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Abstract

Leishmania spp. depend on effective macrophage infection to establish and develop in mammalian hosts. Both

metacyclic promastigotes and amastigotes are able to infect host cells, and thus they rely on several ligands that,
when recognized by macrophage receptors, mediate parasite uptake. During macrophage primary infection with
metacyclic forms from the insect vector and during amastigote dissemination via macrophage rupture, both infective
stages have to cope with the host extracellular microenvironment, including extracellular matrix molecules.
Glycosaminoglycans are abundant in the extracellular matrix and many of these molecules are able to interact with
the parasite and the host cell, mediating positive and negative effects for the infection, depending on their structure
and/or location. In addition, glycosaminoglycans are present at the surface of macrophages as proteoglycans, playing
important roles for parasite recognition and uptake. In this review, we discuss glycosaminoglycans in the context of
Leishmania infection as well as the possible applications of the current knowledge regarding these molecules for the

development of new therapeutic strategies to control parasite dissemination.
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Background

Innate immune cells express pattern recognition recep-
tors (PRRs) on their surface, and they recognize
pathogen-associated molecular patterns (PAMPs). Im-
portant examples of such receptors are dectin receptors,
complement receptors (CR), mannose receptors (MR),
scavenger receptors and Toll-like receptors (TLR). Sev-
eral pathogens use these receptors as a route for cellular
infection including protozoan parasites of the genus
Leishmania. These parasites are the causative agents of
leishmaniasis, a vector-transmitted disease endemic in
several countries, especially in tropical and subtropical
regions [1].

Leishmania parasites have as their main target cell the
macrophage, a phagocytic cell that richly expresses PRRs.
Infective forms of promastigotes and amastigotes of Leish-
mania use phagocytic PRRs as a way to interact with and
infect host macrophages [2]. In addition, this interaction is
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capable of differentially activate PRRs to modulate and
evade the immune response [3]. On its surface, Leishmania
parasites express molecules that promote their binding to
macrophages. One of them, glycoprotein 63 (gp63), is
responsible for cleaving the C3b complement protein in
iC3b [4], which opsonizes and binds the promastigote to
the complement receptor 1 (CR1) [5]. Gp63 can also
directly bind to fibronectin receptors [6]. Another surface
molecule that induces Leishmania phagocytosis is the
lipophosphoglycan (LPG), which binds to mannose recep-
tors in macrophages [7] and complement receptor 3 (CR3)
[8]. In Leishmania infantum chagasi, non-virulent promas-
tigotes have been reported to bind to CR3 and mannose
receptor, whereas metacyclic forms bind primarily to CR3.
The entry via CR3 promotes a delay in phagolysosomal
fusion, promoting parasitic survival [2]. Regarding amasti-
gotes, an important route of entry into the cell is through
IgG opsonization via Fcy receptors [9] and through the
exposure of phosphatidylserine (PS). Amastigote forms
expose PS on their surface, mimicking apoptotic bodies,
which leads to the release of TGEF-p by infected
macrophages leading to a decrease in nitric oxide (NO)
production [10]. Additionally, macrophage recognition of
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PS molecules induces tethered and bystander macropinocy-
tic uptake of particles, which leads to amastigote internal-
ization and infection establishment [10]. This mechanism is
also important for metacyclic primary infection, but in this
case, the parasites are actually suffering apoptosis, and this
is important for phagocyte deactivation and the establish-
ment of live, PS-negative metacyclic promastigotes, includ-
ing in natural transmission [11].

There are also PRRs that Leishmania uses to modulate
infection and/or evade the immune response, for
example, Toll-like receptors [3]. Recently, Dos Santos et
al. [12] demonstrated that the activation of human
nucleotide-binding oligomerization domain containing 2
(NOD2)-like receptor (NLR) is important for the intra-
cellular recognition and control of New World Leish-
mania spp., etiological agents of American tegumentary
teishmaniasis. In addition to receptor activation, Leish-
mania has several mechanisms of immune response
evasion. The transformation into the intracellular amas-
tigote is a form of resistance to the immune response,
since it is more resistant to the low pH of the parasito-
phorous vacuole, oxygen peroxide, nitric oxide and lyso-
somal enzymes. Gp63 and LPG mediate mechanisms
already described, where both have complementary
actions. After endocytosis, LPG delays the fusion of the
phagosome with the lysosome and gp63 inhibits the
activation of lysosomal enzymes, favoring the survival of
Leishmania [13-15]. In addition, both molecules are
capable to inhibit the oxidative burst [16, 17]. Leish-
mania infection leads to the interruption of several
macrophage effector mechanisms, such as reduction of
the microbicidal capacity by inactivation of the enzyme
inducible nitric oxide synthase (iNOS) and oxidative
system [18]. PGE2 and TGE-p release block the function
of macrophages [19]. The C3b cleavage in iC3b by
Factor I, induced by gp63, helps in the avoidance of the
effector actions of the complement system [19]. There
are also evasion mechanisms of the adaptive immunity,
such as induction of decreased expression of MHC class
IT molecules [20], inhibition of antigen loading and pro-
cessing, and induction of Th2 response by Lack antigen.

It has also been shown that L. amazonensis promasti-
gotes possess ecto-ATPases, which have been related as
virulence factors of the parasite. During tissue injury,
release of ATP to the extracellular medium occurs, indu-
cing the production of inflammatory cytokines such as
IL-12 and TNF-a. These ecto-ATPases degrade ATP in
ADP and later in AMP. This is converted into adenosine
by CD73, which has an anti-inflammatory role in the
infection by decreasing the production of inflammatory
cytokines and stimulating IL-10 release [21, 22].

Although several different receptors and ligands play
major roles in Leishmania/macrophage interactions,
usually the infection is not completely abrogated by the
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blockage of one or some of these mechanisms of infec-
tion. This indicates that there are other players that
have not been fully identified yet, influencing the infect-
ive process. In studies of parasite/host relationship, it
has been demonstrated that proteoglycans and glycos-
aminoglycans are also involved in modulating macro-
phage infection by the promastigotes and amastigotes
of Leishmania spp. as well as modulating the infected
host cell itself [23-25].

Proteoglycans

Proteoglycans (PGs) are a heterogeneous group of glyco-
conjugates widely distributed in animal tissues, from the
earliest to the most recent phyla [26]. All PGs identified
are composed of glycosaminoglycan chains (GAGs)
covalently attached to a protein skeleton [27, 28]. These
macromolecules present a great structural diversity due
to the many possibilities of polysaccharide and protein
binding, different proteins involved, and GAGs’ struc-
tural diversity. This characteristic contributes to the
involvement of PGs in a wide variety of biological func-
tions [29, 30]. The PG superfamily contains more than
thirty known molecules. They act as tissue organizers,
influence the growth and maturation of specialized
tissue cells, function as biological filters, modulate the
activity of growth factors, modulate inflammatory
responses, regulate collagen fibrillogenesis, affect cell
invasion and growth and are involved in host-parasite
relationships [28, 31-33].

With the exception of hyaluronic acid (HA) all other
GAGs are synthesized as PGs. This process begins in the
rough endoplasmic reticulum with the addition of a
xylose residue to the amino acids serine or threonine in
the protein skeleton [30, 34]. Then, specific transferases
of the cis and median portions of the Golgi complex add
two units of galactose and one of glucuronic acid, form-
ing the binding tetrasaccharide, common to most GAGs
[35, 36]. In the case of keratan sulfate (KS), GAG chains
may be attached to the protein via O- or N-glycosidic
N-acetyl-galactosamine (GalNac) or N-acetyl-glucosa-
mine (GIcNAc) to the serine or asparagine/threonine
residues, respectively. The binding of the tetrasaccharide
functions as an initiator sequence for the polymerization
of the GAG chain in the biosynthesis of chondroitin
sulfate, dermatan sulfate, heparan sulfate and heparin
[35, 36]. Chain elongation occurs through the
alternating addition of hexosamine and hexuronic acid
by  membrane-specific  glycosyltransferases.  After
polymerization, the GAG chain is modified by the action
of epimerases, that determines which glucuronic acid
units will be transformed into iduronic acid, and by sul-
fotransferases, which determine the degree of sulfation
of the final structure that is often transported to the cell
surface or extracellular matrix [27, 31-33].
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Classification of proteoglycans

PGs can be classified according to the following param-
eters: type of GAG, cell location and homology of their
protein skeleton [32]. The first parameter is outdated,
since the same type of PG can present different types of
GAG chains. Here we briefly describe the different
families of PGs classifying them according their cellular
or extracellular location.

Extracellular proteoglycans

Versican, aggrecan, neurocan and brevican are PGs
secreted and deposited in the extracellular matrix and
play a very important role filling intercellular spaces
and keeping cells and tissues together. These PGs
interact with hyaluronic acid (HA) and lectins, also
known as hyalectans [32]. The common characteristic
is the presence of three well-defined domains: the
N-terminal domain, which binds hyaluronic acid; the
repetitive central domain, which contains GAG chains
of the type chondroitin sulfate (CS); and KS, and the
C-terminal domain, which binds to lectins [37]. These
features allow these PGs to function as molecular
bridges between matrix components and the cell
surface [28, 31-34].

Small leucine-rich PGs are typically characterized by
having core proteins with leucine rich sequences. The
protein skeleton of these PGs has three distinct regions:
an amino-terminal containing GAGs or L-tyrosine sul-
fate, a central domain containing leucine-rich repeating
sequences bounded by residues of L-cysteine and a
carboxy-terminal region that is not well characterized
[28]. To date, at least nine families have been character-
ized, based on their genomic and protein organization.
As examples we have decorin and biglycan, both PGs
containing chondroitin sulfate and/or dermatan sulfate
chains [31, 33].

Facultative PGs do not have structural characteris-
tics that include them as members of the families
previously described. In addition, they can be found
as an exclusive constituent of proteins expressed in a
GAG-free chain form. Collagen 2 (IX), testican and
apican are examples of PGs of this group [31-33].

Basement membrane PGs are extracellular PGs
found in the basal lamina. They form a thin, flexible
layer of specialized extracellular matrix located
under all cell layers [32]. In the pulmonary alveoli
and renal glomeruli, the basal membrane functions
as a selective filter but it can have different
functions in other organs [38]. Base membrane PGs
present a variable composition among the tissues,
but the presence of collagen type IV, laminin and at
least one type of PGs from other families is common
[31-33].
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Proteoglycans of cytoplasmic granules

PGs can be found inside cytoplasmic granules, such as
serglycin which is a constituent of mast cells, neutro-
phils and endothelial cells granules. These PGs are
important for the binding and storage of proteases
within the secretory cytoplasmic granules. They are
involved with inflammatory and immune responses.
Their nomenclature depends on the protein chain and
the number of repetitive sequences of L-serine-L-glycine
[31-33].

Cell surface proteoglycans

All processes of cell communication and interaction,
both with other cells or extracellular matrix compo-
nents, can be attributed, at least in part, to the surface
PGs. Most animal cells have on their surface PGs that
may contain mostly heparan sulfate chains, but also
chondroitin sulfate and dermatan sulfate [39]. Associ-
ation with cell surfaces can occur in several ways:
directly through non-covalent interactions between the
GAG chain or the protein chain with binding sites
present on the cell membrane; by intercalation of the
PG protein chain in the membrane; by the anchoring
the PG to the membrane via glycosylphosphatidylinosi-
tol (GPI) lipid anchors [40, 41] or indirectly involving
other matrix macromolecules such as laminin or fibro-
nectin, which are capable of binding PG and integrins
[31-33, 42]. Glypicans, are GPI anchored heparan
sulfate-based PGs which has been identified in several
cell types [37, 39]. Syndecans are PGs inserted into the
plasma membrane through a hydrophobic domain,
which are mainly found in epithelial cells. Syndecans 1
and 3 present hybrid chondroitin sulfate and heparan
sulfate chains whereas syndecans 2 and 4 contain only
heparan sulfate. Among the functions attributed to this
family of PGs, most are related to the ability to
recognize extracellular molecules since syndecans bind
to various molecules, such as collagens type I to V, fibro-
nectin, thrombospondin, tenascin and laminin [39]. In
addition, they bind to molecules that are associated with
cell growth such as bFGF, VEGE, HGF and some cyto-
kines [34, 43-47]. Other PGs, also integral membrane
molecules are: CD44, betaglycan (TGF-growth factor
receptor), transferrin receptor, invariant chain PGs,
integrin 51 and thrombomodulin [31-33, 42, 48].

Glycosaminoglycans

Glycosaminoglycans (GAGs) are a complex family of
linear polysaccharides, consisting of repeating disac-
charide units of hexosamine (N-acetyl-glucosamine or
N-acetyl-galactosamine) attached through O-glycosidic
linkage to a hexuronic acid (glucuronic acid or iduronic
acid) or to galactose [37]. Hexuronic acid residues may
exhibit O-sulfation at carbon 2, while galactose may be
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6-O-sulfated. However, hexosamine may exhibit O-sul-
fation at carbons 4 and/or 6 and also N-sulfation [37].
The structure of different GAGs is depicted in Fig. 1.
Sulfate groups, together with the carboxylic acids of
uronic acids, attribute to these molecules a high density
of negative charges. In recent years, studies of polysac-
charides, especially those related to their biological
activities, have been attracting increasing interest. The
applicability of this group of molecules in different
fields, such as health, industry and agriculture, is due to
structural characteristics, often species-specific, associ-
ated with heterogeneity in size, monosaccharide com-
position and presence of different negatively charged
groups, such as sulfates and carboxylates [42, 49].
Table 1 summarizes studies on different GAGs and
their main functions [50-73].

Hyaluronic acid (HA)

HA has a simple structural composition, being fundamental
in the structural organization of the extracellular matrix. Its
disaccharide units, composed of N-acetylglucosamine and
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glucuronic acid are not sulfated, therefore the anionic prop-
erties of HA are given by its carboxyl groups [37]. Unlike
other GAGs, HA is not synthesized covalently linked to the
protein chain, and is therefore classified simply as GAG
[74]. They form high molecular weight polymers ranging
from 106 to 107 kDa, being important components of the
extracellular matrix, where they interact non-covalently
with the PGs. They are particularly abundant in the con-
nective tissue, dermis, smooth muscle, lung, lamina propria
of the mucosa and adventitious layer that surrounds the
blood vessels [42, 49, 74].

Chondroitin sulfate (CS)/dermatan sulfate (DS)

CS and DS are considered as GAGs belonging to the
same family because they present as disaccharide units
an N-acetylgalactosamine linked to a glucuronic acid in
the case of CS or to an iduronic acid in the DS case. CS
can have the sulfated N-acetylgalactosamine at the 4- or
6- positions, forming the chondroitin 4- or 6-sulfates,
respectively. DS is an isomeric form of chondrocyte
4-sulfate where, in most of its disaccharide units, we find
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Table 1 References regarding the physiological functions of glycosaminoglycans in animal cells and tissues

Physiological Heparin Heparan sulfate Chondroitin sulfate Dermatan sulfate Hyaluronic acid Keratan sulfate
function

Cell-cell/cell- - Thakar et al. [54] Milstone et al. [58] Lewandowska et al. [63]  Underhill et al. [67]  Funderburgh
matrix et al. [72]

interactions

Almeida et al. [50]
Borsig et al. [51]

Almeida et al. [50];
Thakar et al. [54]

Immune
modulation

Takemae et al. [55];
Ndonwi et al. [56]

Shworak et al. [57]

Host-pathogen
interactions

Angeletti et al. [52]

Anticoagulant  McLean et al. [53]

activities

Borsig et al. [51]

Rogerson et al. [59];
Ayres Pereira et al. [60]

Mouréo et al. [61];
Glauser et al. [62]

Nadafi et al. [64] Horton et al. [68];

Termeer et al. [69]

Leroux et al. [73]

Ndonwi et al. [56];
Fortune et al. [65]

Ofosu et al. [66] - -

Beeson et al. [70] -
Skinsnes et al. [71]

iduronic acid instead of glucuronic acid. The sulfation
pattern of these GAGs may still be very complex be-
cause, depending on the type of tissue or organism, the
disaccharide units may exhibit extra sulfation giving rise
to the disulfated disaccharide units [37, 75]. In the case
of CS, the N-acetylgalactosamine can be both sulfated at
its 4- and 6- positions whereas in DS the extra sulfation
can be at the 2-position of iduronic acid [42, 49].

Keratan sulfate (KS)

KS has disaccharide units composed of N-acetylglucosa-
mine, which can be sulfated at the position 6, and galact-
ose instead of a hexuronic acid. In addition to this
particularity, KS chains can be either O- or N-linked to
the PG chain, having as the point of attachment a serine
or asparagine/threonine residues, respectively. We can cite
two types of Keratan sulfate according to their binding to
protein core, KS type I and KS type II [37, 42, 49, 76].

Heparin (Hep) and heparan sulfate (HS)

Both Hep and HS present the glucosamine amino sugar,
which may be O-sulfated at position 6 in the case of HS
and preferably N-sulfated at the 2-position and O-sul-
fated at position 6, in the case of heparin. Regarding the
composition of hexuronic acid, it is verified that heparin
contains mainly iduronic acid, with varying amounts of
O-sulfation at position 2, whereas HS contains more
glucuronic acid, usually not sulfated. However, it is im-
portant to note that there are differences between these
two molecules. The degree of sulfation is one of the
main factors used to differentiate these two molecules.
Based on this information, it is possible to say that
heparin is composed mainly of disaccharide units of type
IdoA(2S) GIcNS(6S), while HS contains a small propor-
tion of this disaccharide, being mainly characterized by
having a greater variety in composition of their disac-
charide units. However, these are less sulfated than those
present in heparin. It is important to note that heparin
can be isolated from different animal tissues, including
vertebrates or invertebrates [26, 77]. In mammals, it is
synthesized and stored in cytoplasmic granules of mast

cells, being released as free non-protein bound mole-
cules after activation and degranulation of mast cells, in
events associated with the immune system. HS is synthe-
sized and expressed on the cell surface of a wide variety
of cell types, and can be secreted either in the form of
free GAGs or PGs [34, 48, 49, 78, 79].

Occurrence and biological activities of
glycosaminoglycans

The presence of GAGs in vertebrate and invertebrate
animal cells and tissues is already well described in the
literature [31, 33, 80]. Research has shown that these
GAGs are involved in several biological functions such
as cell-cell and cell-to-matrix interactions [33, 81],
immobilization of cytokines and chemokines, cell adhe-
sion and in the immune response of different types of
organisms [81-84]. These molecules also play a role in
host-parasite interactions [85], in addition to the known
remarkable anticoagulant activities of these molecules
[80]. Among these biological activities we will focus on
host-parasite interaction. In several cases, the ability of
pathogenic microorganisms to bind to the surface of
host cells, define the course of infection. In this sense, a
wide variety of bacteria, viruses and parasites, including
intracellular and extracellular ones, was identified, which
require interaction with host cell heparan sulfate mole-
cules via a variety of HS receptors to establish their
infections [85-87].

In recent years, studies of GAGs, especially those related
to their biological activities, have been attracting signifi-
cant interest. The applicability of this group of molecules
in distinct fields, such as health sciences, is due to struc-
tural characteristics, often species-specific, associated with
size heterogeneity, monosaccharide composition and the
presence of different negatively charged groups such as
sulfates and carboxylic acids [88, 89]. In recent decades,
GAG analogues have been identified, especially in marine
organisms such as the ascidian, sea cucumbers, mussels,
crustaceans and mollusks [29, 90]. Studies have shown
that these analogues have many biological activities [49].
GAGs were isolated and characterized as mussel heparin
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analogs with significant anticoagulant activity [90]. A
heparin analogous to the mammalian heparin was isolated
and characterized from the ascidian Styela plicata,
presenting less anticoagulant activity, although with
anti-inflammatory activity [49, 89]. In addition, the identi-
fication of a heparan sulfate-like molecule from the mol-
lusk Nodipecten nodosus, revealed a molecule with potent
anticoagulant activity, capable of inhibiting thrombus
formation in ischemic diseases [91] A dermatan sulfate
with a high degree of sulfation was also identified and
characterized in Styela plicata and Phallusia nigra ascid-
ian, with specific anticoagulant activities. In addition, the
development of ascidian neural cells has also been associ-
ated with these GAGs [92, 93]. Furthermore, chondroitin
sulfate analogues from sea cucumbers Ludwigothurea
grisea, have antithrombotic activity, in addition to inhibit-
ing the binding of P-selectin to leukocytes [94, 95].

An important aspect to consider when proposing the
therapeutic use of natural compounds of animal origin is
the risk of contamination with pathogens. For example, the
association of prion mammalian proteins with transmissible
spongiform encephalopathy has recently restricted the use
of bovine heparin in Europe, Japan and the USA [96].
Currently, commercial heparin is obtained exclusively from
swine tissues and the risk of contamination is still present.
Therefore, when considering therapeutic strategies using
mammalian GAGs, it is important to take account their
side effects and the possibility of contamination with
pathogens. In this context, the search for alternative analog
GAG compounds obtained from non-mammalian animal
sources and having similar biological activities, becomes
extremely relevant.

Glycosaminoglycans and Leishmania infection
Glycoconjugates and Leishmania infection

Natural Leishmania infection involves several differenti-
ation steps, culminating with the development of infective
metacyclic promastigotes that migrate to the sand fly
anterior midgut [97, 98]. The parasites remain there
embedded in a filamentous proteophosphoglycan matrix
called promastigote secretory gel (PSG) that jams the food
flow blocking a new blood intake. This is fundamental for
the transmission, since the vector needs to regurgitate the
content of the gut to take a new blood meal, delivering
parasites, saliva and PSG intradermally to the mammalian
host [99-101]. Actually, Leishmania parasites are prone to
produce phosphoglycan-containing molecules  with
variably phosphodisaccharide repetitions, predominantly
(Gal-Man-PO,). These molecules include the lipopho-
sphoglycan (LPG), PSG and proteophosphoglycans [102].
Whereas LPG is a membrane-anchored molecule that
functions as a virulence factor, being recognized by
complement receptors in phagocytic cells [8], PSG is
secreted and seems to be involved in the modulation of
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the microenvironment at very early stages post transmis-
sion. PSG is actively expelled by infected sand flies during
the blood meal and its presence exacerbates cutaneous
infection in both resistant and susceptible mice strains
[100, 101]. This effect seems to be due to the chemoat-
traction of macrophages and neutrophils to the lesion site,
providing host cells for the establishment of the infection
[103]. In addition, PSG is able to reduce the leishmanicidal
activity of M1 macrophages, through induction of arginase
I expression in these cells and thus diminishing nitric
oxide production [103]. Combined, the consequences of
PSG promote the development of chronic Leishmania
infections, even in resistant mice strains, in a
LPG-independent and proteophosphoglycan-dependent
manner [100]. This mechanism operates in a large variety
of Leishmania species such as L. mexicana, several strains
of L. major, L. amazonensis, L. braziliensis, L. aethiopica,
L. infantum and L. donovani [100]. Although the effects of
PSG seem to be as important as the sand fly saliva to
enhance and modulate infection, the receptors involved
on its recognition in both parasite and host cells are
largely unknown.

Leishmania parasites and other protozoan parasites
possess immunogenic glycoconjugates at their surface.
Most of these molecules are glycosylphosphatidylinositol
(GPI) anchored molecules, similar to glypicans, although
they are not considered GAGs due to differences in
structure and synthesis [104]. These molecules are
collectively known as glycoinositolphospholipds (GIPLs)
and have a basic structure of Manal-4GlcN linked to an
alkyl-acylglycerol through a phosphatidylinositol residue
[105]. Polymorphic and biochemical variations led to the
classification of these molecules in three groups: Type I, II
and III GIPLs. Type I GIPLs are composed of an
al,6-mannose residue linked to Manal-4GlcN motif. This
type of GIPL is observed in Old World Leishmania
species such as L. donovani, L. aethiopica and L. tropica
[106]. Type II GIPL presents an al,3-mannose residue
linked to Manal-4GlcN motif and is structurally associ-
ated to LPG molecules. It is widely observed in Old World
and New World Leishmania species such as L. major, L.
panamensis and L. mexicana [107-109]. Type III GIPLs
are heterogeneous molecules with mixed structural
characteristics of type I, type II and unclassified GIPLs
[109]. GIPLs are highly immunogenic and leishmaniasis
patients are usually positive for specific antibodies
anti-GIPL, although there is no described correlation with
protection. This is particularly demonstrated in L. major--
infected patients [104], and this characteristic is being
explored in a vaccine-based therapeutic strategy based on
aGal-containing neoglycoproteins [110]. These molecules
act as virulence factors since they seem to negatively
regulate macrophage activity as observed in L. major, L.
braziliensis and L. infantum infections [111].
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Once transmitted by an infected sand fly, parasites have
to cope with the host microenvironment, especially the
extracellular environment, which is not their natural
residence. Flagellate promastigotes and amastigotes, the
infective stages of the parasite, are deposited in the lesion
site extracellular matrix, respectively during the blood
meal and macrophage rupture. During these events,
parasites interact with extracellular matrix (ECM)
proteins, sugars and growth factors [112-114] and these
interactions are important for infection establishment. In
addition, macrophages and other host cells interact with
ECM contents and these interactions have positive and
negative effects for the infection [115]. In this context,
GAGs are interesting molecules because they are able to
interact with parasites when encountered in ECM and at
the surface of host cells modulating parasite growth and
lesion development [115]. Parasite interaction with surface
PGs or exogenous GAGs is depicted in Fig. 2 and is
discussed in this review. GAGs’ interactions with parasites
were first evaluated by treating L. donovani promastigotes
with hyaluronidase or hyaluronic acid (HA) to observe in
vitro growth, viability and motility. It was observed that
hyaluronic acid treatment induced marked reduction of
promastigote mobility, without evidence of toxicity,
suggesting that the presence of this molecule can facilitate
parasite uptake by host cells. However, at that point there
was no evidence of direct binding of HA to the surface of
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promastigotes [116]. It has been shown that heparin is
capable of modulating protein kinase activity, both posi-
tively and negatively [25]. Since heparin can be present in
the lesion site and be produced by resident leukocytes
involved in inflammatory responses such as mast cells, its
effect on promastigotes of L. donovani was observed. Hep-
arin is able to inhibit protein kinase activity of promasti-
gotes, decreasing the amount of phosphorylated proteins.
This activity is dependent on heparin-binding to promasti-
gotes via specific receptors, since dermatan sulfate (DS),
chondroitin sulfate (CS) or HA were not capable of
competing with heparin for its receptor [25]. Direct effects
for parasite infectivity of protein kinase inhibition due to
heparin-binding was not observed. The heparin receptor
of the parasite is a surface protein, directed to the plasma
membrane from an intracellular stored pool, mainly
expressed at the flagellum and flagellar pocket [23]. Its
specificity depends on the size of the oligosaccharide
chain, with at least 8-16 monosaccharide repetitions
being necessary for proper binding. The level of sulfation
is also important for promastigote binding to GAGs.
Complete desulfation of octa-, dodeca- and hexadecasac-
charides almost completely abrogates promastigote
binding to these GAGs. On the other hand, oversulfation
of DS is able to promote promastigote binding to this
GAG [23]. In a more detailed work, Fatoux-Ardore et al.
[113] evaluated 24 different strains from six different
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t\gf Heparan Sulfate Proteoglycans

‘ Heparin binding protein
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Fig. 2 Glycosaminoglycans as a therapeutic strategy. a Heparin-binding protein from Leishmania spp. recognizes and binds to glycosaminoglycans
(GAGs) in the surface of macrophages. This recognition is important for parasite binding to and infection of macrophages. b Exogenous GAGs may
interfere with this interaction, decreasing macrophage infection and parasite dissemination/survival
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species of Leishmania for their interactions with ECM
GAGs and proteins. They analyzed Old and New World
species that cause cutaneous, mucocutaneous or visceral
leishmaniasis. The capacity of promastigotes to bind to
GAGs was assessed by surface plasmon resonance
imaging and it was observed that most strains tested are
capable to bind to high molecular weight heparin, heparan
sulfate, 2-O, 6-O and N-desulfated heparin, whereas less
than 12% of the strains tested were capable to bind to
dermatan and chondroitin sulfate. Binding to low and
high MW hyaluronan was observed by most species
tested. However, few parasite strains were able to bind to
these molecules, with the exception of L. donovani
promastigotes. It is interesting to observe that several
strains that were able to bind to heparin do not bind to
HS [113]. This can be due to the level of sulfation
observed in these molecules and is relevant for possible
correlations between heparin-binding ability of promasti-
gotes and the HS proteoglycan-dependent macrophage
infections. One possible role for GAGs interactions with
Leishmania parasites is that these molecules are able to
induce the activity of cysteine proteinases. Parasites in the
ECM prior to host cell engulfment also interact with ECM
proteins and can co-opt some of these molecules for their
growth, survival and infection. GAGs can form ternary
complexes with cruzipain and cathepsin K and B,
increasing kininogen and collagen proteolytic cleavage
[117-120]. GP63, which is the main surface protease of
Leishmania parasites, is also important for ECM cleavage
[112]. GAGs also modulate cysteine proteinase B (CPB),
an enzyme important for L. mexicana infection, nutrition
and immune system escape [121]. Heparan, heparin and
heparin-like GAGs were able to modulate CPB activity.
This modulation can be positive and negative since
heparin at concentrations below 2 mM can potentiate the
production of mature CPB whereas at concentrations
above 20 mM these molecules inhibit this conversion
[121]. It is possible to conclude that the interaction with
host cells and the lower concentration of GAGs associated
with proteoglycans could induce CPB activation, contrib-
uting to the infectious process, while the higher concen-
trations of free chains of GAGs at the ECM at the
inflammatory site of the infection could contribute to CPB
inhibition and parasite control. ECM GAGs can also have
positive effects for the infection, stimulating parasite
survival. Intracellular amastigote forms of L. major depend
on the uptake and degradation of ECMs GAGs by macro-
phages [115]. N-acetylglucosamine acetyltransferase
(GNAT) deficient L. major amastigotes are not capable to
proliferate inside in vitro cultured macrophages, even in
the presence of N-acetylglucosamine (GIcNAc). Amasti-
gote proliferation is only efficient in vivo or in vitro when
macrophages are cultured in media enriched with HA
which is a desulfated GIcNAc-rich GAG abundant in the
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ECM [115]. It was observed that HA is engulfed by
macrophages, transported to the parasitophorous vacuoles
and degraded. The GIcNAc residues are used by the
parasite to resume production of glycoconjugates, includ-
ing plasma membrane glycolipids and proteoglycans
including lipophosphoglycan and GP63, important viru-
lence factors [115].

Modulation of Leishmania/macrophage interaction by
glycosaminoglycans

Direct binding of Leishmania parasites with cell surface
proteoglycans has been shown to play a role for the infec-
tion of L. amazonensis, L. major, L. donovani, L. infantum
chagasi, L. mexicana and L. brasiliensis [24, 122-125].
Most of the reports suggest a role for the infection of
mammalian host cells, although there is some evidence
indicating that receptors at the surface of L. braziliensis
are able to recognize plasma membrane HS in Lulo cells,
which is a cell line derived from Lutzomyia longipalpis gut
cells [126]. This interaction could cooperate with the
lectin-dependent binding of promastigotes promoting
adhesion to the sand fly gut.

Receptors of the parasite involved in the recognition of
GAGs are collectively called heparin-binding proteins
(HPB) although most of them are able to recognize several
GAGs, especially highly sulfated heparin-like molecules
such as heparan sulfate (HS). They were first enrolled as
virulence factors for L. donovani parasites, mediating amas-
tigote and promastigote macrophage infections [23-25].
Only stationary-phase promastigotes are able to express
these proteins, which is consistent with the presence of
infective promastigotes at this phase of the axenic culture
[23, 24]. Surprisingly, pre-incubating promastigotes with
heparin enhanced macrophage infection suggesting that
heparin could provide a bridge between the parasite HPB
and macrophage heparin receptors [24].

Leishmania amazonensis amastigotes have a high affin-
ity for heparin and especially for HS proteoglycans at the
surface of host cells. Mammalian host cells treated with
heparitinase lose their ability to bind to L. amazonensis
amastigotes. Differently to what happens in L. donovani
infection, addition of exogenous heparin blocked amasti-
gote adherence to non-myeloid mammalian cells such as
CHO, HEp-2 and NIH-3T3 cells. In addition, efficient
inhibition of amastigote-to-macrophage binding was
obtained by pre-treating the parasite prior to their
addition to macrophage cultures [125]. However, HS
efficiently inhibits L. amazonensis amastigote binding to
macrophages. Amastigotes are incapable of binding to
mutant CHO cells that do not produce GAGs or do not
synthesize specifically HS. CHO cells that express
undersulfated HS are also less capable of binding to
amastigote forms, even when these cells express similar
amounts of sulfated proteoglycans due to overexpression
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of chondroitin sulfate [125]. Amastigotes of L. major
express a similar HBP, being the receptor specific to HS or
heparin-like GAGs [125]. This data is interesting because
HS is more relevant for amastigote/macrophage interac-
tions since this GAG is abundant at the membrane of
macrophages. However, the effect of HS or heparin block-
ing macrophage infection is partial (ranging from 40-60%),
suggesting cooperation with additional mechanisms for
macrophage infection [125]. It was demonstrated that
proteins with heparin-affinity were expressed only at the
flagellum and the flagellar pocket of L. donovani [23] but L.
braziliensis promastigotes express HBP at the plasma
membrane, although HBP is more abundant and have
higher activity at the flagellar fraction of the parasite
(123, 124]. Leishmania infantum chagasi promastigotes
express HBP at the plasma membrane, flagellum and
flagellar pocket. It seems that these proteins are also
stored inside the parasite cell, since they could be de-
tected on several intracellular compartments such as
the nucleus, mitochondria and kinetoplast. Polyclonal
anti-HBP antibodies were not able to block
HBP-dependent infection in vitro [123, 124]. This may
be due to secondary opsonization. The presence of hep-
arin was able to decrease promastigote internalization
by macrophages, but not adhesion [124]. This suggests
that for L. infantum chagasi HBP may play a role as a
phagocytic ligand.

Glycosaminoglycan-based therapeutic strategies

It is possible that HBP are canonical proteins involved in
the invasion of host cells by protozoan parasites, particu-
larly trypanosomatids. Trypanosoma cruzi, the etiological
agent of Chagas disease expresses a HBP with affinity for
HS and heparin. These proteins are expressed by trypo-
mastigote and amastigote forms and are involved with
cardiomyocyte infection [127, 128]. It was observed that
heparin and HS effectively inhibit cardiomyocyte
infection, but not keratan sulfate, dermatan sulfate or
N-acetylated HS [128], demonstrating the specificity of
the interaction, as well as the similarities to the HBP
expressed by Leishmania parasites. Although several
reports demonstrated the relevance of HBP-dependent
parasite infection there is no evidence that this
host-parasite interplay can be explored as a therapeutic
target. HBP-dependent infection in vitro is successfully
inhibited with HS, heparin and heparin-like molecules,
which place these molecules as possible compounds
capable to diminish parasite invasion and subsequent
infection dissemination. Usually, the activity of GAGs as
inhibitors of Leishmania infection depends on the number
and type of saccharide units, sulfation of the molecule and
protein interactions [23, 24, 123, 125]. In addition, it is
necessary to evaluate possible adverse effects of HBP
natural competitors, such as heparin. The anticoagulant
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activity of heparin can be detrimental to the host even
when administered locally, since it may cause parasite
dissemination and extensive bleeding. HS, which has an
overall decreased but existent ability to inhibit HBP [125],
has other features to be considered, such as cost. One pos-
sible alternative is the heparin analogues or heparin-like
exogenous molecules derived from non-mammalian
sources (Fig. 2). Some of these molecules display less
anti-coagulant activity but remain capable to interact with
mammalian host cells, including modulating inflammatory
response [89, 129]. These molecules could be used as
antagonists of HBP, decreasing macrophage invasion and
disease progression (Fig. 2). However, the ability of these
molecules to bind to parasite HBP still needs to be
determined.

Conclusions

Study of Leishmania/glycosaminoglycans/host cell interac-
tions may be important to fully understand parasite
infection and dissemination. The characteristics of glycos-
aminoglycans, especially their low toxicity and availability
from non-mammalian sources, plus their promising effects
in modulate in vitro Leishmania infections compared to the
current treatment, make them a potential new therapeutic
strategies to control tegumentary leishmaniasis.
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