
rspb.royalsocietypublishing.org
Research
Cite this article: Jaakkola K, Guarino E,

Donegan K, King SL. 2018 Bottlenose dolphins

can understand their partner’s role in a

cooperative task. Proc. R. Soc. B 285:

20180948.

http://dx.doi.org/10.1098/rspb.2018.0948
Received: 26 April 2018

Accepted: 30 August 2018
Subject Category:
Behaviour

Subject Areas:
cognition, behaviour

Keywords:
cooperation, bottlenose dolphins, problem-

solving, comparative cognition, synchrony,

joint action
Authors for correspondence:
Kelly Jaakkola

e-mail: kelly@dolphins.org

Stephanie L. King

e-mail: stephanie.king@uwa.edu.au
Electronic supplementary material is available

online at http://dx.doi.org/10.6084/m9.

figshare.c.4221701.

& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Bottlenose dolphins can understand their
partner’s role in a cooperative task

Kelly Jaakkola1, Emily Guarino1, Katy Donegan1 and Stephanie L. King2

1Dolphin Research Center, 58901 Overseas Highway, Grassy Key, FL 33050, USA
2Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia,
Crawley 6009, Australia

KJ, 0000-0002-4113-748X; SLK, 0000-0003-2293-9185

In recent decades, a number of studies have examined whether various

non-human animals understand their partner’s role in cooperative situ-

ations. Yet the relatively tolerant timing requirements of these tasks make

it theoretically possible for animals to succeed by using simple behavioural

strategies rather than by jointly intended coordination. Here we investigated

whether bottlenose dolphins could understand a cooperative partner’s role

by testing whether they could learn a button-pressing task requiring precise

behavioural synchronization. Specifically, members of cooperative dyads

were required to swim across a lagoon and each press their own underwater

button simultaneously (within a 1 s time window), whether sent together or

with a delay between partners of 1–20 s. We found that dolphins were able

to work together with extreme precision even when they had to wait for

their partner, and that their coordination improved over the course of the

study, with the time between button presses in the latter trials averaging

370 ms. These findings show that bottlenose dolphins can learn to under-

stand their partner’s role in a cooperative situation, and suggest that the

behavioural synchronization evident in wild dolphins’ synchronous move-

ment and coordinated alliance displays may be a generalized cognitive

ability that can also be used to solve novel cooperative tasks.
1. Introduction
Cooperation is found across the animal kingdom, from humans [1] to fishes [2] to

baboons [3] to dolphins [4]. Cooperative behaviour in non-human animals can

manifest in a number of ways, including cooperative breeding where all group

members help raise young produced by the dominant breeding pair [5,6];

sexual coercion where males work together to either monopolize female groups

[7] or contest access to individual females [8,9]; and cooperative hunting where

individuals work together to secure large or difficult to catch prey items

[10,11]. Studies have demonstrated, however, that animals can behave in ways

that function cooperatively without actively and intentionally cooperating

(e.g. [12,13]). In Brazil, for example, bottlenose dolphins drive fish towards

human fisherman, a practice that the humans interpret as interspecies coopera-

tion [14,15]. However, it may be that the fishermen simply act as an effective

barrier, much like other barriers that dolphins herd fish against [16,17]. Success-

ful cooperation such as this does not necessarily require an understanding of

the cooperative role that others are playing [18]. To examine this question

of understanding, experimental evidence is required.

To date, the cognitive mechanisms underlying animal cooperation have largely

been explored in experiments using cooperative pulling tasks, in which two animals

must simultaneously pull two ropes or handles in the same direction in order to

receive a food reward [19]. The extent to which animals understand the cooperative

nature of the task has been assessed by examining the following measures:

(i) whether they pull more often if their partner is at the apparatus [13,20–23];

(ii) how often they glance at their partner during a cooperative situation
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[22,24–26]; (iii) whether blocking visual access between partners

decreases success [22]; (iv) whether animals will wait to act until

a delayed partner arrives [12,27–34]; and (v) whether they will

actively recruit a partner [25,34]. These studies have suggested

that chimpanzees [20,21,24,25,34], orangutans [26], capuchins

[13,22], elephants [27], wolves [28], hyaenas [23] and keas [29]

all take account of their partner to some extent, whereas otters

[30], rooks [12], ravens [31] and the African grey parrot [32]

may not. However, while actively recruiting a partner clearly

demonstrates that an individual has an explicit understanding

of their partner’s role, as shown for chimpanzees [34], the

extent to which these other assessment measures demonstrate

such an understanding is not so clear. While waiting fora partner

may indicate that animals understand their partner’s role, the act

of pulling (or pulling more) when a partner is present could be

owing to response facilitation, in which one animal interacts

with the apparatus because the other animal is doing so [35],

or to an associatively learned rule that pulling is rewarded in

the presence of a partner or of some environmental cue that

the partner brings about (e.g. tension or movement in the

rope) [36]. Similarly, glancing at the partner during cooperative

tasks might theoretically be owing to monitoring for such

learned environmental cues.

In general, for animals to succeed at these cooperative pull-

ing tasks, it is necessary that individuals act during the same

time period. However, it is not necessary that they precisely

coordinate their behaviour. In experiments in which repeated

solo pulling is not regulated, both animals may succeed by

chance co-production if they repeatedly pull at the apparatus

during the same time frame (e.g. [37]). In experiments in

which solo pulling leads to a disabled mechanism (i.e. the

‘loose string’ paradigm), there is a small delay after one

animal starts to pull before the rope is pulled out of the reach

of the other. Animals may take advantage of this interval to

act, as shown by the fact that otters performed better with a

longer rope [30], which necessarily increased this delay and

further relaxed the need for close synchronization. Thus, it

may be that the less stringent timing requirements of these

tasks create a window of opportunity for animals to perform

successful behavioural strategies (e.g. ‘pull when a partner is

there’ or ‘pull when the rope or tray starts moving’), even in

the absence of jointly intended coordination.

Our goal in the current study was to investigate whether

bottlenose dolphins could understand their partner’s role in a

cooperation task by testing whether they could learn a task

that requires precise behavioural coordination between two

partners. The bottlenose dolphin’s propensity for cooperative

behaviour makes them a model study subject for this type of

task. For example, one of the most striking cases of cooperation

in the animal kingdom is to be found in Shark Bay, Western

Australia, where male Indo-Pacific bottlenose dolphins (Tur-
siops aduncus) are well known for their formation of nested

alliances [38]. Pairs or trios of allied male dolphins cooperate

together to herd single oestrous females [38], and these herding

events can last for periods of less than 1 h to several weeks [38].

Multiple pairs or trios of males also cooperate in joint attacks on

other alliances in order to steal females, or defend against such

attacks [9]. In addition, these males exhibit highly synchronous

and coordinated behaviour [39]. In other populations, common

bottlenose dolphins (Tursiops truncatus) engage in cooperative

feeding strategies requiring coordinated action. For example, a

group of dolphins may rush simultaneously through shallow

water onto the shore, creating a bow wave that strands fish in
front of them to be easily grabbed [17,40], or one dolphin

may drive a school of fish into a barrier of other dolphins [16]

or human fishermen [14,15] waiting side by side. These coop-

erative feeding and reproductive partnerships may be central

to each dolphin’s survival and reproductive success [38], yet

it remains unknown whether dolphins have an understanding

of their partners’ role during such cooperative interactions

[41,42]. For this, experimental evidence is necessary.

Here, our task required members of cooperative dyads to

swim across a lagoon and each press their own underwater

button simultaneously (within a 1 s time window), whether

sent together or with a delay between them of 1–20 s. The need

for such tight behavioural synchronization eliminates the possi-

bility that consistent success could be achieved from such

mechanisms as response facilitation, following an associative

rule to push the button in the partner’s presence, or responding

to some environmental cue brought about by the other’s response.

In order to investigate how individuals modified their

behaviour during these trials we measured a number of vari-

ables. First, while previous studies focused on whether the

animal that reaches the apparatus first will wait for its partner,

we hypothesized that the behaviour of the delayed animal may

also provide useful information about the dyad’s understand-

ing of the task. Specifically, during short delay intervals, it is

possible for the dyad to succeed if the delayed animal swims

quickly to catch up to its partner. If both animals are actively

coordinating, however, this is not necessary. We therefore pre-

dicted that individual swim speeds should decrease as dyads

came to understand the cooperative nature of the task and

thus increased their coordination. Second, we hypothesized

that once individuals were synchronizing their button presses

then the individual that arrived at the button first would not

necessarily be the individual that pressed their button first.

We therefore predicted that once the dyad understood the

cooperative nature of the task, both the proportion of first

button presses by the dolphin released first and the time

between button presses should also decrease.

2. Methods
(a) Subjects
Experiments were conducted at Dolphin Research Center (DRC)

in Grassy Key, Florida between March 2017 and February 2018.

The subjects were four common bottlenose dolphins: Gypsi

(female, 10 years old) and Flagler (male, 6 years old) who

formed dyad 1; and Aleta (female, 33 years old) and Calusa

(female, 17 years old) who formed dyad 2. All four animals were

born at DRC and were housed in natural seawater lagoons

(ranging from 344 to 537 m2) with depth dependent on tide

(4.5–5.5 m). The members of each dyad had lived together at

various points throughout their lives, and lived together during

the study. A third dolphin (Louie, male, age 7 years) also lived

with Flagler and Gypsi during part of the study, but was gated

into a different lagoon during experimental sessions.

All dolphins at DRC participate in three to five positive

reinforcement training sessions daily, which may include husban-

dry, behavioural training, play sessions, public interactions with

trainers and guests, and research. Behavioural training includes

solo and tandem physical behaviours (e.g. asking two dolphins

to dive together), as well as conceptual behaviours (e.g. repeat, imi-

tate, do something new). Throughout the study, the dolphins were

fed according to their normal daily routine, which typically

included capelin, herring, smelt, and squid three to five times

per day, approximately 20–33% of which they received during

each experimental session (up to two sessions per day).



button1 button2

2.6 m

Figure 1. Aerial view of the cooperative task apparatus, with the buttons
being pressed by one of the dolphin dyads.

Table 1. Summary of all trial phases.

trial type criterion to pass

phase 0 simultaneous release 8 out of 10 over two

sessions (80%)

phase 1 incremental delays (1 – 5 s) 3 in a row

phase 2 randomized delays

(simultaneous – 5 s)

16 out of 20 in a single

session (80%)

phase 3 incremental delays

(8 – 20 s)

3 in a row

phase 4 randomized delays

(1 – 20 s)

test (20 trials per

dolphin)
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(b) Cooperative task apparatus and procedure
The apparatus consisted of two underwater push buttons with

pressure sensors (Hydracon Subsea Limit Switch) covered by

10� 10 cm black starboard, mounted on 65 � 30 cm white star-

board backed with neoprene (for sound dampening). The buttons

were positioned off the centre of a dock, 53 cm below the water’s

surface and 2.6 m apart (measured from the centre of button 1 to

the centre of button 2; see figure 1). The buttons were connected

via a computer (Raspberry Pi Model 3 Bþ), which in turn was

attached to an underwater speaker (University Sound UW-30).

A researcher was positioned behind each button, hidden from the

animals’ view by a screen constructed of PVC pipe and dark

cloth. Attached to each screen was a plastic tube through which

the researchers could slide fish to positively reinforce the dolphins

during successful trials. A Canon Vixia HF R50 video camera posi-

tioned across the lagoon from the apparatus and a GoPro Hero5

positioned above the apparatus were used to record the trials.

Each trial began with both dolphins and their respective

trainers located at the opposite side of the lagoon (approx. 11 m

away) from the task apparatus. During simultaneous release

trials, the trainers each gave the ‘press the button’ hand signal

simultaneously to their respective dolphins, at which point the dol-

phins were expected to swim across the lagoon and press their

respective buttons simultaneously (within a 1 s window). If the

buttons were pressed within this time interval, the computer auto-

matically played a ‘success’ sound (i.e. a trainer’s whistle) through

the underwater speaker, and the researchers behind the screens slid

fish through the feeding tubes to the dolphins. For dyad 2, the fish

tubes were eliminated early in training (during phase 1; see table 1)

owing to wintering seagulls and pelicans dive-bombing the fish

that came out of the tubes. Instead, upon hearing the ‘success’

sound, these dolphins returned to the trainers across the lagoon

for reinforcement. This procedure was followed for the remainder

of the study. If there was more than a 1 s delay between the dol-

phins’ button presses (or more than a 2 s delay during the initial

preliminary training phase), the computer played a ‘failure’

sound, and no fish was given. The computer was programmed

such that for each trial only the first press of each button was rel-

evant, so it was impossible for dolphins to succeed by repeatedly

pushing their buttons. The procedure for delayed-release trials

was identical except that one dolphin was given the signal first

(target animal), and the second dolphin was given the signal

after a 1–20 s delay (delayed animal). The computer automatically

recorded the following parameters for each trial: time between

button presses (accurate to 0.01 s), which button was pressed

first, and whether the trial outcome was a success or failure.
(c) Preliminary training
The experimental task was designed to capitalize on natural

dolphin behaviour such as synchrony [39] and the use of their
rostrums to manipulate objects and/or probe substrate [43]. How-

ever, the strict timing requirements coupled with the invisible

causality of the task (e.g. no food that moved slowly towards

them when they started the correct behaviour) meant that the

means for success was not likely to be discovered spontaneously.

We therefore implemented the following training steps: (i) from

beside the buttons, each dolphin was taught to press a button

when requested, by pairing the trainer’s hand signal with a

point towards the button and a target pole to guide them to the cor-

rect location; (ii) the target pole and trainer’s point were faded out

so that each dolphin pressed the button when given only the hand

signal; (iii) the signals were given simultaneously to both dolphins,

and the dolphins were required to press their buttons within a 2 s

window of each other; (iv) the starting location was moved directly

across the lagoon from the buttons, so that the dolphins had to

swim across the lagoon to touch the buttons after being given

the signals. Note that at this point the trainers initially pointed to

the apparatus after giving the signal, before fading the point out

again; and finally (v) the timing requirement was tightened so

that the dolphins had to press the buttons within a 1 s window.

By the end of this training phase, the dolphins were swimming

together from the opposite side of the lagoon when given the

signal, and pressing the buttons simultaneously (within a 1 s

window). In line with previous studies [27], this tells us little

about whether the animals understand the cooperative nature

of the task, nor whether they are capable of coordinating their

actions, but it does allow them to become familiar with the task

itself. In order to move to the next stage the dyad had to succeed

in 8 out of 10 trials on two consecutive days. Both dyads met

this criterion.
(d) Incremental delays
In the next phase we introduced increasing delays in which one of

the dyad was asked to push the button before its partner. A trainer

would use the hand signal to ask one member of the dyad to press

the button, and then give no further instruction. A second trainer

would wait for the predetermined delay duration before asking

the second animal to press the button. To succeed, the first animal

would need to wait for its partner and then precisely coordinate

pushing their buttons. Owing to the fast nature of dolphins and

the narrow time window required for success, delay durations

were first increased in 1 s increments from 1 s up to 5 s to allow

them to learn the task, and then in 3 s increments between 8 and

20 s. For dyad 1, we originally attempted to increase the intervals

in larger increments, moving directly from 0 to 2 to 5 s intervals.

However, the dolphins had difficulty with the 5 s delay and began

to show behavioural indications of frustration. Therefore, we started

again with simultaneous trials and 2 s delays, then moved in 1 s

increments until they had passed 5 s. For dyad 2, we used 1 s
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Figure 2. Summary of the percentage of successful trials for each individual across all delay release intervals; where an individual had to pass three trials in a row in order
to move to the next interval. The number of successful trials over the total number of trials attempted is also provided per interval. Panel (a) shows results for dyad 1
(Flagler in light grey, Gypsi in dark grey) and panel (b) shows results for dyad 2 (Aleta in white, Calusa in grey). Note, one second delays were not tested for dyad 1.
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increments for 1 to 5 s delays from the beginning. During this period,

members of the dyad alternated being the target dolphin (i.e. the one

who was released first). If the dyad was unsuccessful for three trials

in a row with one dolphin as target, the other dolphin would become

the target. If a target dolphin successfully waited for its partner three

trials in a row it passed that delay duration. When the first of the

dyad passed a delay interval we continued to test its partner at

that duration. If that partner was unsuccessful three trials in a row

the target temporarily switched back to the dolphin who had

already passed for two trials (regardless of outcome). This ensured

that the individual who had mastered the task remained engaged.

The maximum number of trials in a session was 20, with no more

than two sessions per day.

(e) Randomized delays
In theory, learning the required amount of waiting time or required

swimming speed could solve predictable delays. To make sure the

dolphins could not use such strategies, we randomized the delays

at two points: (i) after the dyad succeeded at a 5 s delay we pre-

sented them with randomized trials of 0, 2, 3, 4 and 5 s delays

until the dyad succeeded in 16 out of 20 trials (80% success rate)

in a given session; and (ii) after the dyad succeeded at a 20 s

delay they were tested with randomized delay trials from 1

through to 20 s. This consisted of one trial for each target dolphin

at every possible delay between 1 and 20 s, for a total of 40 trials per

dyad tested over three sessions. Both the order of the delay inter-

vals and the target animal were randomized, with the constraint

that one individual could not be the target dolphin for more

than three consecutive trials. These randomized trials allowed us

to ensure that animals were not passing the task by becoming fam-

iliar with successive delays, but understood that irrespective of the

delay time they needed to wait for their partner. A full summary of

trial phases for each dyad is presented in table 1.

( f ) Analysis
All statistical procedures were conducted in R v. 3.3.2 [44]. To deter-

mine whether and how success strategies evolved over the course
of the study we ran mixed-effect models (lmer and glmer using

lme4 package in R) on a number of behavioural parameters for suc-

cessful trials: (i) we used the event logging software BORIS [45] to

code the time it took for the delayed animal to swim across the

lagoon for successful trials. This was measured from when the

trainer gave the delayed animal the ‘press the button’ hand signal

to the ‘success’ sound being played. To explore how the delayed

animal modified their swim speed across the study we ran a

linear mixed model (LMM) on the swim time of the delayed

animal. The model predictor was trial phase, which was modelled

as four distinct phases (phases 1–4, table 1). To control for repeated

measures of individuals, the identity (ID) of the delayed individual

was included as a random effect. The full model was compared to a

null model containing only the random effects, and we selected the

model with the lowest Akaike’s information criterion (AIC) value

as the best-fitting model. We also employed ANOVA using the

car package in R to test whether the inclusion of the trial phase par-

ameter in the model explained significantly more variance; (ii) to

explore how cooperative timing changed across trials for the

animal being tested we ran a generalized linear mixed model

(GLMM) with binomial family on the number of successful trials

where the target animal pressed their button first, i.e. before their

delayed partner (1¼ yes, 0 ¼ no), with trial phase as an

explanatory factor variable and target individual ID included as

a random effect. Model selection was as per previous analysis;

(iii) finally, we ran a LMM on the time between both individuals

pressing their button for all successful trials. Trial phase was

included as an explanatory factor variable and target individual

ID was included as a random effect. Model selection was as per

previous analysis.
3. Results
After reaching the criterion of at least 8 out of 10 successful sim-

ultaneous release trials over two days, both dyads successfully

passed the incremental delay release trials with the delay ran-

ging from 1 to 20 s (figure 2). However, there was variation
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between individuals in how quickly they learnt that they

needed to wait for their partner in order to successfully com-

plete the task. In both dyads it appears that one individual

had a faster learning rate compared to its partner (Flagler in

figure 2a, Calusa in figure 2b). Interestingly, in the earlier suc-

cessful trials the delayed animal swam significantly faster

(i.e. had shorter swim times) than in the later successful trials

(phase 1 versus phase 3, lmer: t ¼ 2.9, p ¼ 0.003; and phase 1

versus phase 4, lmer: t ¼ 7.2, p , 0.0001; figure 3a, table 2),

suggesting that initial strategies focused on the delayed

animal ‘catching up’ rather than the target animal waiting.

The proportion of first button presses by the target animal

also significantly decreased over the course of the trials

(phase 1 versus phase 3, glmer: z ¼ 23.13, p ¼ 0.001; and

phase 1 versus phase 4, glmer: z ¼ 24.07, p , 0.0001;

table 2), as did the time between button presses (phase 1

versus phase 2, lmer: t ¼ 25.2, p , 0.0001; phase 1 versus

phase 3, lmer: t ¼ 24.9, p , 0.0001; and phase 1 versus

phase 4, lmer: t ¼ 25.2, p , 0.0001; table 2), indicating that

individuals became better at coordinating their behaviour

(figure 3b,c). Full model outputs are provided in the electronic

supplementary material. Finally, all four animals were highly

successful at the randomized delay trials (table 3), revealing

their understanding of the cooperative nature of the task

(example movies are available from the Dryad Digital

Repository: http://dx.doi.org/10.5061/dryad.1pf43rb [46]).
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Figure 3. Summary of behavioural strategies for all successful trials across all indi-
viduals and trial phases: (a) swim time of delayed animal; (b) proportion of
successful trials in which the target dolphin pressed their own button before
their partner pressed; and (c) averaged elapsed time between the button presses.
The asterisks indicate a significant difference (**p � 0.01; ***p , 0.001).
4. Discussion
In the current study, bottlenose dolphins (Tursiops truncatus)

demonstrated an understanding of their partner’s role in a

cooperation task by waiting for their partner as in pre-

vious studies [12,27–34] and by precisely coordinating their

behaviour in order to ensure task success. Furthermore,

their behavioural strategies and the coordination between

individuals significantly improved in accordance with their

understanding of the task itself. During earlier trials, delayed

individuals swam significantly faster, and the time between

partners’ button presses was significantly longer, suggesting

that initial strategies focused on the delayed animal catching

up to its partner rather than the target animal waiting and the

partners precisely coordinating their behaviour. Such coordi-

nated behaviour was evident by phases 3 and 4 where longer

delays were introduced, with all four animals achieving

high levels of task success once delayed intervals reached

greater than 10 s. Behavioural coordination was evident by

the combination of both significantly slower swim speeds

and shorter times between button presses, conceivably once

both members of the dyad understood that rapid swimm-

ing was not required for task success, rather that jointly

coordinated action was.

One might question whether the dolphins’ success could

be explained by a simpler individual behavioural strategy

rather than by jointly coordinated action. Note that in phase 4

the average timing difference between partners’ button presses

was 370 ms. This level of precision makes it virtually impossible

that the dolphins were reacting to some general cue such as

‘press when a partner is near the apparatus’, and highly unli-

kely that they were responding to a more specific perceptual

cue that their partner had pressed the button. Moreover, if

one partner had been initiating their button presses on the

basis of such a perceptual cue, then the data would show that
one partner of the dyad (the reacting partner) consistently

pressed their button after the other partner (the cueing partner)

did. This is not what happened. Instead, by phase 4, the trials of

all of the target dolphins were split between those in which they

or their partner pressed first (figure 3b). This suggests that once

the target animal understands its partner’s role then it works

with its partner to press the buttons simultaneously. Under

this scenario we would expect the target animal to press their

button first by chance, i.e. in approximately 50% of trials. As

such, we have shown that bottlenose dolphins can precisely

coordinate their behaviour in a cooperative task.

It is perhaps worth noting that the dolphins in the current

study were required to learn that this was a cooperative task by

trial and error. Unlike in previous cooperation studies, the task

http://dx.doi.org/10.5061/dryad.1pf43rb


Table 2. Summary results of the mixed models: effects of trial phase on
swim speed, the proportion of first button presses by the individual
released, and first time between both individuals pressing their button.
(Phase 1 was the reference category.)

model parameter estimate
confidence
interval

(LMM) swim

speed of

delayed

animal

phase 2 20.226 20.494 to 0.044

phase 3 0.350 0.114 to 0.586

phase 4 1.079 0.788 to 1.370

(GLMM) first

button

press

phase 2 20.522 21.265 to 0.209

phase 3 20.996 21.643 to 20.388

phase 4 21.454 22.173 to 20.766

(LMM) button

press

interval

phase 2 20.188 20.259 to 20.118

phase 3 20.159 20.224 to 20.096

phase 4 20.205 20.282 to 20.127

Table 3. Success rates of individuals for the randomized delay trials.

target
dolphin

delayed
dolphin

no. successful
trials

%
successful

Gypsi Flagler 19 out of 20 95%

Flagler Gypsi 20 out of 20 100%

Calusa Aleta 19 out of 20 95%

Aleta Calusa 18 out of 20 90%
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here included no perceptible causality by which they might

deduce that they must work together (and indeed, during the

initial introduction to the apparatus, pushing a button solo

resulted in success). While this rendered the task more chall-

enging than in previous studies, it also meant that shorter

intervals, and therefore more extensive training, were required

in the initial stages. It still remains to be seen whether dolphins

might immediately employ a similar collaborative strategy on a

cooperation task that is more causally transparent.

Nonetheless, the current study has provided evidence

that dolphins are capable of joint action, defined as the ability

to coordinate actions with others in order to reach common

goals [47]. In wild dolphins, synchrony occurs in a variety

of contexts, such as synchronous breathing between mothers

and calves [48], and behavioural synchrony between allied

males in coordinated displays [39,49]. Indeed, motor syn-

chrony between allied male dolphins is remarkably precise,

with synchronous behaviours separated by just 130 ms [39].

Such synchrony is thought to promote both coordination

and cooperation between alliance partners [50]. Our results,

therefore, suggest that the tight behavioural coordination
which bottlenose dolphins show in the wild may be a gener-

alized cognitive ability that they can also apply to novel,

albeit artificially constructed, cooperative situations. Future

studies should explore whether other species can also pass

cooperative tasks that require precision in motor synchrony

and, thus, are capable of joint action.

Finally, in previous studies, chimpanzees’ ability to actively

recruit a partner demonstrated that they have a clear under-

standing of their partner’s role in a cooperative context [34].

It has been proposed that the competition inherent in chimpan-

zee societies has favoured complex cognitive mechanisms

underlying cooperation [36], allowing individuals to actively

compete over the best cooperative partners [51]. Partner

choice also plays a central role in some bottlenose dolphin

populations where males form multi-level alliances as a

means of enhancing reproductive success [38]. Such strategic

behaviour can place a demand on higher cognitive abilities,

particularly for species where mobility leads to encounters

with many potential cooperative partners [52]. Here we have

shown that bottlenose dolphins are capable of precise joint

action during a cooperative task, supporting the notion that

in species where biological markets are prevalent [51], individ-

uals appear to possess the cognitive skills that enable them to

know enough about their partner to use them as social tools

[36]. Future studies should test whether dolphins, like chim-

panzees, are also capable of partner recruitment during novel

cooperative tasks, thus demonstrating an even more complete

and flexible understanding of the partner’s necessity and role

in cooperative situations.
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