
HISTORY OF THE 3D PRINTER

A three-dimensional (3D) printer is one of equipment that 
uses various methods to produce objects through the layer by 
layer addition of materials. As it allows a high degree of free-
dom, items of various shapes and sizes can be produced without 
wasting resources. It can also be applied in a variety of fields de-
pending on the materials used.

The 3D printer was first introduced in 1981 in a technical re-
port by Kodama [1] of the Nagoya Municipal Industrial Re-
search Institute. The described technology produced an object 
by curing a liquid photo-curable resin using laser ultraviolet 
(UV) light. Research was conducted on a method for layering 
liquid photo-curable resin in a water tank using UV light and a 
mask.

The first 3D printer was made in 1984 at 3D Systems by Hull 
[2], who developed 3D printing technology based on stereo-
lithography apparatus (SLA). This was a layered curing method 
in which sections of models were exposed to UV light in the 

same manner as the technology used by Hideo Kodama. Hull 
founded 3D Systems, developed 3D printers, and introduced 
them to the market for the first time in 1988. He also developed 
a stereolithography file, which is a standard CAD model file for-
mat used in current 3D printers, and began the commercializa-
tion of 3D printers in earnest.

In 1986, Deckard [3] developed a 3D printer with a selective 
laser sintering (SLS) method by small particle powders using a 
laser, for which a patent was acquired in 1989. This technology 
also was called direct metal laser sintering; Deckard founded the 
Desk Top Manufacturing (DTM) Corporation, thereby making 
commercialization successful. DTM merged with and was then 
acquired by 3D Systems in 2001.

In 1987, Hornbeck [4] from Texas Instruments in the USA 
developed a digital light processing (DLP) technology, which 
uses a digital mirror device (DMD) in which a product can be 
fabricated using a repeated curing method using light that is 
projected from the DLP unit onto a liquid photo-curable resin.

In 1988, the Helisys Company in the USA acquired a patent 
for the laminated object manufacturing (LOM) method [5].

In 1992, Crump [6] developed and applied for a patent on a 
fused deposition modeling (FDM) method, in which thermo-
plastics were melted and layered. He then founded the Stratasys 
Company and launched a 3D printer into the market using 
FDM.
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In 1991, Brother Kogyo Kabushiki Kaisha in Japan acquired a 
patent for a jetted photopolymer [7], and 3D Systems acquired a 
patent related to a multi-jet modeling (MJM) method in 1992 
[8].

In 1993, the Massachusetts Institute of Technology first devel-
oped and applied for patent protection on powder bed and ink-
jet head 3D printing, which was a new technology involving a 
three-dimensional printing (3DP) technique that was similar to 
the inkjet printer [9]. The Z Corporation was founded based on 
this technology and the company applied for a patent on 3DP in 
1996 [10]. The Z Corporation then merged with and was even-
tually acquired by 3D Systems in 2012.

Since then, a variety of methods have been introduced and 
many 3D printers have been launched into the market. Howev-
er, due to their cost, 3D printers were only used in specialized 
fields until 2005 when commercialization began.

Since 2005, Adrian Bowyer has been conducting an open 
source project called Replication Rapid Prototyping (RepRap) 
using a fused filament fabrication (FFF) method, which is simi-
lar to FDM. The patent for the SLA method expired in 2006, the 
patent for the FDM method expired in 2009, and the patent for 
the SLS method expired in 2014.

As the patent for the FDM method, which does not require 
expensive equipment and uses inexpensive raw materials, has 
expired, the hardware and software needed to manufacture with 
FFF 3D printers (the FDM method) can now be unrestrictedly 
disclosed through the Reprap project. Accordingly, a number of 
companies have attempted renovated models using the dis-
closed patents so that an increasing number of inexpensive en-
try level printers have been launched. Thus, 3D printers can 
now be manufactured economically.

CLASSIFICATION OF 3D PRINTERS

The first technical standards on 3D printers were described 
by the ASTM in the USA. The standards were defined by the In-
ternational F42 Committee in 2009 and are also used by the In-
ternational Organization for Standardization (ISO) (Table 1) 
[11]. The 3D printing method can divide into subtractive manu-
facturing and additive manufacturing (AM). Subtractive manu-
facturing makes objects by removing materials such as CNC 
milling, drilling, grinding, and carving and AM builds 3D ob-
jects by layer-upon-layer of materials. According to ISO/ASTM 
52900, there are seven types of AM technologies: binder jetting, 
directed energy deposition, material extrusion, material jetting, 
powder bed fusion, sheet lamination, and vat photopolymeriza-
tion (Fig. 1) [12].

Binder jetting
Liquid glue is sprayed through nozzles in the inkjet head, 

binding the powdered materials. A typical binder jetting meth-
od is color jet printing (CJP).

CJP employs the same principle as an inkjet printer to spray 
colored materials from nozzles in the printer head, layer by lay-
er, and then hardens the powders by spraying a binder onto 
them. This method can produce various colors, and the sur-
rounding powders support the object. However, the powder 
support is weak and removing the powders from the surface in 
post-processing procedures is cumbersome [13-16]. 3D Systems 
[17] is one of the companies that used this technique.

Directed energy deposition
This method sinters powdered materials using an energy 

Table 1. Standard terminology for additive manufacturing technologies [11]

Process categories Method Technology
Binder jetting An additive manufacturing process in which a liquid bonding agent 

  is selectively deposited to join powder materials
CJP (color jet printing)

Directed energy 
  deposition

An additive manufacturing process in which focused thermal energy 
  is used to fuse materials by melting as they are being deposited

DMT (laser-aided direct metal tooling)

Material extrusion An additive manufacturing process in which material is selectively 
  dispensed through a nozzle or orifice

FDM (fused deposition modeling)

Material jetting An additive manufacturing process in which droplets 
  of build material are selectively deposited

Polyjet (photopolymer jetting)
MJM (multi jet modeling)

Powder bed fusion An additive manufacturing process in which thermal 
  energy selectively fuses regions of a powder bed

SLS (selective laser sintering)

Sheet lamination An additive manufacturing process in which sheets of material are 
  bonded to form an object

LoM (laminated object manufacturing)

Vat photopolymerization An additive manufacturing process in which liquid photopolymer 
  in a vat is selectively cured by lightactivated polymerization

SLA (stereo lithography apparatus)
DLP (digital light processing)

Adapted from: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-1:v1:en
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Figure 1. Components of additive manufacturing technologies. (A) Binder jetting, (B) directed energy deposition, (C) material extru-
sion, (D) material jetting, (E) powder bed fusion, (F) sheet lamination and (G) vat photopolymerization. UV: ultraviolet.

B   Directed energy deposition

C   D  Material extrusion Material jetting

E   F  Powder bed fusion Sheet lamin ation

G   Vat photopolymerlzation

A   Binder Jetting
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source such as a laser. Directed energy deposition melts metal 
powders using a high-powered laser beam while depositing 
powders on a molding plate. It can melt materials completely and 
layer the materials on existing structures [18-21]. It has the ad-
vantage of metal product production and the disadvantage of 
difficult post-processing of the melted residuals attached to the 
surrounding structure. Insstek [22] and TRUMPF [23] are two 
of the companies that use this technique.

Material extrusion
In this method, filaments or pellet materials are melted and 

the material is extruded through a nozzle via the application of 
pressure.

The generally known FDM method is a material extrusion 
method. It is the trademark method of Stratasys [24], who has 
acquired the patent. As such, it is known as the FFF method in 
the RepRap open source project.

In the FDM method, thread-like thermoplastics are passed 
through heated nozzles to melt them and the melted filaments 
are laid layer upon layer. This method has the disadvantages of a 
slow molding speed and weak bonding because only the edges 
are melted. However, it is a relatively inexpensive and simple 
mechanism and the patent expired in 2009. Based on these ad-
vantages, a large number of 3D printers employ the FDM meth-
od [25-29].

Material jetting
In this method, the materials are sprayed while one or more 

heads are moved. Photopolymer jetting (polyjet) and MJM are 
two representative material jetting methods. The polyjet method 
is a combination of the photocurable and inkjet methods in 
which materials are sprayed from hundreds of fine nozzles lo-
cated in the printer head while they are simultaneously cured by 
UV light. Since the layers are thin, the modelling is accurate and 
post-processing is unnecessary, however, it is an expensive meth-
od [30-31]. Stratasys [24] uses this method.

The MJM method sprays acrylic photopolymer as the main 
material and wax as the supporting material during simultane-
ous curing with UV light. This is similar to the polyjet method 
but it can produce multiple materials with different properties. 
Since this is a high-precision method, no post-processing is need-
ed and the transparency of the acrylic photopolymer can be con-
trolled. However, the weakness of the final product and the cost 
of the method represent the method’s disadvantages [32,33]. 3D 
Systems uses the MJM method [17].

Powder bed fusion
This is an AM technology in which the preferred shape can 

be layered via powdered materials using a laser. SLS is a powder 

bed fusion method in which fine metal, plastic, ceramic, or glass 
powders are melted via the heat from a laser. It is similar to the 
SLA method in which a single layer is pulled down after a layer 
is molded and the next layer is molded using a laser. As the 
molding preparations are covered with powder, no support is 
needed and the items produced using this method are strong. 
However, it has the disadvantage of a cumbersome post-pro-
cessing procedure to remove the residual powder. 3D Systems 
[17] uses this method for direct metal printing, and EOS [34] 
uses it for DMLS [35-41].

Sheet lamination
In this method, paper thin plates materials, such as straw-

board or rolled PVC laminate sheets, are cut with a precise cut-
ter, such as a knife edge or a CO2 laser, and then bonded with 
heat to produce a shape. One of the typical methods is LOM de-
veloped by Helisys (currently, Cubic Technology, Phanom Penh, 
Cambodia) [42]. It is an additive technology using glue or heat 
to layer thin film-shape materials (paper, plastic, or metal lami-
nates) layer by layer. Its manufacturing cost is relatively low and 
timber-looking products can be produced. However, products 
have the disadvantage of inflexibility due to their low durability 
[43,44]. Mcor Technologies [45] uses this method.

Vat photopolymerization process
SLA and DLP methods are two vat photopolymerization pro-

cess methods in which liquid photo-curable resin is selectively 
cure using UV or light energy.

The SLA method is the world’s first 3D printing technology in 
which liquid photo-curable resin in a vat is hardened using a la-
ser. Once a layer has been hardened, it is pulled down and the 
next layer is hardened with the laser. The SLA method has the 
advantage of precise molding; however, the support must be re-
moved after molding, only curable materials can be used, and 
the finished products have poor durability [46-48]. 3D Systems 
[17] and Formlabs [49] in the USA, Shanghai Union Technolo-
gy [50] in China, CMET [51] in Japan, and DWS [52] in Italy 
are some of the companies that use this technology.

 The DLP method employs the same principle of beam pro-
jection as DMD. It is an additive technology in which 3D CAD 
data is sliced layer by layer in a liquid photo-curable resin via a 
light projector. It is similar to SLA in terms of the layer by layer 
liquid photo-curable resin but it has a relatively faster speed be-
cause an entire layer section can be irradiated at once, no addi-
tional support materials are needed, and smooth and precise 
molding can be achieved. However, it is generally expensive, pro-
duces small moldings, and the available raw materials and colors 
are limited [53-56]. EnvisionTEC in Germany [57] uses this 
method.



www.term.or.kr  667

HISTORY OF 3D BIO-PRINTERS

Currently, most organs and tissues used for transplantation are 
taken from human donors; however, the numbers of suitable and/
or compatible donated organs and tissues are not sufficient to 
meet the demand. Furthermore, organ and tissue are vulnerable 
to auto-immune reactions after transplantation and immuno-
suppressive drugs need to be administered. In order to solve such 
problems, doctors and scientists have started to conduct research 
through a new technology known as tissue engineering [58]. A 
number of studies have combined tissue engineering and 3D 
printing technologies.

3D bio-printing refers to the fabrication of tissues and organs 
in three-dimensional structures by layering tissue specific cells 
and biomaterials [59].

In 1993, tissue engineering was introduced by Langer and Va-
canti [58]. Since that time, many studies have been conducted.

Tissue engineering using scaffold has several advantages such 
as a mechanical support and specific instructive environment 
for cellular function.

A method utilizing 3D printing can apply imaging technology 
such as computed tomography (CT) or magnetic resonance im-
aging (MRI) to manufacture complex structures of custom-tai-
lored shapes and sizes as well as internal shapes, and pores can 
be controlled to adjust the diffusion of oxygen, nutrients, and 
waste of cells, thereby promoting cell attachment, proliferation, 
and differentiation [59-65].

Since the early 2000s, a variety of biocompatible and biode-
gradable materials have been used to manufacture scaffolds us-
ing 3D bio-printers and a number of studies on the generation 
and regeneration of organs and tissues have also been conducted 
[64,65]. Some typical examples are described below.

Landers and Mülhaupt [60] removed milling machine heads 
and mount pneumatic dispensers to manufacture various pat-
terns scaffolds. In 2002, a number of studies were conducted by 
Envision TEC using extrusion method of 3D bio-printer [61-
65]. In 2005, scaffolds were manufactured using 3D bioplot-
tingTM equipment and in 2014, 3D-BIOPLOTTER® (Envision 
TEC, Gladbeck, Germany) was commercialized [57]. In 2002, 
Zein et al. [29] manufactured a honeycomb-shaped scaffold ap-
plying FDM extrusion technology using a biodegradable mate-
rial polycaprolactone (PCL). In 2003, Pfister et al. [66] manufac-
tured scaffolds using 3D printing and 3D bioplotting methods, 
respectively, and compared them. In 2007, a team led by Profes-
sor W. Sun manufactured a scaffold using PCL and hydroxyapa-
tite (HA) [67].

In addition to scaffold manufacturing methods using 3D bio-
printers, other studies on printing with factors that help cell ac-
tivation or tissue differentiation or on the direct printing of cells 

have also been undertaken [68-70].
In 1994, Klebe et al. [71] used a commercialized HP Thinkjet 

printer to print fibronectin and then seed SV-T2 (SV40-trans-
formed BALB-3T3 cell line) cells. In 2004, Roth et al. [72] of 
Clemson University successfully printed cells in his laboratory 
by filling a Canon inkjet printer cartridge with collagen, and 
demonstrated the use of Canon and HP printers to print colla-
gen and bacteria in 2003 [73]. Based on these successes, research 
on printing ovary cells was conducted [74] and the first patent 
for inkjet printing of viable cells was applied for [75].

In 2003, Mironov et al. [76] fabricated tube-shaped tissues 
such as blood vessels by printing alternate layers of cell aggre-
gates and gel.

In 2004, Forgacs et al. [77] applied for a patent titled “self-as-
sembling cell aggregates and methods of making engineered tis-
sue using the same,” which was a bio-printing-related patent [77] 
based on this work, Organovo was founded in 2005. In 2009, 
Norotte et al. [78] manufactured cells of a certain unit structure 
size (multicellular spheroid), printed blood vessels without scaf-
folds, and sold 200–500 μm thick printed liver cells, commer-
cializing 3D bio-printing technology for the first time [79].

Recently, a decellularized extracellular matrix (dECM) bioink 
is used for 3D bioprining [80]. In 2014, Pati et al. [80] made a 
scaffold using a cell-laden dECM bioink isolated from adipose 
and cartilage and confirmed high cell viability and functionality.

In addition to fabricating scaffolds or direct printing of cells, 
3D printers have been used with various methods in the medi-
cal field.

Around 2000, commercialization of high-precision 3D print-
ers began and ever since, 3D printing technology has been ap-
plied to biomaterials to be utilized both directly and indirectly 
in the medical field. As computer design technology and engi-
neering technology have advanced, 3D printing technology has 
improved and has been utilized in prototype production mainly 
by taking advantage of immediate production using digital data. 
Moreover, there have been many attempts at fabrication of physi-
cal assistance equipment, rehabilitation devices, visualization for 
medical environment, and medical tools [81-83].

CLASSIFICATION OF 3D BIO-PRINTERS

Bio-printing can be divided into three modes: inkjet mode, by 
making materials into ink droplets; extrusion mode, by pushing 
materials with pressure; and laser-assisted mode, by dropping 
materials using a laser (Fig. 2) [84]. A summary of these tech-
niques is presented in Table 2.

Inkjet
Inkjet-based methods employ cells or biomaterials instead of 
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the ink used in existing commercial inkjet printers, and utilize a 
moving stage instead of paper. Inkjet cell printing can be divided 
into the thermal heater method [74] and the piezoelectric actua-
tor method [85-87].

The thermal heater method is known as the bubble-jet meth-
od developed by HP and Canon, in which bubble nucleation is 
generated instantaneously at the nozzle due to heat and bubbles 
are created to turn the materials into ink droplets, which are 
then pushed out of the nozzle. For commercial inkjet printers, a 
temperature of 200 to 300°C is applied to the nozzles, which will 
deform or destroy polymers or cells [88]. To prevent this, a tem-
perature of 40–45°C is applied to melt biomaterials in order to 
make ink droplets [89].

The piezoelectric actuator method is a method for printing 
biomaterials by applying a voltage to the piezoelectric elements. 
Ink droplets are created by the physical force generated during 
voltage application to the piezoelectric elements rather than the 
application of temperature to the nozzle. This method can con-
trol the size of droplets. However, the cells are affected some-
what by the physical impact. The inkjet method is inexpensive 
and various materials can be employed. In addition, the drop-
ping speed is fast, resulting in a short fabricating time. However, 
the products fabricated using this method is not very weak and 

the layers cannot be stacked very high. It also has the disadvan-
tages of possible denaturalization of the biomaterials and incon-
sistent ink droplets.

In 2005, a team led by Professor Thomas Boland printed ova-
ry cells using the inkjet method 2. In 2009, Cui and Boland [90] 
fabricated a structure similar to blood vessels using an inkjet 
printer. He fabricated a 10 μm diameter blood vessel structure 
using human microvascular endothelial cells.

Extrusion
Extrusion-based methods print cell laden biomaterials using 

mechanical force via screws, pistons, or pneumatics. This is the 
most widely used commercial method.

Extrusion methods are also divided into two types: pneumatic 
[91-93] and mechanical [94-98] methods. Pneumatic methods 
extrude materials using pressure. A constant pressure should be 
maintained, but pneumatics limit the ability to control pressure. 
One way to mechanically control displacement is to directly ex-
trude materials using pistons, which are easy to control.

Since extrusion methods can employ more viscous materials 
than inkjet methods, multiple biomaterials and cell types can be 
used simultaneously. These methods are also most common 
method for bio-printing. However, nozzles frequently become 

Figure 2. Classification of bio-printer. (A) Inkjet bio-printer, (B) extrusion bio-printer, (C) laser assisted bio-printer and (D) electrospin-
ning.

A   B  Inkjet bio-printer Extrusion Bio-printer

C   D  Laser-assisted bio-printer Electrospning
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blocked and extrusion methods are poor structural stability.
In 2009, Lee et al. [99] used an extrusion method to fabricate 

multi-layered skin tissue using fibroblasts and keratinocytes. In 
2009, Mironov et al. [93] printed cell spheroids using a 3D dis-
pensing laboratory bio-printer called LBP. In 2009, El-Ayoubi et 
al. [98] manufactured scaffolds using bioplotting, which is an 
extrusion method, from a biodegradable material called poly-L-
Lactide (PLLA). The survival rate of the fabricated cells was ver-
ified by attaching chondrocytes to a PLLA scaffold with differ-
ent porosities.

Laser assisted methods
Laser-assisted methods create structures using a laser and 

various materials. Such methods involve the use of an energy-
absorbing layer that prevents cells, and biological material that 
helps the growth of cells, from being directly exposed to the la-
ser. Bubbles are formed in biological materials located under the 
energy-absorbing layer, and the laser stimulates the printing by 
dropping the materials containing cells [99-105].

A laser assisted method is highly precise and as nozzles are 
not required, blocking does not occur. It can also control a single 
cell. However, such method’s drawback is that cells can be dam-
aged and difficulties can be encountered in high 3D layering.

In 1999, Odde and Renn [103] printed cells using a laser in 
which only the small arrays were used; survival of the cells after 
printing was verified.

Electrospinning
An electrospinning method does not print cells directly but is 

a method for fabricating a scaffold using cytocompatibility bio-
materials. A scaffold manufactured via electrospinning is pro-
duced from nano-type fibers, which are suitable for the struc-
tural characteristics of extracellular matrix (ECM) [106-108].

This method uses fiber formed when electrostatic force is ap-
plied to a polymer solution or melting body. It mainly consists 

of three devices: a power supply, a spinneret, and a collector. A 
solution is suspended at the end of vertically positioned capil-
lary, which is hung and maintained via the equilibrium between 
gravity and surface tension. Upon the application of high volt-
age, the solution is changed into a Taylor cone shape due to mu-
tual electrostatic repulsion between surface charges and a cou-
lomb force is applied to the external electric field thereby 
forming a tiny diameter jet stream due to the Taylor cone effect 
[109]. Immediately, elongation and evaporation of the solvents 
occur simultaneously as the solution is directed to the grounded 
collector and the microfibers are randomly arranged [110].

The above electrospinning method manufactures a nano-size 
pore thereby having advantages that are suitable for the anchor-
age, migration, and proliferation of cells. However, it has the 
drawback of difficulties in shape control.

In particular, as it is not suitable to utilize tissues in which cells 
and ECM are aligned with each other, such as in musculature, 
without modification, other manufacturing and electrospinning 
methods are used in combination [111,112].

In 2003, Yoshimoto et al. [113] manufactured a PCL scaffold 
using an electrospinning method. He checked cell differentia-
tion by seeding mesenchymal stem cells to the manufactured 
scaffold.

In 2008, Park et al. [111] manufactured a PCL scaffold that 
had both nanofibers and microfibers using both electrospinning 
and extrusion methods.

APPLICATIONS OF 3D BIO-PRINTER 

Medical equipment
The market for 3D bio-printing has grown continuously since 

its inception. This means there are many common areas where 
bio-printing can contribute to meeting the requirements for 
medical equipment. Medical equipment is characterized by its 
relatively small size, expensive products, and customization 

Table 2. Comparison of the inkjet bio-printer, extrusion bio-printer, laser-assisted bio-printer, and electrospinning

 Inkjet Extrusion Laser assisted Electrospinning
Resolution Medium Medium Low High
Materials Natural polymer, 

  synthetic polymer+cell
Natural polymer, 
  synthetic polymer+cell

Cell in media Natural polymer, 
  synthetic polymer

Print speed Fast Slow Medium Fast
Cell viability Medium Medium-high High -
Printer cost Low-medium Low-medium-high High Medium-high
Advantages Versatile low cost Multiple compositions High accuracy 

  single cell manipulation
Nano-size pores

Disadvantages Low viscosity prevents 
  build up in 3D

Low accuracy 
  limited biomaterial used

Low viscosity prevents 
  build up in 3D

Difficulty in shape 
  control

References 75, 85–88 92–99 100–106 107–109
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needed to cater to personal differences depending on the pa-
tient’s physical structure; all of these characteristics make the ap-
plication of 3D bio-printing technology appropriate in the med-
ical equipment field.

A 3D printer can not only save time and cost by reducing the 
manufacturing process, but it also contributes to the customiza-
tion of products as it can reflect the physical structures of indi-
vidual patients using a scanner. It is also advantageous in terms 
of fast modification and change speeds.

Using such advantages, a hearing aid is a good example of a 
widely used medical assistive device. With a 3D printer, a hear-
ing aid can be manufactured to fit the shape of a patient’s ears 
using 3D scanning and the implementation of a precise model. 
It can reduce the manufacturing process thereby saving cost and 
time.

3D printing is also used in the fabrication of prosthetic legs 
and hands, which can be manufactured by taking different body 
shapes and patient preference into consideration, in contrast to 
monolithic and uniform shapes [114,115].

3D printing is increasingly being used in surgical applications. 
As the types of materials that can be used in 3D bio-printing are 
increasing, and as advancements are being made in CT and 
MRI imaging technologies, the precision of 3D printing has also 
been increasing. For example, surgical guides that can account 
for the physical structure of the patient can be manufactured to 
increase surgical success rates [116].

This is accomplished by helping surgeons to identify the size 
or location of an organ using a phantom model of the patient, 
which can help surgeons to prepare their operation plan, prac-
tice the operation process, and reduce unforeseeable risks. Such 
phantoms can also be used by medical students to practice their 
skills without using cadavers.

In 2002, the University of California Los Angeles (UCLA) 
Mattel Children’s Hospital manufactured a phantom utilizing 
3D printing technology to assist in the separation of Siamese 
twins. Although a similar separation operation previously took 
about 100 hours, the 2002 operation took only 22 hours and was 
completed successfully because of practice on a model fabricat-
ed with a 3D printer prior to the operation [117].

Furthermore, models made using 3D printers can be used as 
surgical guides at operating room. Such guides can help with the 
accurate site of surgical tools at incision and transfixion loca-
tions [83,118-122]. Surgical guides previously manually manu-
factured by humans, took a long time to make and presented 
difficulties in the manufacture of accurate shapes that corre-
sponded to the patient’s physical and anatomical shape. It is im-
portant to use the correct surgical guide for different surgical ar-
eas, particularly for operations that involve blood vessels.

Tissue and organ regeneration
A number of studies on artificial tissues and organs using 3D 

bio-printing technology have been undertaken not only for 
temporary relief and maintaining function, which have been 
performed previously, but also for the purpose of tissue repair 
and regeneration [123] (Table 3). A growth factor that can aug-
ment cell differentiation can be printed together with scaffold or 
biomaterials and cells can be printed directly.

Bone
Among the regeneration of tissues, the most expected and 

fastest area of application of 3D printers is with bone. Since bone 
consists of a simpler formation than other tissues and the defect 
zone is mostly non-uniform shaped, a number of studies have 
been conducted to fabricate bone using 3D printers [124-131]. 
Because bone characteristically has to withstand great loads, 
scaffolds made from ceramic and biodegradable polymers have 
been manufactured for bone regeneration applications.

A research team led by W. D. Kim fabricated a biodegradable 
PCL scaffold using an extrusion method for bone tissue engi-
neering [131,131].

Cartilage
To regenerate cartilage tissue, a scaffold is needed to grow 

chondrocytes or stem cells. For this purpose, a scaffold was fab-
ricated using polymer compounds or natural polymers. The 
fabrication employed a 3D bio-printer extrusion method. Some 
of the representative models are regenHU (Villaz-St-Pierre, Swit-
zerland), Fab@Home, and EnvisionTEC (Gladbeck, Germany) 
[132-135].

Blood vessel
Blood vessel must have elasticity and durability that can en-

dure repeated expansion and contraction. Artificial blood ves-
sels have been developed using polymer compounds. However, 
due to problems such as thrombosis and stenosis, studies on the 
use of biodegradable polymers have been conducted [136,137]. 
A scaffold manufactured via electrospinning using various 
methods has the advantage of having the characteristics of ECM 
analogs due to its porosity; however, its pore size is tiny and con-
nectivity is low [138-140].

Norotte et al. [78] produced the vascular structure of 300–500 
um using extrusion method after making the multicellular spher-
oids with human umbilical vein smooth muscle cells and human 
skin fibroblasts. Marga et al. [141] manufactured the vessel struc-
ture using NovoGen MMX BioprinterTM of Organovo (San Di-
ego, CA, USA) with aortic smooth muscle cells (HASMCs), hu-
man aortic endothelial cells and human dermal fibroblasts.
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Skin
Skin tissue damaged due to burns or injuries can be treated 

using an autograft of the patient’s own skin, a homograft or al-
lograft, which involves the transplantation of donor skin, or a 
heterograft or xenograft, which involves the transplantation of 
animal skin. However, the above methods have drawbacks due 
to immune rejection. To overcome this limitation, studies have 
been conducted on the fabrication of artificial skin [142-144] as 
well as skin regeneration using 3D bio-printers instead of artifi-
cial skin.

The Wake Forest Institute for Regenerative Medicine devel-
oped a direct printing technology for skin cells using inkjet 
technology. Effective treatment was achieved via printing on the 
skin wounds of a pig using fibroblasts and keratinocytes [145].

Ear
An artificial ear was fabricated by a joint research team from 

Princeton University and Johns Hopkins University using a sy-
ringe extrusion 3D printer. The shape of the ear was printed us-
ing chondrocyte-containing alginate hydrogel. The device used 
was a Fab@Home 3D printer. After printing, a coil antenna was 
embedded to detect wireless signals using silver nanoparticles 
(AgNP). Sound waves were received through the antenna [146].

Liver
An artificial liver was manufactured by the Organovo Com-

pany through the development of a liver cell cartridge in a 3D 
printer.

To do this, an extrusion method was employed using the No-
vogen device. The artificial liver consisted of a number of cell 
types including human liver cells. It was manufactured in 20 
layers and had the same cell density as that of native tissue. The 
new liver tissue functioned like a real liver for 40 days it pro-
duced albumin, transferrin, and fibrinogen. Such manufactured 
liver tissue can be expected to be used in medical research, such 
as the testing of new drugs [79,147].

Bladder
Anthony Atala of the Wake Forest Institute for Regenerative 

Medicine regenerated a bladder for a patient with a 3D bio-
printer using an extrusion method [148,149].

Half of the damaged human bladder was cut, normal cells 
were collected, and the cells were cultured for 7 to 10 days to yield 
a sufficient number of cells. The cultured cells were injected into 
a bladder-shaped scaffold manufactured using collagen. Then, 
the form was cultured in a bioreactor for about seven weeks and 
sutured to the other half of the patient’s bladder to restore some 
of its function.

Trachea
The University of Michigan fabricated a lung splint using bio-

absorbable powder material and a powder bed fusion method 
and transplanted it to the bronchi of an 18-month old child who 
suffered from shortness of breath. A model that was matched to 
the child’s airway structure was fabricated and a splint was man-
ufactured using 3D printing technology. The splint was fabricat-
ed using a 3D printer (EOS P 100) via the SLS method using 
96% PCL and 4% HA. The splint wrapped around the external 
sides of the airways and ensured a breathing space, resulting in 
improvement to the child’s respiration [150].

CONCLUSION

A large number of studies on 3D bio-printing technology 
have been conducted in tissue engineering and regenerative 
medicine. It has been widely applied in the fabrication of medi-
cal equipment such as medical assistive devices and surgical 
guides. Although in the early stages, this technology has opened 
new possibilities for the regeneration of tissues and organs.

The demand for artificial organs is steadily increasing because 
of an aging society which is a product of medical advancements 
and improvements. The supply of human organs cannot keep 
pace with the demand for them. This problem can be resolved 
through the use 3D bio-printing technology, which has proved 
the potential but still has a long way to go. Although many chal-
lenges must still be overcome in organ printing, a variety of alter-
natives have already been proposed by a number of researchers.

Medical technology and organ regeneration using 3D print-
ing technology is expected to improve the quality of life for our 
aging society.
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