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Abstract

Viruses are the most abundant component of the human microbiota. Recent evidence has uncovered a rich diversity of

viruses within the female bladder, including both bacteriophages and eukaryotic viruses. We conducted whole-genome

sequencing of the bladder microbiome of 30 women: 10 asymptomatic ‘healthy’ women and 20 women with an overactive

bladder. These metagenomes include sequences representative of human, bacterial and viral DNA. This analysis, however,

focused specifically on viral sequences. Using the bioinformatic tool virMine, we discovered sequence fragments, as well as

complete genomes, of bacteriophages and the eukaryotic virus JC polyomavirus. The method employed here is a critical

proof of concept: the genomes of viral populations within the low-biomass bladder microbiota can be reconstructed through

whole-genome sequencing of the entire microbial community.

The old paradigm that the bladder is sterile results from the
use of standard urine culture-dependent methods that are
optimized for Escherichia coli [1, 2]. However, there is defin-
itive evidence that communities of bacteria exist within the
bladder [3–6], as well as for associations between these blad-
der microbiota and urinary symptom levels, treatment
response and urinary tract infection (UTI) risk [7–15]. Fur-
thermore, the bladder microbiota of individuals both with
and without urinary symptoms include viral species. The
viruses isolated from urine include several that infect
human cells [16–22], as well as those that infect bacteria
[bacteriophages (phages)] [23–25]. Metagenomic sequenc-
ing of the urinary virome, which detects eukaryotic viruses
and phages in the lytic cycle, revealed an abundance of
phages [26, 27].

Because the bladder microbiota exist at a substantially lower
biomass [1, 5, 6] than many other human niches (e.g. the
gut [28]), sequencing the bladder’s virome presents unique
technical difficulties. From the gut, the viral biomass can be
separated and the extracted DNA can be sequenced directly
[29, 30]. In contrast, previous urine virome metagenomic
studies have relied on DNA amplification prior to sequenc-
ing to increase DNA concentrations [26]. These amplifica-
tion methods, however, have well-documented biases [31].
As such, the complete diversity of the virome may not be

captured. Alternatively, we hypothesized that the challenges
of sequencing the bladder virome could be overcome bioin-
formatically. Bioinformatic approaches have successfully
identified complete viral genomes from bacterial metage-
nomes (e.g. [32]). Moreover, complete viral genomes have
been reconstructed from viral metagenomes containing sig-
nificant quantities of non-viral (bacterial and eukaryotic)
DNA (e.g. [33]). Thus, we conducted whole-genome
sequencing of the bladder microbiota and examined the
sequence data specifically for viral sequences. This approach
has the potential to capture both lytic and lysogenic phage
sequences present in the community.

In a previously published study [10], urine was collected
aseptically via transurethral catheter from 10 women with-
out urinary symptoms (control) and 20 women with
reported overactive bladder symptoms (OAB) and stored
with the DNA preservative AssayAssure (Sierra Molecular)
at �80

�

C. In the current study, 5ml of each urine sample
was thawed and the DNA was extracted, as described previ-
ously [10, 34]. Briefly, the urine was incubated in a lysis
solution containing mutanolysin and lysozyme and the
DNA extracted from the sample using the DNeasy blood
and tissue kit (Qiagen, Valencia, CA, USA), according to
the manufacturer’s instructions. The Illumina Nextera kit
was used for whole-genome library preparation with
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fragment sizes of 200–300 bp. Sequencing was conducted on
the Illumina HiSeq 2500 platform, producing paired-end
100 bp �2 reads. Human contaminating reads were filtered
out by mapping to the human reference genome (hg19)
with Bowtie2 [35]. Table S1 (available in the online version
of this article) lists the number of raw reads and filtered
reads for each sequenced patient sample. Most of the reads
produced represent bacterial and viral species; on average,
only 5.3% of the reads mapped to the human reference
genome sequence. Raw sequencing data are available from
the NCBI’s Sequence Read Archive (SRA) database, BioPro-
ject accession number PRJEB8104. The accession numbers
for each sample are listed in Table S1.

Fig. S1 outlines the analytical process. Each individual meta-
genome dataset was assembled separately. The raw reads
were first trimmed for quality using the tool Sickle [36] and
then assembled by SPAdes (v3.10.1) with the ‘meta’ (meta-
genomic) option [37]. There was only a weak correlation
between the number of reads produced for a given sample
and the number of contigs assembled from those reads
(r=0.23). Next, the virMine [38] tool was used to classify the
contigs produced. Briefly, virMine first filtered out contigs
that were less than 1000 bp in length; this length is a user-
defined parameter and was selected to eliminate partial gene
sequences and repetitive elements from downstream analy-
ses. For the remaining contigs, open reading frames were
predicted, translated and compared to virMine’s bacterial
and viral protein sequence databases (RefSeq protein
sequences). These comparisons enabled us to classify each
contig as bacterial, viral, or unknown (exhibiting no similar-
ity to bacterial or viral contigs). The genome assembly and
virMine statistics are listed in Table S1. The microbiomes
were dominated by bacterial contigs (90% on average). The
contigs classified as ‘unknown’ were queried against the
NCBI nr/nt database via megaBLAST, and we found that the
overwhelming majority were human in origin (results not
shown). Thus, here we will focus on the 252 contigs from
the 30 metagenomes that were predicted to be viral.

Twenty-seven of the 30 bladder metagenomes examined
included contigs predicted to be viral. To further evaluate
these contigs, each was queried against the nr/nt database
via the NCBI web interface using the megaBLAST algorithm
(Table S2). In comparing the contigs to this database, eight
samples were identified as containing sequences of human
origin. The virMine software characterized these contigs as
viral, as they did not resemble bacterial sequences and had
moderate sequence similarity to a sequence in the viral data-
base. The contigs within another seven samples were uni-
formly short (~1 kbp) and only exhibited sequence
similarity to annotated transposases. Transposases, along
with integrases, can be encoded by a phage to allow that
phage to enter its lysogenic (latent) life cycle by inserting
itself into the bacterial genome (the inserted phage genome
is now called the ‘prophage’) [39]. Thus, while these contigs
suggest the presence of lysogenic phages within the bladder
microbiota, they do not provide an insight into the phage

species. The remaining 12 metagenomes, however, had rec-

ognizable phage and/or eukaryotic virus sequences.

Two patient samples – OAB045 and OAB052 – contained
numerous contigs with homologies to annotated phage
genes, including genes annotated as encoding tail proteins,
phage tail tape measure proteins, phage DNA packaging
proteins, phage portal proteins, terminases and capsid pro-
teins. Furthermore, these contigs represented phage genome
fragments, including several coding regions. For instance, in
the OAB052 sample, a 4898 bp contig was identified, con-
taining annotated regions for a phage terminase, phage por-
tal protein, endopeptidase Clp, major capsid protein, phage
DNA packaging protein and two hypothetical proteins. This
contig is homologous to a region within the 18.3 kbp puta-
tive prophage (determined via PHAST [40]) in the Gardner-
ella vaginalis HMP9231 genome. As such, it is unlikely that
the contig identified here represents a complete, intact
phage genome. Nevertheless, it may represent a Gardnerella
prophage, which we previously showed to be prevalent
within Gardnerella strains of the bladder [41]. We next
examined the contigs that were classified as bacterial by the
virMine tool. BLAST queries found significant homology
(e-score=0) between the larger contigs within the OAB052
metagenome and G. vaginalis genome records in GenBank.
Thus, we hypothesize that the larger viral contigs detected
within the OAB052 patient sample represent lysogenic
phages. While here we have presented the analysis of just
one of these contigs, similar observations were made for the
other contigs from these samples: viral sequences exhibited
homologies to annotated prophages within bacterial species
that were also found within the sample’s metagenome.

Larger phage sequences were identified in three patient
samples – OAB010, OAB018 and OAB039. Table 1 lists the
contigs identified in each of these samples. While many of
these larger phage sequences include novel genic content
(i.e. low or no sequence homology to records in GenBank),
each exhibited some homology to recognized prophage
sequences within bacterial genomes (per PHAST [40]). The
most similar phage species are listed in Table 1. Based upon
the size of the assembled genome and the presence of ‘hall-
mark’ viral genes [42], we were able to confidently predict
the completeness of several of these assembled sequences.
The phage sequences listed in Table 1 were then annotated
using the RAST server [43] (Table S3). The genome map for
the putative complete phage genome sequence within the
OAB018 patient sample is shown in Fig. 1 (generated using
Geneious, Auckland, NZ). The phage sequences identified
here are not necessarily unique to the microbiota of the uri-
nary tract (Table S2). For instance, the sequence of contig
28 from the OAB010 sample is 99% identical to a prophage
found within a Streptococcus agalactiae strain isolated from
a patient’s blood sample [44], as well as from a strain iso-
lated from a diseased tilapia (GenBank record CP016501).
These larger sequences are informative about both the bio-
informatic approach employed here and the samples them-
selves. First, complete (or near-complete) phage genomes
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can be reconstructed by sequencing bladder microbiome
samples. Second, because we sequenced the bacterial and
viral fractions together, it is possible to associate phages and
their bacterial host. Last, we found evidence of related
phages being present in the bladder microbiota of different
patients. For instance, the OAB018 and OAB039 patient
samples both contain phage sequences that are similar to
those of the Lactobacillus-infecting phages PLE2 and phi
adh. These phages were first detected as prophages within
the genomes of the probiotic strains Lactobacillus casei
BL23 [45] and Lactobacillus gasseri ADH, respectively. Fur-
ther sequencing of the bladder microbiota is necessary to
ascertain whether these phage families are common constit-
uents of the bladder virome.

Five patient samples, OAB021, OAB026, OAB032, OAB042
and OAB045, contained recognizable complete genomes for
the human polyomavirus JC (JCV). Furthermore, a partial
genome sequence, 1023 bp, was retrieved from patient sam-
ple OAB025. JCV is a circular double-stranded DNA virus
(~5130 bp) and occurs naturally in the urine of healthy indi-
viduals. A previous study found that up to 80% of adults
excreted JCV in their urine [46]. Furthermore, JCV quasis-
pecies have been detected in healthy individuals [47]. JCV,
however, was not detected within any of the 10 asymptom-
atic ‘healthy’ individuals (controls) included in this study.
While JCV infection has been associated with progressive
multifocal leukoencephalopathy, a fatal neurological disor-
der [48], JCV within individuals with overactive bladder has

Table 1. Putative complete/near-complete phage genomes identified within bladder microbiome samples

The most similar phage sequences were determined using PHAST [40].

Sample Contig # Length (kbp) Coverage Bacterial blast homology (sequence ID/query coverage) Most similar phage (length)

OAB010 28 17.5 16.56 S. agalactiae (99%/100%) phiCT453B (36.7 kbp)

31 8.1 11.61 S. agalactiae (95%/99%) phiCT453B (36.7 kbp)

39 3.4 14.21 S. agalactiae (100%/100%) phiARI0923 (33.5 kbp)

OAB018 28 37.1 9.54 L. helveticus (87%/71%) phig1e (42.3 kbp)

49 26.8 10.89 L. helveticus (85%/15%) phig1e (42.3 kbp)

66 17.8 7.30 L. allii (72%/3%) PLE2 (35.1 kbp)

148 7.6 6.96 L. helveticus (76%/25%) phi adh (43.8 kbp)

OAB039 55 13.6 18.08 L. allii (72%/4%) PLE2 (35.1 kbp)

79 8.5 23.09 L. gasseri (67%/57%) phi adh (43.8 kbp)

Fig. 1. Genome map for the 37.1 kbp contig 28 from the OAB018 patient sample.
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yet to be studied. The prevalence of JCV within these five
samples varied. Raw reads were mapped to the RefSeq for
the species (GenBank accession: NC_001699) using Bowtie2
(v 2.2.6) [35], revealing coverage of the JCV genome ranging
from 12x to 726.9x. Coverage correlated with the % reads in
the sample corresponding to the JCV genome (r2=0.9570).
JCV was most abundant in patient samples OAB042 and
OAB045, in which 4.4 and 3.2%, respectively, of the total
reads generated were classified as JCV.

Previous research has identified subtypes of JCV and found
that these subtypes can correspond to different human pop-
ulation groups [49]. Thus, we next determined the subtypes
of the five JCV complete genomes from the bladder micro-
biome samples by comparing their genomes to 605 publicly
available genomes representative of the diversity of the spe-
cies (Table S2). The sequences were aligned using MUSCLE

through Geneious; the alignments were trimmed, removing
the tandem repeats (as their placement at the 5¢ or 3¢ end of
the genome sequence varied among the genome sequence
records), and a phylogenetic tree was inferred using Fast-
Tree [50] (Fig. 2). Clades were labelled according to their
documented genotype, determined from the literature [49]
and from GenBank records. Genotype classifications rely on
coding sequence variation, most notably the VP1 capsid
coding sequence [51]. This tree aids in gaining greater
insight into the JCV genomes detected within the patient

samples. The JCV strains identified in patient samples
OAB026 and OAB045 were representative of subtype 1,
genotype 1B (exhibiting the greatest sequence similarity to
isolates from individuals of German heritage [49]). The JCV
virus from patient sample OAB042 was also categorized as

subtype 1 (genotype 1A) via sequence homology [50]. Sub-
type 1 is relatively common in the United States and Europe
[52] and these three patients self-reported as ‘white/non-
Hispanic’. The JCV strains identified in patient samples
OAB032 and OAB021 were classified as belonging to geno-
types 3A (prevalent in Africa and southwestern Asia) and

2A (prevalent amongst individuals of Japanese and Native
American decent), respectively, based upon their nearest
neighbours and placement within the phylogenetic tree
(Fig. 2) [49, 53]. However, the self-reported ethnicities of
these patients are incongruent with the ethnicities typically
associated with these subtypes; patient OAB032 self-

reported as ‘white/Hispanic’ and patient OAB021 self-
reported as ‘black/non-Hispanic.’ As the majority of
sequencing and genotyping studies of JCV have largely been
restricted to individuals with or without neurological dis-
eases, our findings here should prompt further investigation
of the presence and genotypes of JCV in individuals with

and without lower urinary tract symptoms to ascertain
whether JCV plays any role in urinary tract symptoms or
disease.

Fig. 2. Phylogenetic tree for 610 complete genomes of JCV, including strains isolated in this study (tree branches shown in black and

labelled) and the reference sequence (NC_001699) for the species (shown in red).
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Here, we have shown that challenges in isolating viral
species from the low-biomass bladder microbiome can be
circumvented via bioinformatic classification tools; whole-
genome, as well as partial-genome, sequences can be
reconstructed from complex samples. While the sheer size
of bacterial genomes lends to greater representation in
whole-genome sequencing data, viral genomes were
detected without amplification within 27 of the 30 urinary
samples examined here. This further supports prior esti-
mates of the abundance of viruses within the bladder micro-
biota [25, 26]. Moreover, as our results show, our strategy
can detect both lysogenic and lytic phages, as well as eukary-
otic viruses.
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