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A B S T R A C T

Light-emitting diode-based photoacoustic imaging is more compact and affordable than laser-based systems, but
it has low power and hence a high number of replicates. Here, we describe double-stage delay-multiply-and-sum
(DS-DMAS) to improve image quality collected on a LED-based scanner. DS-DMAS was evaluated experimentally
using point targets (in different laterals and depths) as well as a hair and a rabbit eye. This algorithm can
compensate for the low SNR of LED-based systems and offer better lateral resolution of about 60%, 25%, higher
contrast ratio of about 97%, 34%, and better full-width-half-maximum of about 60%, 25%, versus delay-and-
sum) and delay-multiply-and-sum, respectively. More importantly, DS-DMAS offers this using a smaller number
of frames (only 2% of all the frames). These results indicate that DS-DMAS might be a valuable tool in the
translation of LED-based and other low power PAI systems.

1. Introduction

Photoacoustic imaging (PAI) is an emerging biomedical imaging
modality also known as optoacoustic imaging. PAI uses the resolution
of the ultrasound imaging and the contrast of the pure optical imaging
to provide structural, molecular, and functional information [1–5]. In
PAI, a short laser pulse irradiates a target/sample resulting in a spa-
tially-confined temperature rise. Photoacoustic waves are generated as
a result of the thermoelastic expansion effects [6–9]. Wideband ultra-
sound transducers are used to record the photoacoustic waves. Finally,
an optical absorption distribution map (image) of the target/tissue can
be obtained using mathematical processing of this data [10–15]. PAI
has been used in tumor detection [16,17], cancer detection and staging
[18,19], ocular imaging [20,21], monitoring oxygenation in blood
vessels [22,23], molecular imaging [24], functional imaging [25,8,26],
oncology [27,28], ophthalmology [29], cardiology [30], etc.

High energy Nd:YAG lasers are most commonly used in PAI systems
but they are expensive and bulky [31–33]. To address these problems,
pulse laser diodes and light emitting diodes (LEDs) have been used in
PAI imaging systems and are most commonly used with linear-array
transducers [34–38]. While LEDs are inexpensive, compact, and multi-
wavelength, they have a low power and usually provide a low signal-to-
noise (SNR) [38]. Having a low SNR can lead to a noisy photoacoustic
image or longer scan times to collect multiple averages and optimize

SNR.
Signal processing algorithms can improve SNR in phoatoacoustic

data. The most common beamforming algorithm in linear-array PAI is
delay-and-sum (DAS). It is simple, but it also produces low quality
(resolution and contrast) images due to its blindness (considering all the
detected signals the same) [39,40]. Delay-multiply and Sum (DMAS)
can address the problems of DAS for linear-array PAI [41,42] but still
suffers from low contrast when noise is present in the dataset. In fact,
the cross correlation process of DMAS would not be able to reduce a
high level of noise. Delay-and-standard-deviation (DASD) facilitates the
detection of interventional devices for some special applications such as
needle biopsy or cardiac catheterization [43]. DMAS provides a low
resolution compared to algorithms such as minimum variance (MV)
[44,45]. This problem has been addressed in [46] for PAI using the
combination of minimum variance and DMAS. The DMAS is combined
with eigenspace minimum variance beamformer to reduce the effects of
off-axis signals in reconstructed images while the resolution is retained
[47]. A sparsity-based minumum variance is proposed to improve the
contrast of photoacoustic images, retaining the significant full-width-
half-maximum of minimum variance [45]. A nonlinear algorithm is also
introduced for photoacoustic image formation in [14]. This algorithm
imposes a low computational complexity to PAI system.

To address this problem, we recently introduced Double Stage-
DMAS (DS-DMAS) and showed that it offers higher contrast than DMAS
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[48,49]. Here, for the first time, we combine the advances of DS-DMAS
with advances in LED-based PAI and showed that DS-DMAS addresses
the low SNR inherent to the LED-based excitation. This approach was
validated with point targets, hair, and in vivo experiments. This method
offers high contrast and requires a lower number of frames. DS-DMAS
improves the temporal/spatial (lateral and axial) resolution, contrast
ratio, and reduces level of sidelobes.

2. Materials and methods

2.1. Image formation

After a laser excitation, photoacoustic waves are generated as a
result of the thermoelastic expansion effect. Linear-array transducers

Fig. 1. (a) A single line of detected photoacoustic signal (one frame). Photoacoustic signals averaged by (b) 3 frames, (c) 10 frames, (d) 50 frames, (e) 100 frames, (f)
300 frames and (g) 615 frames. The cursors show the amplitude of the noisy part of the detected signals indicating that a higher SNR would be achieved using a
higher number of frames in averaging procedure.

Fig. 2. Reconstructed photoacoustic images using the point-target phantom. DAS, DMAS, and DS-DMAS were used for the first, second, and third columns, re-
ceptively. The distance between the targets is decreased where it is (a) 778 μm, (b) 575 μm and (c) 520 μm, respectively. All the images are shown with a dynamic
range of 60 dB. 10 frames of the detected photoacoustic signals were used to have a higher SNR. Considering images shown in (b), DS-DMAS degrades the sidelobes
about 39 dB and 20 dB, compared to DAS and DMAS, respectively, which results in a darker background (better noise suppression).
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detect the propagated photoacoustic waves. Finally, using mathematics,
we can form photoacoustic images that represent an optical absorption
distribution map of the target. DAS, as the most commonly used

algorithm, is as follows:

=
=

y k x k( ) ( ),
i

M

i iDAS
1 (1)

where yDAS(k) is the output of beamformer, k is time index, M is the
number of array elements, and xi(k) and Δi are detected signals and
corresponding time delay for detector i, respectively [44,50]. The DAS
algorithm is simple to implement and can be used for real-time imaging.
This is why it is the most prevalent algorithm used in photoacoustic/
ultrasound imaging systems. However, DAS leads to low quality images
having a low resolution and high level of sidelobes due to its non-
adaptiveness. One of the algorithm introduced to address the in-
capabilities of DAS is DMAS which can be written as follows [51]:
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To overcome the dimensionally squared problem of (2), followings are
suggested in [51]:

Fig. 3. The lateral variations of the images shown in Fig. 2(b). Arrows can be
used to compare the lateral valleys obtained by DMAS and DS-DMAS (8 dB
lower than DMAS). The dotted-circle shows the lower sidelobes of DS-DMAS
(about 39 dB and 20 dB, compared to DAS and DMAS, respectively).

Fig. 4. (a) The microscopy image of the hair. Reconstructed photoacoustic images using the data generated by the hair and (b) DAS, (c) DMAS, and (d) DS-DMAS
algorithms. All images are shown with a dynamic range of 40 dB (for better evaluation). 100 frames of the detected photoacoustic signals were used to have a higher
SNR. The arrow shows the target of imaging. The dashed square shows the region we used for contrast evaluation. DS-DMAS suppresses the sidelobes about −38 dB
and −23 dB, in comparison with DAS and DMAS, respectively. (e) and (f) are the lateral and axial variations of the images, respectively. The arrows and circle show
the level of sidelobes where the superiority of DS-DMAS is proved.
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The DMAS is a non-linear algorithm and uses a correlation process to
form a high contrast photoacoustic image [41,42]. However, as shown

in previous studies [48,49,46] and in the following section, the per-
formance of DMAS is degraded at the presence of high level of imaging
noise since its correlation process does not work well when there were
high levels of noise affecting the imaging system. DMAS also has rela-
tively low resolution advantages versus MV [44,46]. One of the alter-
natives to address the degraded performance of the DMAS is DS-DMAS
[48,49], which mathematically expands DMAS (presented in (2)):

Fig. 5. Reconstructed photoacoustic images using the point-target phantom. DAS, DMAS, and DS-DMAS were used for the first, second, and third columns of the
images, respectively. All images are shown with a dynamic range of 60 dB. (a) 1 frame, (b) 3 frames, (c) 10 frames, (d) 20 frames, (e) 50 frames, and (f) 100 frames of
the detected photoacoustic signals were used for averaging. The background noise is suppressed (darker background) using a higher number of frames. The dotted-
square is used for CR calculation.

Fig. 6. CR for different number of frames used in averaging and beamforming
methods. The data related to Fig. 5 was used. The cursors show the CR levels
per a number of frames.

Fig. 7. FWHM (in −6 dB) for different number of frames used in averaging and
beamforming methods. The data related to Fig. 5 was used. The cursors show
the FWHM per a number of frames.
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where xid(k) and xjd(k) are delayed detected signals for element i and j
(xi(k−Δi) and xj(k−Δj)), respectively. The source of the low resolu-
tion and performance of DMAS, at the presence of high level of imaging
noise and noisy media, is the annotated terms in (5). All entries of the
terms in (5) are delayed, and there are summation operations between
the terms. Thus, we have DAS inside the expansion of DMAS. As stated
in [48,49], another stage of correlation process inside the DMAS can
suppress noise and artifacts unmitigated by the DMAS. The formula of
DS-DMAS can then be written as follows:

=
= = +

y k x k x k( ) ( ) ( ),
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2

1

1

it jt
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where xit and xjt are the ith and jth term shown in (5). Below, we
evaluated the performance of the DS-DMAS algorithm for LED-based
PAI system. We have used Matlab R2017b for all of our processing. This
PAI system (clarified in Section 2.2) saves the photoacoustic signal in
Matlab after 640 excitation pulses. Therefore, in this paper, a single
frame of photoacoustic data is generated as a result of 640 excitation

pulses. The squared problem of DMAS algorithm (as a result of one
stage of correlation) is addressed using the methods presented in Sec-
tions (3) and (4). In other words, we have used the same method in DS-
DMAS to prevent the image voxel intensities to have the power of four.
The squared root results from the multiplications inside the DS-DMAS
algorithm. Before each correlation process, we use methods presented
in Sections (3) and (4) in order to change the dimension of the calcu-
lated samples. In this way, the dimension of the image generated by DS-
DMAS will be volt, not volt to the power of four. All the beamformed
data are first normalized and then, log compressed. Finally, after ap-
plying dynamic range, we use another normalization to better present
the reconstructed images.

2.2. Experimental setup

All the experiments in this study are performed using a commercial
available LED-based PAI system from PreXion Corporation (Tokyo,
Japan) described previously [38]. The LED-based scanner has been
described previously [38,34]. High density, high power LED are utilized
as illumination source. Two LED arrays include 4 rows of 36 single
embedded LEDs attached to either side of an ultrasound transducer.
They are the optical and acoustic path of our LED-based photoacoustic
imaging system. The LED-based imaging system used the following
optical excitation parameters: 690 nm, 4 KHz repetition rate, and 100 ns
pulse width. A 128-element linear array transducer with a central fre-
quency of 10MHz and bandwidth of 80.9% was used to detect the
photoacoustic signal. The data acquisition unit has a dynamic range of
16 bits with 1024 sample for each element. The sampling rates of the
photoacoustic and ultrasound modalities are 40MHz and 20MHz, re-
spectively.

2.2.1. Spatial resolution measurement
In order to evaluate the lateral resolution, we printed parallel lines

(150 μm wide) with various distances (778, 575, and 520 μm) on
transparent film. The samples are fixed between two layers of 1% agar
placed in water tank. We used bright field microscopy imaging system
(Life Technologies Inc., Ca, USA) to measure the accurate spacing be-
tween lines. We utilized a black human hair with diameter of 90 μm to
evaluate the axial resolution of the LED-based imaging system using
DAS, DMAS, and DS-DMAS as the reconstruction algorithms. The
human hair was embedded between layers of 1% agar, and B-mode
photoacoustic images were acquired. The LED repetition rate and B-
mode frame rate were 4 KHz and 6 Hz, respectively.

2.2.2. Depth measurement
Methylene blue (MB) (Fisher Science Education Inc., PA, USA) were

purchased and dissolved in deionized water. We used 50 μm MB as
exogenous contrast agent at different depths with interval distance of
0.5 mm. The MB is placed inside Teflon light wall tubes (Component
Supply Company, FL, USA). The samples are scanned at different depths

Fig. 8. SNR at different depths of imaging. 1500 frames were used in signal
averaging. The data related to the depth experiment was used. The cursors
show the SNR levels per depth.

Fig. 9. Reconstructed photoacoustic images using the data generated by the in vivo experiment. (a) DAS, (b) DMAS, and (c) DS-DMAS. All images are shown with a
dynamic range of 60 dB (for better evaluation). The 1536 frames of the detected photoacoustic signals have a higher SNR. The arrow shows the location of the retina.
The background noise of the DS-DMAS is lower than DAS and DMAS (18 dB and 7 dB, respectively).
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from 16mm to 24mm. 2% intralipid (20%, emulsion, Sigma–Aldrich
Co, MO, USA) mixed with agar is used as the scattering media in this
experiment. The LED repetition rate and B-mode frame rate are 4 KHz
and 3 Hz, respectively.

2.2.3. In vivo experiment
New Zealand white rabbits (∼5 kg) were used for in vivo evaluation

of the proposed method in this study. The animal experiment was
performed in compliance with the Institutional Animal Care and Use
Committee established by University of California San Diego.
Intramuscular injection of ketamine (35mg/kg) and xylazine (5mg/kg)
was used to anesthetize the animal. The pupils were dilated and an-
esthetized using 2.5% phenylephrine hydrochloride, 0.5% proparacaine
hydrochloride, and 1% tropicamide. The heart rate, peripheral capillary
oxygen saturation, respiration rate, and temperature were monitored
during the experiment. The animal was placed on a recirculating water
blanket kept at 39 °C. An ocular speculum held the eye open, and ul-
trasound gel coupled the eye to the transducer. A wavelength of 690 nm
is used as the excitation source. The LED repetition rate and B-mode
frame rate for in vivo experiments are the same as those used in Section
2.2. The maximum permissible exposure (MPE) from the American
National Standard Institute (ANSI) for 690 nm light with 10 s illumi-
nation is ∼5mJ/cm2 [52]. The LED source used 5.5 μJ/cm2 which is
much lower than the ANSI limit. We used ten-second illumination for
averaging purpose. The DAS, DMAS, and DS-DMAS were again utilized
as reconstruction algorithms.

3. Results and discussion

3.1. Spatial resolution assessment

LED systems have lower power than laser-based systems [38]; thus,
we used averaging to improve the signal-to-noise (SNR) of the received
photoacoustic signals. SNR is defined as the ratio of signal power to the
noise power, often expressed in decibels. To illustrate this, consider
Fig. 1 where the averaging was applied on different number of frames.
By comparing Fig. 1(a) and Fig. 1(c), it can be seen that having an
average of 10 frames would suppress the imaging noise amplitude
(about 384 V), which finally results in a higher SNR.

The reconstructed photoacoustic images using the data generated by
the point-target phantom are shown in Fig. 2. The DAS, DMAS and DS-
DMAS are used for reconstruction of the first, second, and third column
of the images where the distance between the points are decreased from
(a) to (g), as clarified in Section 2.2.1. The performance of the DS-
DMAS algorithm, in terms of noise suppression and target separability,
can also be evaluated using these images. As can be seen in Fig. 2, even
though DMAS degrades the imaging noise and artifacts, compared to
DAS, the image contrast and resolution is still affected by the off-axis
signals and noise. DS-DMAS further suppresses the artifacts and results
in a higher quality image (the background noise of the photoacoustic
images is better suppressed (darker background)), compared to DAS
and DMAS. This results in higher contrast and thus a better ability to
identify targets.

To quantitatively evaluate the algorithms, Fig. 3 presents the lateral
variations of the images shown in Fig. 2(b). As demonstrated in Fig. 3,
the lateral valleys (background signal) of the DS-DMAS are almost
17 dB and 8 dB lower than DAS and DMAS (see the arrows), respec-
tively, indicating the better target separability of DS-DMAS. In addition,
DS-DMAS leads to lower sidelobes in comparison with DAS and DMAS
(see the circle) where DAS, DMAS and DS-DMAS result in the sidelobes
of about −28 dB, −47 dB, and −67 dB, respectively. Thus, DS-DMAS
degrades the sidelobes by about 39 dB and 20 dB, compared to DAS and
DMAS, respectively.

Next, we calculated the full-width-half-maximum (FWHM) in
−6 dB to quantitatively evaluate the resolution gained by the re-
construction methods. FWHM is an expression of the lateral distance

given by the difference between the two extreme values of the lateral
variation at which the amplitude value is equal to half of its maximum
value (−3 dB less than its maximum power). For better evaluation, we
are considering −6 dB less than the maximum power. DAS, DMAS, and
DS-DMAS lead to a FWHM of about 0.37mm, 0.20mm, and 0.15mm,
respectively. Thus, DS-DMAS leads to a narrower mainlobe width
(better resolution), compared to other methods.

As mentioned in Section 2.2.1, we have also used a hair as the target
of imaging. The microscopy image of the hair is presented in Fig. 4(a).
The reconstructed photoacoustic images using the data generated by
the hair are shown in Fig. 4(b–d). As seen, the DS-DMAS better sup-
presses the noise and artifacts. To have a better evaluation, consider the
lateral/axial variations shown in Fig. 4(e) and (f). The sidelobes ob-
tained by DS-DMAS (see the levels indicated by the circles and arrows
in Fig. 4(e)) are almost −38 dB and −23 dB lower than DAS and
DMAS, respectively. The rangelobes (see Fig. 4(f)) generated by DS-
DMAS is about 23 dB and 9 dB lower than DAS and DMAS, respectively.
The levels of sidelobes and rangelobes prove the higher performance of
the proposed method. Indeed, DS-DMAS results in higher contrast be-
cause the two stages of correlation process suppresses the background
noise and sidelobes while the imaging target is detectable and un-
mitigated (peak level of the lateral variations of DS-DMAS is the same
as DAS.

We have also used contrast ratio (CR) metric for evaluation:

=
µ
µ

CR 20log10
background

foreground (7)

where μbackground and μforeground are the mean of image intensity before
log compression inside the dotted-square (shown in Fig. 5(f)) and the
maximum intensity of the image, respectively. It should be mentioned
that CR is usually used for cyst targets where μbackground and μforeground
are concerned with a region inside and outside of a cyst, respectively
[49]. However, here, we have used this metric to evaluate the images
obtained with point targets. The higher the absolute of CR, the higher
performance of an algorithm would be. We have measured the CR using
the pixels inside the dotted-square region shown in Fig. 4(a). The DAS,
DMAS, and DS-DMAS lead to a CR of about −23.89 dB, −35.10 dB, and
−47.41 dB, respectively, indicating a higher contrast obtained by DS-
DMAS. The axial resolution (axial FWHM in −6 dB) for DAS, DMAS,
and DS-DMAS is about 0.23mm, 0.18mm, and 0.14mm, respectively.
In addition, the lateral resolution (lateral FWHM in −6 dB) of DAS,
DMAS, and DS-DMAS is about 1.01mm, 0.71mm, and 0.64mm, re-
spectively. Thus, in both axes, we have resolution improvement using
DS-DMAS (0.04mm and 0.07mm for axial and lateral resolution, re-
spectively, compared to DMAS).

3.1.1. Temporal resolution assessment
Next, we studied the effect of frame number on the reconstructed

images. The photoacoustic images are presented in Fig. 5 using dif-
ferent number of frames. More frames minimizes the effects of noise
and leads to higher image quality (compare Fig. 5(a) with Fig. 5(f)).
However, this also leads to longer scan times. It should be noticed that
the image gained by one frame of data and DS-DMAS has a higher
quality (higher contrast and better resolution) compared to the one
gained by 100 frames and DAS. This shows the superiority of the pro-
posed method.

Fig. 6 shows the obtained CR per number of frames for all the
beamformers. With 350 frames, DS-DMAS results in CR improvement of
about 32 dB and 15 dB versus DAS and DMAS, respectively.

We have also calculated the FWHM (in −6 dB) per number of
frames, for all the beamformers. The results are presented in Fig. 7. At
the low number of frames, it can be seen that the FWHM metric is
highly incremental using all the beamformers, which is undesired. This
is because for the frame numbers before the peaks of the graphs, the
point targets are not completely detected by the beamformers. As can
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be see in Fig. 7, DS-DMAS results in a lower FWHM in all the frame
numbers. With a frame number of 160, DS-DMAS reduced the FWHM
about 0.22mm and 0.07mm versus DAS and DMAS, respectively.

3.2. Penetration depth evaluation

We have evaluated the performance of DS-DMAS algorithm using
point-targets positioned at different depths, inside a scatter media. We
have calculated the SNR of the images obtained with the algorithms.
SNRs are calculated using the formula mentioned in [46]. Fig. 8 shows
the calculated SNRs. Curve fitting is used for better presentation of the
measurements. As can be seen, DS-DMAS outperforms other methods.
Consider, for example, the depth of 22mm, where DS-DMAS improves
the SNR of about 22 dB and 9 dB compared to DAS and DMAS, re-
spectively.

3.3. In vivo experiment

Finally, we evaluated the utility of DS-DMAS with in vivo data. We
and others [20,21,53,54] have previously imaged the retina with
photoacoustic imaging, and use it as an example here. The re-
constructed images obtained by the algorithms are shown in Fig. 9. The
retina of the rabbit can be clearly seen in Fig. 9(c); data highlighted via
the arrows. Again, the background noise and artifacts of the image
reconstructed by DS-DMAS are lower than that of DAS and DMAS. The
background noise is about −29 dB, −40 dB, and −47 dB, for DAS,
DMAS and DS-DMAS, respectively, proving the ability of DS-DMAS to
suppress noise in vivo (by 18 dB and 7 dB, compared to DAS and DMAS,
respectively). Future work will implement DS-DMAS on a GPU to re-
duce the computational time for near real-time imaging [55].

4. Conclusion

In this paper, we showed that the DS-DMAS algorithm can com-
pensate for the low SNR of LED-based PAI systems. The proposed al-
gorithm was compared to DAS and DMAS beamformers using experi-
mental data generated by point targets, a human hair, and a rabbit
retina. The DS-DMAS outperforms other algorithms in terms of FWHM
in −6 dB (lateral and axial), level of sidelobes, CR, and lateral valleys.
For instance, the proposed algorithm results in a higher CR of about
−38 dB and −23 dB, compared to DAS and DMAS, using only 100
frames of the data generated by the hair (see Fig. 4). In addition, the CR
provided by DS-DMAS using only one frame is about 5 dB higher than
that of obtained with DAS having 1000 frames and 700 frames of the
data generated by the hair and point target experiment (Fig. 6). The
main improvement obtained by DS-DMAS would be a higher CR (lower
sidelobes), which makes it an appropriate option for LED-based PAI
systems.
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