
INTRODUCTION

Rotator cuff tendon tear led to pain and functional disorder 
of shoulder is a common musculoskeletal disease that often re-
quires surgical repair [1]. Surgical techniques are often used to 
reattach torn tendon to the bone. Despite of recent advances in 
surgical techniques, the rate of re-tear caused by suture breaking 
and suture slip from tendon still approaches up to 90% of cases 
[2-8]. This is generally attributed to insufficient restoration of 
native biological and mechanical properties at the injury site. A 
recent systematic review also showed that although arthroscopic 
transosseous equivalent repairs for large tears led to improved 
healing rates, failure rate still reached 25% [9]. For this reason, a 

number of efforts have focused on biological augmentation us-
ing small intestine submucosa, dermis, pericardium, etc. [1] to 
promote tendon healing as well as improve mechanical strength 
after repair. The use of various cells (e.g., mesenchymal stem cell 
and tenocyte) and growth factors [e.g., platelet-derived growth 
factor BB (PDGF-BB) and insulin-like growth factor-1] [10-13] 
have been also suggested as repair strategies. More recent focus 
is turning to synthetic extracellular matrix (ECM) augmentation 
to enhance rotator cuff tendon healing because tendon augmen-
tation with biological tissues have not been widely accepted for 
clinical use due to the risk of evoking an inflammatory response 
and potential weakening of material properties after applying to 
host tissue [14]. Bioabsorbable polymeric matrices such as wo-
ven polylactic acid (PLA), poly(D,L-lactic-co-glycolic acid) 
nanofiber, chitin fiber, PLA/collagen hybrid nanofiber, and chi-
tosan/hyaluronan hybrid fiber meshes have been investigated 
over the past decade [15-19].

In our previous studies [20,21], we reported that asymmetri-
cally porous membrane fabricated by polycaprolactone (PCL) 
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and Pluronic F127 using an immersion precipitation technique 
allows selective permeability (preventing scar tissue invasion 
into defect region but allowing permeation of oxygen/nutrients) 
and incorporation of bioactive molecules, which are essential 
criteria in a guided tissue regeneration (GTR) membrane used 
for effective target tissue regeneration. Based on this result, it 
was expected that if suitable growth factors to accelerate tendon 
healing were immobilized on the asymmetrically porous mem-
brane, it may be an option for enhanced rotator cuff tendon heal-
ing and minimized retearing rate. In this study, PDGF-BB as a 
biological stimulus to promote rotator cuff tendon regeneration 
was incorporated onto the pore surfaces of the PCL/Pluronic 
F127 asymmetrically porous membrane via heparin binding. 
The regeneration of rotator cuff tendon through PDGF-BB-im-
mobilized membrane was compared with those of membrane 
without PDGF-BB as well as a control (suturing without the 
membrane).

MATERIALS AND METHODS

Materials
PCL (Mw 80,000 Da; Aldrich, USA), tetraglycol (glycofurol; 

Sigma, USA), and Pluronic F127 (Mw 12,500; BASF, USA) were 
used to prepare an asymmetrically porous membrane. PDGF-
BB, which is approved from US Food and Drug Administration 
(FDA) for human use [22], was selected as a growth factor to 
enhance the tendon regeneration and was purchased from R & 
D Systems (USA). All other chemicals were of analytical grade 
and were used as received. Water was purified (>18 mΩ) using a 
Milli-Q purification system (Millipore, USA).

Fabrication of PCL/Pluronic F127 membrane
Asymmetrically porous PCL/Pluronic F127 membranes were 

prepared by an immersion precipitation method [23]. Briefly, 
PCL pellets were dissolved in tetraglycol at 90°C (12 wt%) and 
Pluronic F127 powder was added in the PCL solution (5 wt%, 
PCL base). The PCL/Pluronic F127 mixture solution was 
poured in a mold (60×80×0.4 mm) and subsequently im-
mersed into excess water for 1 hr at room temperature. The top 
surface of PCL/Pluronic F127 mixture solution was solidified by 
the contact of nonsolvent (water) and then the sublayer was 
gradually solidified by the diffusion of water into the solution 
(solvent-nonsolvent exchange). The asymmetrically porous 
PCL/Pluronic F127 membrane was obtained after washing in 
excess water to remove residual solvent and vacuum drying. The 
PCL membrane without Pluronic F127 was also prepared using 
the same procedure described above. Surface and cross-section 
morphologies of the prepared PCL/Pluronic F127 membrane 
were examined by a scanning electron microscope (SEM; Model 

S-3000N, Hitachi, Japan).

Growth factor immobilization and release test
PDGF-BB was incorporated onto the PCL and PCL/Pluronic 

F127 membrane (12×12×0.4 mm) via heparin binding. For 
this, the membrane was immersed in a heparin solution (3 mg/
mL in 2 wt% NaCl solution) at 4°C for 3 hrs. The heparin-
bound membrane was rinsed using a 2 wt% NaCl solution and 
water sequentially, and then freeze-dried. The amount of hepa-
rin incorporated on the membrane was determined using a To-
luidine blue assay [24]. To immobilize the PDGF-BB onto the 
membrane, heparin-bound membrane was immersed in PDGF-
BB solution (2 μg/mL) at room temperature for 9 hrs with gentle 
shaking. The PDGF-BB-immobilized membrane was washed 
three times using phosphate buffered saline (PBS; pH 7.4) and 
the loading amount of PDGF-BB immobilized on the mem-
brane was quantified by a direct ELISA technique [25]. The 
PDGF-BB-adsorbed PCL and PCL/Pluronic F127 membranes 
without the heparin binding were also prepared using the same 
procedure described above to investigate the effect of heparin 
on the PDGF-BB immobilization. Figure 1 demonstrates sche-
matic diagrams for the successive binding of the heparin and 
the growth factor onto the pore surface of the PCL/Pluronic 
F127 membrane. To investigate the release behavior of the 

Figure 1. Schematic diagrams for the successive binding of the 
heparin and the growth factor onto the pore surface of the PCL/
Pluronic F127 membrane. PCL: polycaprolactone, GTR: guided 
tissue regeneration, PDGF-BB: platelet-derived growth factor-BB.
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PDGF-BB, the growth factor-immobilized (or adsorbed) mem-
branes were incubated in 1 mL PBS containing 1% bovine se-
rum albumin (Sigma) at 37°C for up to 42 days under mild 
shaking (~50 rpm). At pre-determined time periods, the whole 
media were harvested and replaced with fresh PBS. The amount 
of PDGF-BB released in the harvested medium was analyzed 
using the ELISA kit.

Surgical procedure
Sprague-Dawley rats (200–250 g) were chosen as an animal 

model to evaluate the effect of PDGF-BB-immobilized PCL/
Pluronic F127 membrane as a GTR membrane on rotator cuff 
tendon regeneration. A total 36 rats were used for the analyses. 
The animals were divided into the following 3 groups (12 rats/
group): suture repair group (Control), suture repair/GTR mem-
brane-covered group (GTR), and suture repair/PDGF-BB-im-
mobilized GTR membrane-covered group (PDGF-BB/GTR). 
The animal experiment was approved from the Institutional 

Animal Care and Use Committee of the Hannam University in 
Korea, and all procedures were performed according to the ap-
propriate guidelines. Unilateral shoulder surgery using a sterile 
technique was conducted under anesthesia. The anesthesia was 
induced through an intramuscular injection of tiletamine/zolaz-
epam (10 mg/kg; Zoletil 50®, Virbac Laboratories, France) and 
2% xylazine hydrochloride (2 mg/kg; Rumpun®, Byely, Korea). 
A longitudinal anterolateral skin incision was made on left side, 
and the omovertebral and deltoid muscles were retracted. Oste-
otomy of the acromioclavicular arch just posterior to the acro-
mioclavicular joint was performed, and the acromion was re-
tracted to expose the infraspinatus tendon. The rotator cuff 
tendon was detached sharply at its insertion on the greater tu-
berosity, and a 2×2 mm defect involving the full-thickness of 
the infraspinatus tendon was created. The remaining distal fi-
brocartilaginous stump was resected from the greater tuberosity 
using a curette. In the control group, the defect was repaired by 
suturing using 5-0 nylon suture between tendon and greater tu-

Figure 2. Photographs showing the surgical procedure; (A) the normal rotator cuff tendon, (B) injury tendon, (C) repaired tendon by 
suturing, and (D) GTR membrane (w/, w/o PDGF-BB)-applied tendon (arrow: tendon, †: GTR membrane). GTR: guided tissue regen-
eration, PDGF-BB: platelet-derived growth factor-BB. 
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berosity. In the membrane groups (GTR and PDGF-BB/GTR), 
the membranes (3×3×0.4 mm) were covered on the suture-re-
paired tendon defect with the micropore side of the membrane 
facing the defect, and were secured to the repaired tendon with 
a 5-0 nylon suture (Fig. 2). The deltoid and trapezius muscles 
were re-approximated and the incision was closed. The animals 
were returned to their cages and monitored until they recov-
ered. They were allowed to perform normal cage activities with-
out immobilization.

At 2 and 4 weeks after surgery, the animals were euthanized 
by overdose CO2 inhalation. Each operated shoulder was evalu-
ated macroscopically for signs of infection, wound dehiscence, 
adhesions, and rotator cuff integrity. All infraspinatus specimens 
were obtained by harvesting the scapula and humerus and re-
moving all soft tissues except the infraspinatus muscle and ten-
don. For biomechanical testing, the scapula side of specimen 
was fixed at one custom-designed vise grip and the humerus 
side was held in another vise grip. The vise grips were attached 
to an universal testing machine (AG-X; Shimadzu, Japan) with 
a 10 kgf load cell. The tendon was aligned parallel to the direc-
tion of load application. The tendon was pulled with a crosshead 
speed of 10 mm/min and the ultimate stress to failure was re-
corded. For histological analysis, the specimens were fixed in 
10% neutral buffered formalin and fully decalcified in 5% nitric 

acid, trimmed, and then embedded in paraffin. The paraffin-
embedded specimens were cut into 5 μm transverse sections 
and stained with Hematoxyline & Eosin (H&E) and Safranin-O 
for observation by light microscopy (Model BX-51, Olympus, 
Japan). To evaluate the regenerated tendon qualitatively, we ad-
opted a modified tendon-to-bone maturing score system [26] 
which grades histologic parameters including cellularity/vascu-
larity (1=marked, 2=moderate, 3=mild, 4=minimal) and pro-
portion of oriented fibers/large diameter fibers/continuity/bone 
ingrowth/fibrocartilage cells/tidemark (1: <25%, 2: 25–50%, 3: 
50–75%, 4: >75%). The evaluation was conducted by an expert 
pathologist through a blinded experiment. A best score in this 
scoring system is 32.

Statistical analysis
The data obtained from each group were averaged and ex-

pressed as mean±standard deviation. Student’s t-test was adapt-
ed to determine the significance of differences between the 
groups. The differences were considered statistically significant 
at p<0.05.

RESULTS

Characterization of PCL/Pluronic F127 GTR 
membrane

Figure 3 shows the morphology of the PCL/Pluronic F127 
membrane prepared by the immersion precipitation method 
[23]. Pluronic F127 was used as an intermediator to incorporate 
heparin and growth factor on the membrane as well as a hydro-
philic additive to prepare hydrophilized PCL membrane. The 
top surface (water contact side) of the membrane had nano-size 
pores (~100 nm) which can effectively prevent scar tissue infil-
tration but permeate nutrients, while the bottom surface (mold 
contact side; tendon contact side in animal study) had micro-
size pores (~200 μm) which can improve adhesion with tendon 
and guide tendon regeneration. Both sides of the membrane 
were connected by a channel-like pore structure. The formation 
of asymmetrically porous structure can be explained by gradual 
phase separation in the polymer (PCL/Pluronic F127 mixture) 
solution by exchange between solvent (tetraglycol) and non-sol-
vent (water) [27]. The morphology of the PCL membrane with-
out Pluronic F127 was similar to the PCL/Pluronic F127 mem-
brane.

Growth factor loading amount and release profile
Heparin was incorporated on the PCL/Pluronic F127 mem-

brane via hydrogen bonding between the ether group (-O-) of 
Pluronic F127 exposed on the pore surfaces of the membrane 
and the carboxylic acid group (-COOH) of heparin (Fig. 1). It 

Figure 3. SEM photographs showing the morphologies of the 
cross-section, top, and bottom surfaces of the PCL/Pluronic 
F127 membrane fabricated by an immersion precipitation meth-
od. SEM: scanning electron microscope, PCL: polycaprolactone.
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was observed that the PCL/Pluronic F127 membrane allowed 
much larger heparin binding on the surfaces (9.16±1.28 μg/
membrane) compared with the PCL membrane (2.25±0.44 μg/
membrane) (not shown), indicating that the Pluronic F127 mol-
ecules are sufficiently exposed on the pore surfaces of the mem-
brane and effectively bind with heparin. The heparin binding on 
the PCL membrane without Pluronic F127 may be caused by 
the physical adsorption of the heparin on the pore surfaces. 
PDGF-BB, which is recognized as an effective promoter for ten-
don regeneration [12], was incorporated onto the heparin-
bound PCL/Pluronic F127 membrane through ionic interac-
tions between the N-sulfate and O-sulfate groups of the heparin 
molecule and certain lysine and arginine residues in the growth 
factor, as well as high affinity between heparin and growth fac-

tor caused by the carboxyl-terminal extension (conformational 
change) of the dimeric PDGF-BB molecules [28,29]. The load-
ing amount of PDGF-BB on the different membrane surfaces 
(PCL, PCL/Pluronic F127, and PCL/Pluronic F127/heparin) 
were estimated as 123.01±13.13 ng, 140.31±8.68 ng and 276.07± 
5.49 ng/membrane, respectively (Fig. 4A). The PDGF-BB de-
tected on the membranes without heparin binding can be also 
understood by the physical adsorption of the PDGF-BB on the 
pore surfaces of the membrane. The heparin-bound PCL/Plu-
ronic F127 membrane showed a moderate initial burst release of 
PDGF-BB, and then the PDGF-BB was released sustainedly up 
to ~90% of the initial loading over 42 days (Fig. 4B). On the 
other hand, the membranes without heparin binding showed a 
much greater initial burst for the initial 3 days. This high initial 
burst can be caused by the rapid desorption of physically bound 
PDGF-BB onto the membranes. Most of the PDGF-BB bound 
on the membranes without heparin was released within 7 days. 
We expected that the sustained release of PDGF-BB from the 
membrane would maximize its biological effectiveness for ten-
don regeneration by the prolonged bioactivity of the growth fac-
tor [30,31].

Tendon regeneration behavior
After 2 weeks of surgery, all rats were active and climbed up 

the cage without the limitation of shoulder motion. Grossly, the 
surgical site exhibited no signs of infection or wound dehiscence 
in any of the rats. Scar tissue was noted around the acromiocla-
vicular joint, but there were no adhesions or contractures limit-
ing the shoulder range of motion. There was no rupture or in-
complete healing of repaired cuff at time of sacrifice. Figure 5 
shows the ultimate stress at failure of the scapula and humerus 
specimens at 2 and 4 weeks after surgery. All specimens except 
normal group were failed at the repair (defect) site, while the 

Figure 4. (A) Loading amount and (B) cumulative released amount of PDGF-BB from the PCL, PCL/Pluronic F127, and PCL/Pluron-
ic F127/heparin membranes (n=3, *p<0.05). PDGF-BB: platelet-derived growth factor-BB, PCL: polycaprolactone.
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normal specimen was failed at the junctional region between 
tendon and scapula. The ultimate stress at failure of each group 
increased with time, indicating tendon regeneration in the rota-
tor cuff defect. The degree of ultimate stress at failure among the 
groups was as follows: PDGF-BB/GTR>GTR>Control, even 
though the ultimate stresses were not comparable to normal 
group and the differences of the mechanical strength among 
them were not significant.

Figures 6 and 7 show the histological sections (with H&E and 
Safranin-O stainings) to compare tendon reconstruction in the 
rotator cuff defect among the control, GTR, and PDGF-BB/

GTR groups at 2 and 4 weeks after surgery. In the control group, 
the defect tendon in rotator cuff was not re-connected with great-
er tuberosity until 2 weeks even suturing between tendon and 
greater tuberosity. The re-connected and maturated tissues were 
observed at 4 weeks. On the other hand, the membrane groups 
(GTR and PDGF-BB/GTR groups) allowed the reconnection of 
tendon to greater tuberosity at 2 weeks, and then the continuous 
maturation. There was capillary proliferation and the gap be-
tween the tendon and bone was filled in with fibrovascular 
granulation tissue in both membrane groups. In particular, the 
PDGF-BB/GTR group showed greater fibrocartilage-like tissues 

Figure 6. Histological sections of (A) Control (w/o GTR membrane), (B) GTR membrane, and (C) PDGF-BB/GTR membrane speci-
mens at 2 and 4 weeks after surgery (H&E staining; ×40; *: bone, †: cartilage, yellow arrow: fibrocartilage, red arrow: tendon). GTR: 
guided tissue regeneration, PDGF-BB: platelet-derived growth factor-BB. 
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[spherical cartilage cells (lacuna structure)] and dense/oriented 
collagen fibers at the regenerated rotator cuff tendon (more sim-
ilar to normal tendon-to-bone interface) compared with the other 
groups, indicating better environment for tendon regeneration 
than the control and GTR groups.

For qualitative analysis of the regenerated tendon at 2 and 4 
weeks after surgery, the maturing of regenerated tendon was 
scored (Fig. 8) [26]. The GTR membrane groups showed higher 
maturing scores [GTR (9.3±0.3) and PDGF-BB/GTR (15.1±0.6) 
at 2 weeks; GTR (18.0±0.9) and PDGF-BB/GTR (23.4±0.8) at 4 
weeks] compared to the control group (7.1±0.4 at 2 weeks and 

11.0±0.9 at 4 weeks). Particularly, the PDGF-BB/GTR group had 
significantly greater maturing scores than the GTR group with-
out the growth factor, suggesting the synergistic effect of the 
GTR membrane as a scaffold for tendon regeneration and 
PDGF-BB sustainedly released from the GTR membrane.

DISCUSSION

Torn rotator cuff tendon has a limited healing potential. His-
tologically, the rotator cuff tissue is mainly composed of an 
abundant and highly organized collagenous ECM with small 

Figure 7. Histological sections of (A) Control (w/o GTR membrane), (B) GTR membrane, and (C) PDGF-BB/GTR membrane speci-
mens at 2 and 4 weeks after surgery (Safranin-O staining: ×40, *: bone, †: cartilage, yellow arrow: fibrocartilage, red arrow: tendon). 
GTR: guided tissue regeneration, PDGF-BB: platelet-derived growth factor-BB. 
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number of cells supplied by poor vasculature [32]. Histological 
study of repaired rotator cuff demonstrates that the bone and 
tendon are joined by a layer of fibrovascular scar tissue consist-
ing of mainly Type III collagen instead of four distinct zones, 
seen in the native rotator cuff insertion. This renders repaired 
tissue weaker than the original insertion site and may contribute 
to the substantial failures of repaired rotator cuff tendon [33,34]. 
Currently, the strategies to promote healing have been focused 
on native tendon tissue and ECM augmentations with the addi-
tion of growth factors. Tendon augmentation with the long head 
of biceps is a reasonable option and several advantages in that it 
is feasible during surgery, yet it sacrifices function of the biceps, 
a potential humeral head depressor [35]. ECM augmentation 
has been divided into xenograft, allograft, and synthetic materi-
als. Tissue from animal and human donors has been commer-
cially available and applied for tendon healing [36-42]. However, 
there are potential problems with allogenic ECMs. Inflammato-
ry reaction to host tissues has been reported. These responses 
can cause degeneration of the rotator cuff tendon repair and de-
crease material properties as well, which may result in compara-
bly increased re-tear rates due to the decreased tendon material 
properties [43-46]. These concerns have prompted the develop-
ment of synthetic ECM grafts for surgical use. Novel synthetic 
materials have been introduced to overcome the weaknesses of 
biological materials. There are a variety of properties required 
for desirable synthetic ECMs. They include a proper biodegra-
dation rate to match the rate of new tissue formation, mechani-
cal strength to maintain the structure, biocompatibility, and 
positive interaction with surrounding cells to achieve well-orga-
nized tissues or organs [47]. To fulfill these requirements, 
poly(α-hydroxyl acid)s, including poly(L-lactic acid) (PLLA), 

poly(glycolic acid) (PGA) and their copolymers [poly(lactic-co-
glycolic acid) (PLGA)], which are biocompatible, biodegradable 
and FDA-approved for human applications, have been com-
monly utilized [48]. However, their brittleness which limits the 
use for load-bearing tissue regeneration (e.g., cartilage, bone, 
tendon, ligament, etc.), and acidic by-products formed during 
degradation which can generate an inflammatory response, 
have been considered as practical limitations [49-52].

Recently, PCL has been gained increasing interest as a syn-
thetic ECM for tissue regeneration, because of its flexibility, bio-
compatibility, and low toxicity of its degradation products in 
vivo. PCL is clinically used as biodegradable staple/suture for 
wound closure and is being investigated as meniscus and bone 
scaffolds for tissue engineering applications [49,51,53].

On this basis, PCL was considered as a matrix for rotator cuff 
tendon regeneration in the present study. Pluronic F127, which 
is an amphiphilic tri-block copolymer of polyethylene glycol and 
polypropylene glycol, was adapted as a hydrophilic additive and 
an intermediator to incorporate heparin and PDGF-BB on the 
membrane surface. Pluronic F127 is well known as the least toxic 
among Pluronic series (approved from FDA for human use) 
[54]. Tetraglycol, which has been widely adapted in parenteral 
products for intravenous, intramuscular, or intranasal injection 
[55-57], is used as a non-toxic co-solvent for both PCL and Plu-
ronic F127. From the growth factor release profile, it was recog-
nized that the heparin-bound membrane (PCL/Pluronic F127/
heparin) has a significantly higher capacity and more sustained 
release of PDGF-BB than the other membranes without the hep-
arin (PCL and PCL/Pluronic F127). This finding can be under-
stood by ionic interactions between the N-sulfate and O-sulfate 
groups in the heparin and certain lysine and arginine residues in 
the growth factor [58]. The PDGF-BB detected on the mem-
branes without heparin (PCL and PCL/Pluronic F127 mem-
brane) can be also explained by the simple physical adsorption 
of PDGF-BB on the pore surfaces of the membrane, which may 
lead to a burst release at initial stage in the medium [59]. The 
sustained release of PDGF-BB from the heparin-bound mem-
brane, which can prolong its biological effects, may be very 
helpful to regenerate tendon [60]. PDGF-BB was reported as 
one of the important growth factors involved in the healing pro-
cess and correlated to increased levels of Type I collagen. It is 
present in low levels throughout normal cuff repair process 
[61,62]. Tendon healing occurs in three overlapping phases la-
beled as inflammatory, fibroblastic, and remodeling. Among 
three phases, PDGF-BB is involved in inflammatory and fibro-
blastic phases [63,64]. Some studies found the increased DNA 
and collagen synthesis in transduced fibroblasts as well as im-
proved histology and biomechanics by PDGF-BB group in rota-
tor cuff tendon repair model (rat). Furthermore, PDGF-BB/

*

*

*

Figure 8. Tendon-to-bone maturing scores of Control (w/o GTR 
membrane), GTR membrane, and PDGF-BB/GTR membrane 
groups (after 2 and 4 weeks; n=3, *p<0.05). GTR: guided tissue 
regeneration, PDGF-BB: platelet-derived growth factor-BB.
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Type I collagen matrix increased ultimate load to failure of cuff 
repairs in a sheep model [65,66]. There are limitations to the an-
imal model used in this study. The rat model is a completely dif-
ferent milieu than found in humans. Tissue variations exist and 
surgically induced tears are not degenerative, as seen in humans. 
The remodeling process in healthy rats with great healing po-
tential could not discriminate the effects of the addition of 
growth factors to the novel synthetic membrane on histology 
and material properties. It is interesting to note that none of the 
reconstructed group exhibited functional deficits, reflecting the 
promise of the PCL membrane in restoring function. Although 
we found both histological and mechanical benefits of the addi-
tion of a growth factor-immobilized polymer membrane, it is 
yet unclear how the polymer membrane and growth factor indi-
vidually contribute to the entire remodeling process. In addi-
tion, the absence of inflammation and tissue rejection was en-
couraging. This study should be regarded as preliminary step 
toward the application of novel growth factor-immobilized 
polymer membrane to potentiate rotator cuff tendon healing 
and bridge cuff defects. Although rats are suitable for shoulder 
studies in that their anatomy is very similar to humans, it would 
be more desirable to perform the experiment in larger animal 
having chronic torn cuffs as seen in the human condition.

In conclusion, the PDGF-BB-immobilized GTR membrane 
seems to provide a suitable environment for healing of rotator 
cuff tendon in our system, probably due to the synergistic effect 
between the GTR membrane as a scaffold for tendon regenera-
tion and PDGF-BB sustainedly released from the GTR mem-
brane. Further studies using more clinically relevant models for 
rotator cuff tendon repair may accelerate the use of the PDGF-
BB-immobilized GTR membrane in clinical fields.
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