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FDVF, 0000-0001-8035-7883

What is the core of the human brain is a fundamental question that has been

mainly addressed by studying the anatomical connections between differ-

ently specialized areas, thus neglecting the possible contributions from

their functional interactions. While many methods are available to identify

the core of a network when connections between nodes are all of the same

type, a principled approach to define the core when multiple types of

connectivity are allowed is still lacking. Here, we introduce a general frame-

work to define and extract the core–periphery structure of multi-layer

networks by explicitly taking into account the connectivity patterns at

each layer. We first validate our algorithm on synthetic networks of different

size and density, and with tunable overlap between the cores at different

layers. We then use our method to merge information from structural and

functional brain networks, obtaining in this way an integrated description

of the core of the human connectome. Results confirm the role of the main

known cortical and subcortical hubs, but also suggest the presence of new

areas in the sensori-motor cortex that are crucial for intrinsic brain functioning.

Taken together these findings provide fresh evidence on a fundamental ques-

tion in modern neuroscience and offer new opportunities to explore the

mesoscale properties of multimodal brain networks.
1. Introduction
Complex networks are characterized by the existence of non-random structures

at different topological scales [1–3]. A peculiar structure is the so-called

core–periphery organization [4], where the network exhibits a group of tightly

connected nodes (i.e. the core), and a group made by the remaining weakly

connected nodes (i.e. the periphery).

Core–periphery organization has been recognized as a fundamental prop-

erty of complex networks to support integration of information [5–12]. A

related concept is that of rich-club behaviour, where the tightly connected

nodes are the network hubs, i.e. the nodes with a large number of links

[13,14]. A rich-club organization has been observed in various real-world sys-

tems, such as social, technological and biological networks [13–16], including

the brain [17–20]. More recently, a refined version of the rich-club analysis,

based not only on the number of connections of the hubs, but also on their capa-

bility to bridge different communities, has been shown to be relevant to support

the integrative properties of the nervous system [21].

In the human brain, rich-club and rich-core organization, associated with

the efficiency in communication and distribution of information, have been

mainly reported in anatomical, or structural, connectivity networks obtained

experimentally from diffusion tensor imaging (DTI) data. It has been conjec-

tured that rich cores, rather than shortest paths, may actually be responsible

for the efficient integration of information between remote brain areas [17],
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which is a crucial prerequisite for normal cognitive perform-

ance [22,23]. Current evidence suggests that posterior medial

and parietal cortical regions mainly constitute the core of the

human connectome [17,24], while the role of other areas, such

as the medial prefrontal cortex (mPFC) and the sensori-motor

system [25], is yet to be clarified. Because brain regions are

also characterized by functional interactions inferred from

neuroimaging data, such as functional magnetic resonance

imaging (fMRI) [26,27], we hypothesize that integrating

information from both structural and functional networks

can give a more accurate estimate of the regions that

eventually constitute the core of the human cortex.

Instead of aggregating the two different types of connec-

tivity or analysing them separately, we adopt a multiplex

network approach that preserves and exploits the original

information on how brain regions are structurally and func-

tionally interconnected. In a multiplex network, different

connectivity types are mathematically represented as net-

works at different layers. Notably, in a multiplex—a

particular case of multilayer network—there is a one-to-one

correspondence between the nodes at different layers

[28–32]. Multiplex network theory has been recently used

to successfully extract higher-order properties of multimodal

[33] and multifrequency brain networks that cannot be

retrieved by standard approaches [34,35].

Interestingly, the detection of core–periphery organization

in multiplex networks has been poorly explored, with the

exception of approaches based on k-core decomposition

[36,37]. To address this gap, we introduce a criterion to

define and detect core–periphery organization in multiplex

networks. Our method works for any number of layers and

is scalable to large networks, being non-parametric and

based on local node information [16]. In the following, we

first introduce the general framework and then we validate it

on synthetic multiplex networks with tunable core similarity.

We finally apply our method to integrate information

from structural and functional brain networks and extract

the multiplex core–periphery organization of the human

brain. The obtained results confirm the main core areas in

the posterior medial and parietal cortex, but also highlights

the central role played by the regions of the sensori-motor

system, which has been surprisingly neglected by previous

studies on core–periphery organization, despite being

considered a fundamental component of the default-mode

network [25].

Our research sheds new light on the emergence of core

regions in the human connectome, and we hope it will spur

further work towards a better understanding of the complex

relationships in the nervous system.
2. Results
2.1. Extracting the rich core of a multiplex network
Let us consider a multiplex network described by a vector of

adjacency matrices M ¼ {A[1], . . . , A[M]}, where all inter-

actions of type a, a ¼ 1, . . . , M, are encoded in a different

layer described by a binary adjacency matrix A[a] ¼ {a[a]
ij }.

To detect the core–periphery structure of a multiplex net-

work, we first compute the multiplex degree vector

ki ¼ {k[1]
i , . . . , k[M]

i } of each node i [31], where k[a]
i ¼

P
j=i a[a]

ij .

From now on, we refer to k[a]
i , a ¼ 1, . . . , M, as the richness

of node i at layer a. Notice that this is the simplest way to
define the richness of a node, and different measures of

richness, such as other measures of node centrality, can be

as well used.

For each layer a, we then divide the links of a node i in two

groups, those towards nodes with lower richness and those

towards nodes with higher richness. Hence, in our case, we

can specifically decompose the degree of node i at layer a as

k[a]
i ¼ k[a]�

i þ k[a]þ
i . Finally, the multiplex richness mi of node

i is obtained by aggregating single-layer information:

mi ¼
XM

a¼1

c[a]k[a]
i , (2:1)

where the coefficients c[a] modulate the relative relevance of

each layer and can, for instance, be determined by exogenous

information. In analogy to the single-layer case, we define the

multiplex richness of a node towards richer nodes as:

mþi ¼
XM

a¼1

c[a]k[a]þ
i : (2:2)

In the most simple set-up, we can assume c[a] ¼ c ¼ 1=M 8a.

More general functional forms to aggregate the contributions

from different layers, giving rise to alternative measures of

mi and mi
þ, are presented in the Methods section.

The nodes of the multiplex are ranked according to their

richness m, so that the node i with the best rank, i.e. ranki ¼ 1,

is the node with the largest value of m, the node ranked 2 is

the one with the second largest value of m, and so on. We

then compute for each node i the value of mi
þ as a function

of ranki. The value of the rank corresponding to the maxi-

mum of mi
þ finally determines the core–periphery structure.

All nodes with rank lower than such a value are assigned

to the multiplex core, whereas the remaining ones become

part of the periphery. Nodes in the multiplex core are not

necessarily part of the core of each layer, but are topologically

the most valuable ones when all types of connectivity are

considered. Moreover, we notice that also in the simplest

case, when c[a] ¼ c 8a, the multiplex core–periphery par-

tition cannot be obtained by simply combining the cores of

the different layers, or by applying the single-layer algorithm

on the corresponding aggregated network.

As an illustrative example, we report in figure 1 the curve

mi
þ as a function of ranki obtained in the case of the Top

Noordin Terrorist network, a multiplex network of N ¼ 78

individuals with three layers (encoding information about

mutual trust, common operations and exchanged com-

munication between terrorists), which has been used as a

benchmark to test measures and models of multiplex

networks [31].

Coefficients c[a] were chosen, in this case, to be inversely

proportional to K[a] to compensate for the different densities

of the three layers. The resulting multiplex rich core integrates

information from all the layers and looks different from the

rich cores obtained at each of the three layers by a standard

single-layer rich core analysis. More details about the results

of this analysis are reported in electronic supplementary

material, table S1.

2.2. Testing the method on multiplex networks with
tunable core similarity

A network with a well-defined core–periphery structure has

a high density of links among core nodes. With a suitable
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Figure 1. An illustrative example of the multiplex rich core analysis. In panel (a), we show a multiplex social network obtained from the Top Noordin Terrorists’
contacts, with N ¼ 78 nodes, M ¼ 3 layers and K [1] ¼ 259, K [2] ¼ 437 and K [3] ¼ 200, for the three layers respectively. Panel (b) shows the curve
~mþi ¼ mþi =max (mþi ) as a function of ranki. All nodes from rank equal to 1 up to the node with maximum ~mþ are part of the core of the multiplex,
which is shown in red colour in panel (c), first column. The cores obtained at each layer by the standard single-layer analysis are reported in yellow for the
sake of comparison in the second column. The percentages of core nodes in the single layers that are in the multiplex core are 83.3% for layer 1, 66.7% for
layer 2, and 58.3% for layer 3.
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labelling of the nodes, the adjacency matrix of the network

can be decomposed into four different blocks: a dense diag-

onal block encoding information on core–core links, a

sparser diagonal block describing links among peripheral

nodes and two off-diagonal blocks encoding core–periphery

edges. The key feature of this block structure is that r1 � r3,

i.e. the density r1 of the core–core block is much higher than

that of the periphery–periphery block, r3. As first noted by

Borgatti & Everett [4], the density r2 of the off-diagonal

blocks is typically not a crucial factor to characterize a

core–periphery structure.

To test how our method works on multiplex networks with

different structures, we have introduced a model to produce

synthetic multiplex networks with tunable core similarity. In

particular, we have constructed multiplexes where each of

the M ¼ 2 layers contains N ¼ 250 nodes, only Nc ¼ 50 of

them belonging to the core. Each layer has the same average

node degree hki ¼ 10, and the same set of parameters

r1 . r2 . r3 to describe its core–periphery structure. Our

model enables control of the number of nodes that are both

in the core of layer 1 and 2. (see Methods for more details).

To quantify the similarity among cores at different layers,

we introduce the core similarity S[a]
c of layer a with respect to

the other layers as:

S[a]
c ¼

1

(M� 1)

XM

b=a

I[ab]
c

N[a]
c

, (2:3)

where I[ab]
c is the number of nodes in the core of both layer a

and layer b, whereas N[a]
c is the size of the core at layer a. The

core similarity S[a]
c ranges in [0,1]. When layer a does not

share core nodes with any other layers we have S[a]
c ¼ 0,
when all its core nodes also belong to the cores of the other

layers S[a]
c ¼ 1, and when on average only half of them are

part of the cores on each other level S[a]
c ¼ 1=2. The average

core similarity of the multiplex can then be computed as

Sc ¼ (1=M)
PM

a¼1 S[a]
c .

In figure 2, we show the results for three multiplex net-

works with different core similarity. In the left column of

figure 2, we consider a multiplex with Sc ¼ 0. The cores

of the two layers are not overlapping, as shown in panel

(a). As a consequence, many nodes with high degree

in one layer have low degree in the other one. When

c[1] ¼ c[2] ¼ 0:5, the multiplex core of the system is formed

by those nodes with sufficiently high multiplex richness, as

shown in panel (b). In panel (c), we show the changes in

the multiplex core when we partially (c[1] ¼ 0:75, c[2] ¼ 0:25,

left subplot) or completely (c[1] ¼ 1, c[2] ¼ 0, right subplot)

bias the algorithm towards the first layer.

In the central column of figure 2, we consider a multiplex

with Sc ¼ 1
2. Half of the core nodes are common to both layers

while half are typical of each layer. The block structure of the

two layers is partially overlapping, and the nodes are spread

uniformly over the k[2]
i versus k[1]

i plane. In the unbiased case,

the multiplex core of the system is formed by nodes which are

part of the core on both layers, but also by nodes scoring

extremely high in one layer, despite being in the periphery

in the other one (panel b). When c[1] . c[2], this is particularly

true for nodes which have high richness in the first layer and

low richness in the second, while the opposite is much more

unlikely (panel c).

In the right column of figure 2, we consider a multiplex

with Sc � 1. The block structure of the two layers is now

almost identical; the node degrees k[1] and k[2] are correlated
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Figure 2. Core – periphery structure in synthetic multiplex networks with different core similarity. In panel (a), we sketch multiplex networks with M ¼ 2 layers,
N ¼ 250 nodes and different levels of core similarity, namely Sc ¼ 0 (left column), Sc ¼ 1

2 (central column) and Sc ¼ 1 (right column). In panel (b), the nodes are
placed in a two-dimensional plane according to their degree at each layer. The size of each dot is proportional to the multiplex richness mi of the node (unbiased
case, c[1] ¼ c[2] ¼ c ¼ 0.5). Nodes belonging to the multiplex cores are usually placed in the right-top corner of the plots and are coloured in orange, while the
multiplex periphery is in blue. In panel (c), we report results obtained for two cases with c[1]

= c[2], namely: (c[1] ¼ 0:75,c[2] ¼ 0:25) where the core is biased
towards the important nodes of the first layer (left), and (c[1] ¼ 1,c[2] ¼ 0), where the core corresponds to the core of the first layer (right).
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and most of the nodes belonging to each core are in the multi-

plex core (panel b). As the core structure at the two layers are

extremely similar, the biased cases do not differ significantly

from the unbiased one (panel c).

2.3. Merging structure and function to extract the
connectome’s core

We have applied our method to investigate the human con-

nectome by considering, at the same time, structural and

functional information. We have therefore constructed a mul-

tiplex brain network formed by one structural layer and one

functional layer. The two layers were obtained by first aver-

aging brain connectivity matrices estimated, respectively,

from DTI and fMRI data in 171 healthy individuals. Each

of the two layers is then thresholded by fixing the average

node degree hki. We have focused our analysis on 158 regions

of interest (ROIs) of the cortex (see Methods for more details).

In figure 3, we report the cores found by analysing the

two layers separately, as well as the multiplex core obtained

with our method. The figure refers to the case of a represen-

tative threshold corresponding to an average node degree

hki ¼ 7. We notice that the cores of the structural and func-

tional layers are only partially overlapping, with a value of

core similarity of Sc ¼ 0:15. For the sake of completeness,
we also report the Sc values for the entire threshold range

(electronic supplementary material, figure S1). A detailed

analysis on the robustness of the multiplex core detection in

the presence of random fluctuations is reported in the

electronic supplementary material, text S1.

As shown in figure 3, ventral brain areas tend in general

to form the structural core, while more dorsal regions appear

in the functional core. Notably, brain ROIs (electronic sup-

plementary material, table S2) that are in the core of both

structural and functional layers also tend to be in the core

of the multiplex. Instead, ROIs being in the periphery of

both layers tend to be excluded from the multiplex core.

However, exceptions may exist depending on the multiplex

richness of the nodes. For example, the posterior part of the

right precentral gyrus (RCGa3), which is in the periphery

of both the structural and functional layer, is eventually

assigned to the multiplex core, because of its relatively

high rank score in the two layers. The situation appears

even less predictable for ROIs that are in the core of one

layer and in the periphery of the other layer. Only occasion-

ally these will belong to the multiplex core. This is the case,

for example, of the anterior part of right precentral gyrus

(RCGa2) which exhibits a relatively low structural richness

but high functional richness, i.e. ranked seventh in the func-

tional core, or of the anterior part of the right parietal
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Figure 3. Extracting the multiplex core of the human brain from structural and functional information. (a) The structural and functional brain networks filtered with
an average node degree hki ¼ 7 are shown, respectively, on the left and right side. They are represented from above with the frontal lobe pointing upward. The
position of the nodes corresponds to the actual location of the brain ROIs (electronic supplementary material, table S2). Yellow and large nodes represent the brain
regions belonging to the core according to the standard single-layer method. Blue and small nodes code for the ROIs in the periphery. Links are yellow and thick if
they connect two ROIs in the core, while they are blue and thin if they connect two peripheral nodes. (b) ROIs are ranked from top to bottom according to their
richness in the structural (left column), functional (right column) and multiplex network (central column). In each column, the labels in bold/normal font stand for
the ROIs that are in the core/periphery. For the sake of simplicity, only ROIs that are at least in one core (structural, functional or multiplex) are listed in the three
columns. Red/blue and thick/thin lines identify ROIs that go into the core/periphery according to the multiplex approach.
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2.4. Revealing new core regions of the human brain
We have extracted the multiplex core–periphery structure of

the human brain for the full range of available thresholds

hki ¼ 1,2, . . . ,120 (see Methods for more details). In this

way, we have been able to calculate the coreness Ci of each

node i, defined as the normalized number of thresholds at

which the corresponding ROI is present in the rich core.

This allows us to rank ROIs according to their likelihood to

be part of the multiplex core and to compare these to the

rankings obtained separately for structural and functional

layers. We note that the same approach of investigating the

persistence across a set of different filtering thresholds can

be applied to any node property. This can turn useful for

statistical validation in the case no threshold is universally

accepted, as often happens for brain networks [38–40].

Parietal (pre/cuneus PCU/LOC, superior parietal lobe

SPL), cingulate (anterior Ca, posterior Cp), temporal

(superior temporal gyrus), insular (insular cortex IC), as

well as frontal ROIs (paracingulate PC) mainly constitute

the structural core, as shown in electronic supplementary

material, figure S2. While some overlap exists between the

structural and the functional cores, the latter rather tends

instead to include occipital (occipital fusiform gyrus OFG,

temporo-occipital fusiform cortex TOFC) and central (pre/

post central gyrus CGa/CGp) ROIs and, notably, to exclude

regions in the frontal lobe (top 25% ROIs, electronic

supplementary material, figure S3).

Figure 4 shows the coreness of the multiplex network. As

expected, ROIs that are peripheral (i.e. low coreness) in both

layers are also peripheral in the multiplex, while ROIs with

both a high structural and high functional coreness are typi-

cally observed in the multiplex core (e.g. TOFC, OFG, Ca,

Cp). Interesting behaviours emerge for those regions typically

characterized by high coreness in one layer and low coreness

in the other layer. In fact, some of these ROIs are part of the

multiplex core, while others are usually found in the multi-

plex periphery, as shown in figure 5a. For areas with a

different assignment in the two layers, we note that the

main contribution to the multiplex richness mi comes from

the richness in the layer where node i is identified as core.

Interestingly, not only is the average richness of the node in

the core layer higher than the one in the peripheral layer,

but also its fluctuations around the mean.

As a consequence, among regions that are core in the

structural layer but peripheral in the functional one, those

with relatively higher structural richness (degree), such as

precuneus PCU, insular cortex IC and posterior cingulate

Cp, finally tend to join the multiplex core no matter the

exact value of their functional richness (upper right corner

of figure 5a). Conversely, ROIs with relatively lower struc-

tural degree are usually peripheral in the multiplex, and

typically located in the pre-frontal cortex PC and frontal

lobe FP (lower right corner of figure 5a), as illustrated in

figure 5b,c. Similarly, among areas in the functional core,

those with relatively higher functional degree, such as pre-

central gyrus CGa and central operculum COC, tend to join

the multiplex core (upper left corner of figure 5a). By contrast,

ROIs with relatively lower functional degree, are mostly per-

ipheral in the multiplex, and are located in the parietal
operculum POC and superior frontal gyrus SFG (lower left

corner of figure 5a).

In a separate analysis, we have extracted the multiplex

brain coreness from each individual and we show that,

despite a normal inter-subject variability, the average multi-

plex brain coreness is very similar to the multiplex coreness

of the group-averaged brain networks (electronic supplemen-

tary material, figure S4). Finally, we have evaluated the

robustness of the results when also including subcortical

ROIs in the brain networks. We report that thalamus,

putamen and hippocampus are among the regions with high-

est coreness and therefore become part of the multiplex core

(electronic supplementary material, figure S5). Interestingly,

their presence does not significantly alter the coreness of

the other ROIs (electronic supplementary material, figure

S6), suggesting an assortative structure where highly con-

nected subcortical regions preferentially get connected with

core regions in the cortex.
3. Discussion
The existence of a network core in the brain is a prerequisite

for neural functioning and cognition, and damage to the core

have been associated with several neurological or psychiatric

diseases [19,41,42]. Finding the router regions that ensure

integration between the different brain modules and com-

munication in the system is therefore a fundamental

question in neuroscience. Previous studies have mainly con-

sidered the structural connectivity of the brain through

disparate techniques, such as k-core decomposition, centrality

measures and rich-club analysis [17,24]. While the results

obtained agree on the implication of posterior medial and

parietal cortical regions—as well as subcortical thalamus,

putamen and hippocampus—in the network core [17,24], they

neglect the possible role of other areas that are crucial from a

functional perspective, such as those in the default-mode

network (DMN) [25].

To integrate information from both structural and func-

tional brain connectivity at the network level, we introduce

a general criterion to define and extract the core when

nodes are connected through links which can vary in mean-

ing and nature, and the whole system can be described as a

network with multiple layers [28–32]. Compared to standard

approaches, this method has the theoretical advantage of pro-

viding a more robust solution, taking into account the relative

importance of the nodes at each layer, rather than simply con-

sidering the union or intersection of the cores across layers, or

extracting the core from the aggregated network.

The results obtained shed new light on the role of the

regions characterizing the intrinsic brain function to even-

tually form the core of the human brain. First, we show that

mPFC (e.g. PC and FP), exhibiting a high structural but low

functional coreness, is eventually assigned to the periphery

(figure 5a, lower-right corner). This outcome can be predicted

by the lower multiplex richness and relatively low structural

degree, and not solely by the attitude of frontal areas to be

peripheral in the functional brain network (figure 5b,c). The

exclusion of the mPFC from the rich core supports the hypoth-

esis that default-mode network activity may be mainly driven

from highly coupled areas of the posterior medial and parietal

cortex, which in turn link to other highly connected regions,

such as the medial orbitofrontal cortex [24].
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Second, while frontal ROIs are excluded, new regions

gain importance and become part of the core because of

their higher multiplex richness (see figure 5a, upper left

corner). Among them, we report areas of the central gyrus

(CGa, CGp to a minor extent), which are characterized by a

low structural but relatively high functional degree, as

shown in figure 5b,c. These regions are part of the primary

sensori-motor cortex, which has been shown to be the most

extensive of the resting-state components, or networks (out

of eight [43]), covering 27% of the total grey matter in the

brain [44]. The primary sensori-motor component has a

high degree of integration (overlap and activity coupling)

with all other resting-state networks (e.g. DMN), which is

consistent with the increased synchronization of neural

activity in cortical regions during sensory processing [45].

Notably, ongoing functional connectivity in the primary sen-

sori-motor network, originally revealed by seed-based

analysis [46,47], has been extensively verified by ICA and

clustering methods [48,49].

Our method provides an effective tool to integrate meso-

scale topological information in brain networks derived from
multimodal neuroimaging data. Multimodal integration of

brain networks is gaining more and more interest [50–53]

due, on the one hand, to the increasing availability of large

heterogeneous datasets (e.g. HCP http://www.humancon-

nectomeproject.org, ADNI http://adni.loni.usc.edu) and, on

the other hand, to the need of principled ways to characterize

multiscale neural mechanisms (e.g. cross-frequency coupling)

and to provide predictive diagnostics for multifactor brain

diseases, such as Alzheimer’s disease.

It is important to note, that our analysis of the human

connectome relies on the assumption that each layer contrib-

utes with the same intensity to the definition of the

multiplex core. In general, however, the contribution of a

layer a can be weighted differently through a choice of the

parameter c[a], and this can be used to enhance or reduce

the importance of the different types of connectivity. A

larger value of c[a] increases the relevance of the correspond-

ing layer until when, in the limit in which c[a] ! 1 and the

coefficients of all the other layers go to zero, the multiplex

core is no longer defined by the topology of all the M
layers, but coincides with the core at layer a. For instance,

http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org
http://adni.loni.usc.edu
http://adni.loni.usc.edu
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setting c[structural] ¼ 1 and c[functional] ¼ 0 returns a core based

on the anatomical information only, and in agreement with

most of the previous literature on such topic (see electronic

supplementary material, figure S2). As an unbiased way to

characterize the multiplex core of the human brain, we

have focused our analysis on the simplest and symmetric

case, c[structural] ¼ c[functional] ¼ 0:5. We show in electronic sup-

plementary material, figure S7 that the results are relatively

stable for small perturbations around this unbiased con-

dition. However, other combinations are in general

possible and should be adopted if supported by a plausible

rationale. For example, in the case of multifrequency brain

networks one could assign different weights to the network
layers taking into account the frequency scaling of the brain

activity’s power spectra [54,55].

In practice, the proposed method to detect the core–per-

iphery organization of multiplex networks has two clear

advantages: (i) it is fast and scalable, since it works using

only local information; (ii) it is non-parametric, e.g. no need

to input a priori information such as the core size. Moreover,

it can be generalized in a straightforward way to the case of

directed networks. A drawback of the method is that it

focuses on highly connected rich nodes, and neglects the

possible important role of the so-called connectors, i.e. central

nodes with low degree [56]. We note that alternative core–

periphery structures which include connectors can be
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detected by more computationally demanding methods such

as those based on stochastic block models, which have been

recently proposed to extract the mesoscale structure of

time-varying and multilayer networks [57]. We hope that

our work can trigger further developments in the exploration

of core–periphery structure of real-world large-scale

multiplex networks.

To conclude, our method to investigate multiplex core–

periphery organization in complex networks suggests that

the core of the human cortex is made up of known cortical

and subcortical hubs, as well as of areas in the sensori-

motor system that were previously overlooked by standard

approaches, but that are crucial for the brain functioning.

Our findings offer an augmented definition of the rich core

of the human brain, which takes into account not only the

anatomical structure but also its function.

We hope that our work will contribute to advance our

understanding of the mesoscale connectivity mechanisms in

multiplex brain networks, in an effort to better integrate the

one-to-many relationships that exist between structure and

function in the human brain [26].
4. Methods
4.1. Multiplex stochastic block model with tunable core

similarity
Stochastic block models for multiplex networks have been

recently introduced by Peixoto [57]. Here, we introduce a sto-

chastic block model that enables sampling of multiplex

networks with an assigned value of core similarity SC (see

equation (3)). Suppose we have N nodes and we want to con-

struct a multiplex network having a core–periphery structure

at each layer a ¼ 1, . . . , M, with N[a]
c nodes in the core of layer a.

In particular, we set M ¼ 2, N ¼ 250, N[1]
c ¼ N[2]

c ¼ Nc ¼ 50,

and we create at each layer a core–periphery structure with the

same set of densities: r1 ¼ 0:2, r2 ¼ 0:04 and r3 ¼ 0:03.

Namely, for each of the two layers, we connect with a probability

r1 two nodes both in the core, with probability r2 a node in the

core and a node in the periphery, and finally with probability r3

two peripheral nodes. The values of the three parameters were

chosen in a way that hki ¼ 10 on both layers, and the core–

periphery structure of each layer is sufficiently strong to be

detected with good accuracy, as discussed in the electronic

supplementary material, text S2.

Different levels of core similarity are achieved by varying the

overlap between core nodes at the two layers. When the two sets

of core nodes are completely overlapping, Sc ¼ 1, whereas when

the two sets are disjoint Sc ¼ 0. Despite other related formu-

lations of Sc are possible, our definition reflects the intuition

that when two layers with equal core size share half of the core

nodes, then Sc ¼ 1
2.

4.2. Multiplex richness mi and mi
þ

The multiplex richness mi and mi
þ introduced in equations (1) and

(2) are obtained by means of a simple aggregation of information

based on the single layers. In the simplest set-up c[a] ¼ c ¼ 1=M
for a ¼ 1, . . . , M, and the multiplex richness mi of a node i is

simply proportional to its overlapping degree oi [31]. A layer

with higher density weighs more in the computation of the

multiplex core of a network.

In general, coefficients c[a] can be used to modulate the rel-

evance of the layers of the network in order to extract its core.

If one wants to have equal contributions to mi and mi
þ from all

the layers but their number of links K[a] is different—for instance,
because in some layers it might be easier to establish or measure

a connection than in others—a natural choice is to set c[a] to be

proportional to 1=K[a]. In other cases, independently from their

density, it might be reasonable to assign different importance

to different layers, because of exogenous information. Once

again this can be achieved by assigning different values of the

coefficients c[a].

Our method inherits many advantageous properties of the

original algorithm proposed for single-layer networks [16].

First, it can be easily extended to directed layers by replacing

k[a]
i with (k[a],in

i þ k[a],out
i )=2 in equation (1), where k[a],in

i and

k[a],out
i correspond, respectively, to the in-degree and out-degree

of node i at layer a, and by substituting k[a]þ
i with

(k[a],inþ
i þ k[a],outþ

i )=2 in equation (2). Second, for weighted net-

works mi and mi
þ can be obtained by replacing the adjacency

matrix binary entries a[a]
ij with their weighted counterparts w[a]

ij ,

and by substituting the node degree with the strength

s[a]
i ¼

P
j=i w[a]

ij . Third, the core size is relatively stable with

respect to randomly chosen different rankings of nodes with

equal degree.

We finally notice that equation (1) is a particular choice of a

more general scenario, where the multiplex richness mi is a

generic function f of the degree of a node at the different layers:

mi ¼ f (k[1]
i , . . . ,k[M]

i ) (4:1)

and mi
þ is a generic function g:

mþi ¼ g(kþ[1]
i , . . . ,kþ[M]

i ): (4:2)
4.3. Multimodal brain networks
We have considered 171 healthy human subjects from the NKI

Rockland dataset http://fcon_1000.projects.nitrc.org/indi/pro/

nki.html. We have used diffusion weighted magnetic resonance

imaging (dwMRI) and fMRI to derive, respectively, structural

and functional brain networks in each subject.

We have gathered the corresponding connectivity matrices

from the USC Multimodal Connectivity Database (http://

umcd.humanconnectomeproject.org) [58].

In particular, structural connectivity has been obtained

using anatomical fibre assignment through the continuous

tracking (FACT) algorithm [59]. Functional connectivity has

been computed by means of the Pearson’s correlation coeffi-

cient between fMRI signals recorded during a 10 min resting

state (RS). RS-based functional connectivity measures the

amount of interaction—or temporal dependence—between

different brain areas during spontaneous brain activity [27].

More details about the processing steps can be found here

[60]. A total number of N ¼ 188 ROIs are available for both

structural and functional brain networks, thus resulting in con-

nectivity matrices of size N � N, spatially matched with the

MNI152 template [61].

Because we are mainly interested in cortical networks, we

focused our analysis on the network obtained by removing all

subcortical ROIs and obtained connectivity matrices of size

158 � 158. The full names and acronyms for all the ROIs can

be found in electronic supplementary material, table S1. We

have then averaged the resulting connectivity matrices (after

Fisher transformation) across subjects in order to have a popu-

lation-level representation. At the end, we obtained a structural

weighted connectivity matrix S, whose entry sij ¼ s ji contain

the group-average number of axonal fibres between ROIs i and

j, and a functional weighted connectivity matrix F , whose

entry fij ¼ f ji correspond to the group-average correlation

coefficient between the fMRI signals of ROIs i and j.
We have used density-based thresholding to derive structural

and functional brain networks by removing the lowest values

http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
http://umcd.humanconnectomeproject.org
http://umcd.humanconnectomeproject.org
http://umcd.humanconnectomeproject.org
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from the connectivity matrices and binarizing the remaining ones

[27]. We have considered a full range of density thresholds, corre-

sponding to an increasing average node degree hki ¼ 1,2, . . . ,120.

The last value was given by the maximal hki observed in the

native structural connectivity matrices, which are originally not

fully connected. After filtering, for each threshold we have com-

bined the resulting structural and functional brain networks

into a multiplex network M ¼ {S, F }.
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