group). (C) Representative image of β-catenin 

in LEC treated with high glucose (25mM) and insulin (100nM) for 48h. Images were 

Lee et al. Page 26

Microcirculation. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



obtained using a 20× (NA=0.7) UPlan Apo objective (upper panel) and 40× (NA=1.3) Uplan 

FLN objective (lower panel). Bar indicates 100μM and 50μM, respectively. A minimum of 9 

fields was quantified from triplicate experiments (n=9/group). (D) Quantification of β-

catenin in the junctional area is plotted. Data represent mean fold changes ± SEM. #p<0.05 

vs. control; $p<0.05 vs. insulin; *p<0.05 vs. HG. (E) LECs were treated with HG (25mM) 

and insulin (100nM) for 48h and representative western blots for β-catenin are shown (n=4/

group). Data represent mean fold changes ± SEM.
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Figure 7. 
Insulin resistance activated NF-κB inflammatory cell adhesion molecules and cytokines. (A) 

Immunofluorescence images of activated NF-κB (green) translocation into the nucleus 

(DAPI: blue) in LEC treated with HG (25mM), insulin (100nM), and TNF-α (20ng/ml) as 

described using 20X objective (NA=0.7). (B) Relative nuclear signal intensity in each cell 

was quantified. Nine fields of view were used for data quantification from triplicate 

experiments (n=9/group). Data represent mean fold changes ± SEM. #p<0.05 vs. control; 

$p<0.05 vs. insulin; *p<0.05 vs. HG; and ^p<0.001 vs. TNF-α. (C) LECs were treated with 

HG (25mM) and insulin (100nM) for 48h and representative western blots are shown for 

ICAM-1 expression. Data represent mean fold changes ± SEM. #p<0.01 vs. control; 

$p<0.01 vs. insulin; *p<0.01 vs. HG. (D) Analyses of inflammatory cytokine mRNA 

expression in insulin resistant LECs. RNA was isolated from LECs treated with HG 

(25mM), insulin (100nM) or HG and insulin combined as described. Expression levels of 

various cytokines were quantified by real time PCR. Fold change relative to untreated 

control was calculated. RPL19 was used as endogenous control (n=4/group). Data represent 

mean fold changes ± SEM. #p<0.05 vs. control.
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Figure 8. 
Schematic representation of insulin resistance-mediated mechanisms in LECs. Under normal 

physiologic conditions, insulin stimulates eNOS phosphorylation via PI3K/Akt signaling 

that regulates NO production. LEC junctions are well regulated via adherens junctions in the 

normal state, thus maintaining lymphatic function. However, the onset of insulin resistance 

impairs the PI3K/Akt/eNOS pathway, diminishing NO production, and impairs 

mitochondrial function in LECs. These mechanisms further disrupt the endothelial 

membrane integrity by disrupting the adherens junction and thus increase LEC permeability 

and activate proinflammatory signaling, together leading to impaired lymphatic function.

Lee et al. Page 29

Microcirculation. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 30

Table 1.

Insulin activates Akt/eNOS phosphorylation in BECs

Cell types Insulin treatment Results Reference

Bovine aortic endothelial cells 
(BAEC) 500nM for 2 mins Increased eNOS and NO production [89]

Human umbilical vein EC 
(HUVEC) 500nM (<10 mins) Increased NO production [24]

Human umbilical vein EC 
(HUVEC) 100nM for (5 to 180 mins) Increased Akt phosphorylation [90]

Mouse aortic endothelial cells 100nM for 10 mins Increased Akt phosphorylation and eNOS 
phosphorylation [91]

Human umbilical vein EC 
(HUVEC) 1μM for 10 mins Increased Akt phosphorylation and eNOS 

phosphorylation [53]

Bovine aortic endothelial cells 
(BAEC) 100nM for 5 mins Increased Akt phosphorylation and eNOS 

phosphorylation [92]

Human umbilical vein EC 
(HUVEC) 500nM for 2 mins Increased Akt phosphorylation, eNOS phosphorylation, 

and NO production. [93]

Bovine aortic endothelial cells 
(BAEC) 100nM for 10 mins Increased Akt phosphorylation, eNOS phosphorylation, 

and NO production. [47]

Bovine aortic endothelial cells 
(BAEC) 500nM for3, 5, and 10 mins[1] Increased Akt phosphorylation, eNOS phosphorylation, 

and NOS activity. [7]

Human umbilical vein EC 
(HUVEC) 100nM for 30 mins Increased eNOS phosphorylation and NO production [94]

Human umbilical vein EC 
(HUVEC) 50nM for 10 mins Increased Akt phosphorylation, eNOS phosphorylation, 

and NO production. [95]

Human umbilical vein EC 
(HUVEC) 1–10nM for 10 mins Increased Akt phosphorylation and eNOS 

phosphorylation [96]
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Table 2.

Insulin stimulates glucose uptake in BECs

Cell types Reagents/Tracers Insulin treatment Result Reference

Human coronary artery 
endothelial cells (HCAEC) 2NBDG 17.4pM for 20 min Increased 2NBDG uptake by 64% [26]

Human umbilical vein EC 
(HUVEC) 2-3HDG 100nM for 90 min Increased 2-3HDG uptake [97]

Bovine aortic endothelial cells 
(BAEC) 2-deoxyglucose 17pM to 17.4μM Increased 2DG uptake at 1.7nM 

insulin [98]

Rabbit cardiac muscle 
endothelial cells (RCME) 2-deoxyglucose 2nM for 90 min Increased 2DG uptake [99]

Rat capillary endothelial cell 2-deoxyglucose 0.16nM – 160nM for 30 min Increased glucose uptake from 
0.16nM of insulin [100]

Human aortic endothelial cells 
(HAEC) 2-deoxy[14C]glucose 347.3pM for 24h Increased glucose uptake [101]

Human umbilical vein EC 
(HUVEC) 2-deoxyglucose 100nM insulin for 30 min Increased glucose uptake [94]

Bovine pulmonary artery 
(PAEC) and aortic endothelial 

cells (AEC)
Glucose No difference between PAEC vs. 

AEC [102]
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Table 3.

Insulin levels in Plasma and lymph

Study model Plasma Insulin level Reference

Sprague-Dawley rats (150–225g) Not applicable 8.023 ± 0.19nM [103]

Mongrel dogs (17.9–25.4 kg) 36 ± 6pM 30 ± 6pM (Thoracic) 36 ± 6pM (Hindlimb) [104]

Mongrel dogs (23–28kg) 129.15 ± 2pM 86.1 ± 7.18pm [41]

Mongrel dogs (23.2–34.5kg) 108 ± 12pM 84 ± 8.6pM (Thoracic) [39]

Bulldogs (18–42 kg) Not applicable 93.28 ± 11.48pM [105]

Mongrel dogs 70.75 ± 10.98pM (Femoral artery)
57.18 ± 8.32pM (Femoral vein) 30.49 ± 5.17pM [40]

Sprague-Dawley 77 ± 14pM (portal vein) 55 ± 10pM (mesentery) [38]

Mongrel dogs (19.1–30 kg) 44 ± 7pM (Hind limb artery) 24 ± 3pM (Hind limb) [106]
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Table 4.

Glucose level in plasma and lymph

Study model Plasma Glucose level (mM) Lymph glucose (mM) Reference

Mongrel dogs (17.9–25.4 kg) 6.6 ± 0.4 7.1± 0.4 (Thoracic) 6.7 ± 0.5 (hind limb) [104]

Mongrel dogs (23–28kg) 5.4 ± 1 5.7 ± 1 [41]

Mongrel dogs (23.2–34.5kg) 5.4 ± 0.1 5.7 ± 0.1 (Thoracic) [39]

Mongrel dogs 5.05 ± 0.1 (Femoral artery)
3.86 ± 0.8 (Femoral vein) 5.58 ± 0.9 (mg/dl) [40]

Sprague-Daley 5.1 ± 2 (portal vein) 6.4 ± 0.2 (mesentery) [38]

Mongrel dogs (19.1–30 kg) 6.6 ± 0.5 (Hind limb artery) Not applicable [106]
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