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Abstract

Tumor-associated macrophages are a major constituent of malignant tumors and known to 

stimulate key steps in tumor progression. In our review in this journal in 2006, we postulated that 

functionally distinct subsets of these cells exist in different areas within solid tumors. Here, we 

review the many experimental and clinical studies conducted since then to investigate the 

function(s), regulation and clinical significance of macrophages in these sites. The latter include 

three sites of cancer cell invasion, tumor nests, the tumor stroma, and areas close to, or distant 

from, the tumor vasculature. A more complete understanding of macrophage diversity in tumors 

could lead to the development of more selective therapies to restore the formidable, anti-cancer 

functions of these cells.
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Introduction

Tumor-associated macrophages (TAMs) are abundant in most types of malignant tumor and 

promote tumor angiogenesis, the escape of cancer cells from the tumor into the circulation, 

and the suppression of anti-tumor immune mechanisms. They also help circulating cancer 

cells to extravasate at distant sites like the lungs and then promote their survival and 

persistent growth into metastatic colonies. An increasing number of studies have also shown 

that TAMs can either antagonize, augment or mediate the antitumor effects of cytotoxic 

agents, tumor irradiation, anti-angiogenic/vascular damaging agents, and checkpoint 

inhibitors (1–3).
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The origin(s) of these cells is currently a topic for debate. Recent studies have shown that 

macrophages in many steady-state tissues are not derived from circulating monocytes as 

originally thought, but rather from embryonic macrophages (particularly from the yolk sac) 

that are laid down in tissues during development. These progenitors persist into adulthood 

by local proliferation, and thus maintain themselves independently of the adult 

hematopoietic system. Alternatively, in some adult tissues like the intestines, the major 

macrophages populations derive form the bone marrow via monocyte recruitment while 

others can be chimeric (4). Initially, TAMs in mouse tumors were also thought to be derived 

largely from blood monocytes (5), however, recent studies have shown that, in some mouse 

models of brain and pancreatic cancer, they are derived from both blood monocytes and 

embryonic macrophages. Moreover, the selective depletion of each of these two TAM 

subtypes showed that only the latter supported the growth of established tumors (6,7). 

Further studies are required to see if this mixed ontogeny extends to other tumor types.

TAMs often exhibit an array of activation states. In general, they are skewed away from the 

‘classically’ activated, tumoricidal phenotype (sometimes referred to as M1) towards an 

‘alternatively’ activated tumor-promoting one (M2). However, like macrophages in many 

other tissues, TAMs show remarkable functional plasticity and often express markers 

characteristic of both activation states (2,8) making such binary definitions inaccurate. In our 

review in this journal in 2006 (9), we proposed that TAM functions might, at least in part, be 

regulated by their location within tumors. We suggested that they exhibited different 

functions in least three tumor sites; areas of invasion by cancer cells in early tumor 

development, the stroma, and hypoxic/necrotic areas. Since then, a considerable number of 

studies have investigated their functions and regulation in these - and other - sites in mouse 

tumor models, and examined the clinical significance of these spatially distinct TAM subsets 

(the latter are shown in the Table).

In this update we now outline the progress made in understanding TAM behavior in the 

following tumor sites: three different areas of cancer cell invasion; areas of high cancer cell 

density (the so-called tumor ‘nests’); the perivascular niche; and poorly vascularized, 

hypoxic/necrotic tumor areas (Figures 1 & 2). We also discuss the clinical/therapeutic 

implications of these TAM subsets.

Invasive Areas

There are at least three main sites where the increased invasive behavior of cancer cells has 

been detected during tumor progression. First, around pre-invasive lesions where the 

uncontrolled proliferation of newly transformed, neoplastic cells leads to their invasion 

through the basement membrane into the surrounding normal parenchyma to form a 

carcinoma. This has been well documented in tissues like the mammary gland where cancer 

cells invade through the duct or lobule wall to become an invasive carcinoma (Figure 1). 

Then, in established tumors, at the ‘tumor-stroma border (TSB)’ between cancer cell nests 

and the stroma within the tumor mass, and at the ‘invasive front (IF)’ where cancer cells 

invade into surrounding normal tissues (Figure 2).
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In 2006 (9), we reviewed the early evidence for macrophages gathering around ducts in 

adenomas in the mammary glands of MMTV-PyMT mice and promoting their transition to 

invasive lesions. At the time, this had been demonstrated by crossing MMTV-PyMT mice 

with a strain carrying a recessive null mutation in the gene encoding colony stimulating 

factor 1 (CSF-1). The resultant macrophage depletion delayed the progression of pre-

invasive lesions into invasive, metastatic carcinomas while early recruitment of macrophages 

accelerated progression to malignancy characterized by invasion (10). Other studies had 

suggested that macrophages might promote invasion of newly transformed cancer cells in 

pre-invasive mammary lesions by releasing the enzymes, cathepsins and matrix 

metalloproteinases (MMPs), as well as the cytokines, epidermal growth factor (EGF) and 

tumor necrosis factor alpha (TNFα). These were thought to then remodel the extracellular 

matrix, promote disruption of the basement membrane, accelerate the motility of cancer 

cells, and increase the migration of cancer cells. More recently, a number of experimental 

studies have confirmed the important role of macrophages in the transition of pre-invasive, 

hyperplastic mammary lesions to early invasive carcinoma. In MMTV-iFGFR1 mice, 

progression failed to occur when macrophages were depleted in mice bearing hyperplastic 

lesions (11). Macrophages were also shown to stimulate the progression of pre-invasive 

lesions in a transplantable, p53-null model of early mammary cancer (12). We also showed 

that the release of vascular endothelial growth factor A (VEGFA) by macrophages around 

pre-neoplastic lesions in MMTV-PyMT mice to be essential for the ‘angiogenic switch’ that 

occurs when these lesions progress to early carcinomas (13,14). Another study showed that 

macrophages around such preinvasive mammary lesions in mice release CXCR2-binding 

chemokines, CXCL1 and CXCL5, which promote the migration and invasion of neighboring 

pre-neoplastic epithelial cells. Here, a subset of macrophages expressing the cell surface 

proteins, mannose receptor C type 1 (MRC1 or CD206), class A macrophage scavenger 

receptor (CD204) and major histocompatibility complex II (MHCII), were recruited to 

ductal hyperplastic lesions. When these cells were depleted using clodronate liposomes, 

their progression to invasive tumors was markedly delayed (15).

Finally, a recent study in a KRasG12D model of lung cancer has shown that deregulated 

oncogenes in cancer cells like Myc trigger the transition of indolent lung adenomas to 

aggressive adenocarcinomas. This is because changes in Myc stimulated an increase in 

CCL9 and IL-23 expression by lung epithelial cells. CCL9 then stimulated the accumulation 

of VEGFA+ macrophages (and thus tumor angiogenesis), and their PD-L1-dependent 

expulsion of T and B cells. Additionally, IL-23 prompted the exclusion of adaptive T and B 

cells and cytotoxic NK cells (16) (Figure 1).

These findings in mice are supported by clinical studies comparing macrophage levels in 

low- versus high-grade human ductal invasive in situ carcinomas (DCIS). These lesions are 

thought to develop into invasive carcinomas of the breast. High-grade DCIS lesions 

(especially those filled with cancer cells and containing a central area of necrosis, namely 

‘comedo DCIS’) are more aggressive and have a greater tendency to become invasive than 

low-grade DCIS. Higher numbers of CD68+ macrophages have been reported in and around 

high-grade comedo DCIS than low-grade ones (17). Moreover, analysis of gene expression 

in 40 cases of DCIS showed that genes upregulated by macrophages following their 
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exposure to a key stimulus upregulated in tumors, CSF-1 were more prevalent in high-grade 

than low-grade lesions (18).

A number of intravital imaging studies have demonstrated the abundance and characteristics 

of TAMs in the TSBs of MMTV-PyMT tumors. At least two TAM subsets were present: 

motile, MRC1- and less motile, MRC1+ (19,20). Interestingly, high numbers of CD68+ 

TAMs in the TSBs of human colon carcinomas correlate with better overall survival than 

those with lower numbers (21) (Table). However, their MRC1 status was not investigated in 

this clinical study – they were labelled with an antibody for the pan macrophage marker, 

CD68 – so it remains to be seen whether these two subsets were present, and if one or both 

contributed to the improved prognosis.

It is noteworthy that antibodies against CD68 continue to be used widely to immunolabel 

TAMs in such human tumors (Table). However, as with many antibodies supposedly 

labelling individual cell types, those for human CD68 sometimes label cells other than 

TAMs. For example, a qualitative, immunostaining study reported that some CD68+ cells in 

human breast tumors fail to express detectable CSF-1 receptor (CSF-1R) or CD45, or 

markers for epithelial cells, endothelial cells, or mural cells (i.e. vascular smooth muscle 

cells, pericytes or fibroblasts) (22). The identity of these CD68+ cells, whether they exist in 

other tumor types, and, indeed, if they label with other CD68 antibodies, is not known.

When it comes to the IF of tumors, TAMs in these regions of mouse RIP1-Tag2 pancreatic 

tumors have been shown to enhance the invasive potential of cancer cells via their 

expression of cathepsin B and S, two enzymes regulated by IL-4 released by cancer cells and 

tumor-infiltrating T cells (23). Further, CD4+ T cells in MMTV-PyMT tumors have been 

shown to increase the invasiveness of cancer cells via their release of IL-4 which then 

stimulates TAMs to express EGF release (24).

Together, these experimental data accord well with a previous finding showing that TAMs in 

the IF of human gastric tumors express the matrix-degrading enzyme, MMP9, and the 

receptor for the serine protease, urokinase-type plasminogen activator (uPA; which cleaves 

pro-UPA into its active form) (25). Interestingly, TAMs along the IF of primary human colon 

carcinomas express CD80 and CD86 (costimulatory signals necessary for T cell activation), 

suggesting that they may have the potential to help stimulate anti-tumor immunity in this 

type of cancer (26). This could explain the observation that high CD68+ TAM levels in the 

IF of human colorectal tumors correlate with a higher relapse-free survival (RFS) (27) 

(Table). However, various TAM subsets may be present in the IF of tumors with some 

appearing to be immunosuppressive. For example, TAMs in the IF of human hepatocellular 

carcinomas (HCCs) express higher levels of the immunosuppressive, negative checkpoint 

regulator, PD-L1, than those in neighboring cancer nests, and have been linked to poor 

survival (28). Furthermore, semaphorin 4D (SEMA4D, CD100), a cytokine upregulated in 

the IF of Colon26 mouse colon tumors, has been shown to stimulate the number of TAMs 

expressing the immunosuppressive cytokine interleukin 10 (IL-10) in the IF, and thus 

suppress the number of activated CD8+ T cells in this location. Antibody blockade of 

SEMA4D suppressed the number of these TAMs at the IF and increased the treatment 

efficacy of checkpoint inhibitors anti-PD-1 and anti-CTLA4 (29) (Figure 2).
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Cancer Nests

The possible function(s) of TAMs in close proximity to cancer cells in tumor ‘nests’ appears 

to vary with tumor type. For example, TAMs expressing NOS2, an enzyme linked to the 

cytotoxic potential of TAMs (via its production of nitric oxide), are seen in intimate contact 

with cancer cells in some human prostate tumors (30), and high numbers of nest TAMs 

correlate with an improved prognosis in endometrial cancer (31), and a reduced recurrence 

in gastric cancer (32) (Table). However, high nest TAMs also correlate with reduced overall 

and RFS in malignant melanomas, as well as breast and esophageal tumors (33–36) (Table). 

TAMs in the nests of human HCCs preferentially express IL-10 and recruit 

immunosuppressive FoxP3+ Treg cells (28), although their number has yet to be shown to be 

associated with outcome in this disease (Figure 2).

Interestingly, TAMs have been shown to express the inhibitory receptor signal regulatory 

protein alpha (SIRPα) at cell surface, which binds to the transmembrane protein, CD47, on 

cancer cells. When this occurs, it suppresses the ability of TAMs to detect and phagocytose 

cancer cells. Various studies have shown that blocking CD47 interrupts this ‘don’t-eat-me’ 

signal and triggers cancer destruction by TAMs in mouse tumors, and high CD47 expression 

is associated with poor prognosis of bladder cancer, acute myeloid leukemia, non-Hodgkin's 

lymphoma, and breast cancer (37,38). In this way, cancer cells escape surveillance by TAMs. 

This would be highly relevant in tumor nests where cancer cells come into close contact with 

TAMs. It would be interesting to see whether the aforementioned links between high nest 

TAM numbers and a poor prognosis correlate with the expression of SIRPα and CD47 by 

TAMs and cancer cells respectively in these sites.

Stroma

In this prominent area of most solid tumors, cancer cells are often sparse or absent. Rather, it 

consists of a complex network of macromolecules in the extracellular matrix (ECM) 

including collagen fibrils, laminin, fibronectin, tenascin C and hyaluronic acid (HA). It is 

often populated by various non-malignant cell populations including fibroblasts, endothelial 

cells, pericytes, lymphocytes and myeloid cells (39). A number of studies have shown that 

ECM components (and/or their proteolytic products), such as fibronectin, laminin-10, 

versican (a chondroitin sulfate proteoglycan), and HA fragments, regulate the phenotype of 

macrophages (40). Moreover, Pinto and colleagues (41) showed recently that decellularized 

ECM isolated from human colorectal tumors stimulates macrophages to express a relatively 

anti-inflammatory, M2-like phenotype with increased expression of IL-10, transforming 

growth factor β (TGF-β), and decreased C-C chemokine receptor type 7 (CCR7), TNFα and 

interleukin-6 (IL-6) in vitro. Also, stromal TAMs with higher chemokine (C-C motif) ligand 

18 (CCL18) production associates with increased metastasis and reduced survival in breast 

cancer patients (42). This agrees with a number of studies showing a correlation between 

high numbers of stromal TAMs in breast, esophageal, gastric, pancreatic, oral and skin 

tumors and poor overall survival and/or RFS (34,35,43–46) (Table). However, this may 

depend on tumor type as there is no such correlation in endometrial, cervical, and lung 

cancer (30,47,48), and in bladder cancer, it even correlates with reduced lymph node 

metastasis and improved survival (49) (Table).
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In addition to the effects of a complex array of components in the ‘matrisome’ of the stroma 

(i.e. the core ECM proteins including collagens, fibronectins, laminins, proteoglycans, 

growth factors, chemokines and cytokines, and ECM-remodeling enzymes), the biophysical 

properties of the stroma also regulate the functions of TAMs. The architecture and stiffness 

of the ECM have been shown previously to regulate cell behavior (40), and increased 

substrate stiffness upregulates the expression of various pro-inflammatory genes by 

macrophages in vitro by activating TLR4 signaling pathways in these cells (50). Possible 

effects of matrix rigidity on macrophages in the premetastatic niche have also been reported 

as the cross-linking of collagens and elastins induced by the enzyme, lysyl oxidase (LOX), 

modifies the recruitment, invasion and retention of myeloid cells (51). In an interesting, 

recent study, high levels of 22 common matrisome constituents (termed the ‘matrix score’) 

positively correlated with both tumor stiffness and TAM infiltration in ovarian metastases, 

although it remains to be seen whether the last two are causally linked (52). To add to this 

complex picture, it should be noted that different areas of stroma within a given tumor may 

differ in their chemical and biophysical properties and so regulate TAMs differently (Figure 

2).

Interestingly, macrophages in some tissues appear to play an important role on collagen 

remodeling. Proteolyzed fibrillar collagen recruits macrophages during postpartum 

mammary involution in rats (53) and macrophages have been shown to facilitate collagen 

fibrillogenesis in developing mammary glands in mice (54). Given that fibrillar collagen is 

abundant in stroma of tumors, studies are now warranted to see if this two-way interaction 

occurs there, and what effects this has, if any, on tumor progression and response to various 

treatments.

Perivascular Niche

A subset of TAMs lie close to, or on, the abluminal surface of blood vessels in mouse and 

human tumors (55). These perivascular (PV) cells often express high levels of the M2-

associated markers, TIE2 (a major receptor for angiopoietins), MRC1 and CD163, and play 

a key role in stimulating tumor angiogenesis, metastasis and relapse after frontline 

treatments for cancer (56). Due to their relatively high expression of TIE2, these cells were 

initially termed ‘TIE2-expressing monocytes/macrophages (TEMs)’. When co-injected into 

mice with mouse mammary cancer cells, the resultant tumors were more vascularized than 

generated with cancer cells alone or cancer cells with TIE2- monocytes (57). Interestingly, 

the frequency of TEMs has also been shown to positively correlate with MVD in some 

human tumor types (58,59) (Table).

Genetic deletion of PV TIE2+ TAMs or the pharmacological blockade of the main TIE2 

ligand upregulated by the tumor vasculature, angiopoietin 2 (AGPT2), demonstrated the 

importance of this TAM subset in tumor angiogenesis and growth in various mouse models 

of cancer (60). The subsequent gene expression profiling of TEMs isolated from mouse 

tumors revealed their higher expression of a number of tumor-promoting genes including 

Mmp9, Vegfa, Cxcl12, Tlr4 and Nrp1, than TIE2- TAMs from the same tumors (61).
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Intravital imaging studies have shown that some PV TIE2+VEGFA+ TAMs interact closely 

with both endothelial cells and cancer cells expressing actin binding protein mammalian 

enabled (MENA). These cell trios have been termed the ‘tumor microenvironment of 

metastasis’ (TMEM) as they are sites of increased intravasation of cancer cells into the 

blood. PV TAMs in TMEMs upregulate VEGFA and increase the permeability of 

neighboring blood vessels (62). Their role in promoting metastasis is supported by the 

finding that high TMEM frequency correlates with increased risk of distant metastasis in ER
+HER2- breast cancer patients (63). Interestingly, a recent study has shown that TMEMs 

containing TIE2+VEGFA+ PV TAMs are also present in pre-malignant lesions in a mouse 

model of HER2+ breast cancer and promote the early dissemination of cancer cells (64) 

(Figure 1).

PV TIE2+ TAMs have also been implicated in the relapse of primary mouse tumors after 

various forms of treatment. They increase in relapsing glioma after local irradiation, and in 

lung and mammary tumors after chemotherapy. At such times, they express high levels of 

CXCR4 and are recruited by upregulated CXCL12 in the perivascular niche (65,66). Our 

studies showed that this TAM subset then stimulates revascularization and regrowth of tumor 

via their release of VEGFA (66). A later study confirmed that TIE2 expression at TAMs is 

required to induce vascularization after chemotherapy in mice (67). Furthermore, a recent 

paper has also demonstrated that newly recruited monocytes also migrate around untreated 

tumors in a CXCR4-dependent manner. Flourescently-labelled monocytes were seen to 

extravasate into untreated PyMT tumor implants through vessels mainly in tumor nests, 

where they are then exposed to TGF-β released by cancer cells. This stimulates these new 

recruits to upregulate their expression of CXCR4 and migrate towards CXCL12-expressing 

fibroblasts around tumor blood vessels in collagen-rich stromal areas. Once they are adjacent 

to vessels, the monocytes differentiate into the metastasis-assisting, perivascular TAMs 

reported in TMEMs (62,68).

Finally, in metastatic sites like the lungs, a subset of CCR2+Ly6C/Gr1+ macrophages 

promote the extravasation of cancer cells and their formation of metastases (5). These 

‘metastasis-associated macrophages (MAMs)’ have been shown in mouse tumor models to 

directly tether vascular cell adhesion molecule-1 (VCAM-1) on cancer cells via their α4-

integrins, a process that subsequently increases cancer cell survival at such metastatic sites 

(69). Furthermore, binding of CCL2 to CCR2 on MAMs stimulates their release of CCL3, 

which binds to CCR1 on cancer cells and facilitates their retention in the lungs (70). These 

MAMs also promote persistent growth of metastatic lesions through VEGFR1 and CSF-1R 

signaling (71,72).

Hypoxic/Necrotic Areas

Hypoxia is a hallmark feature in solid tumors and has been linked to increased invasion and 

metastasis, resistance to therapy, and poor clinical outcome. Hypoxic areas typically have 

oxygen tensions (pO2 values) below 10 mm Hg and are located more than 150 μm from 

tumor blood vessels. They form in tumors when the cellular requirement for oxygen 

outstrips its supply by the poorly organized tumor vasculature. These sites have been 

identified in tumor sections using hypoxic cell markers, e.g. pimonidazole (PIMO), or 
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immunolabelling for the hypoxia-inducible alpha subunit of the transcription factors, HIFs 1 

and 2 (73). High numbers of hypoxia TAMs associate with elevated levels of tumor 

angiogenesis, metastasis, poor RFS and/or reduced overall survival in breast, endometrial 

and cervical cancer (30,74,75) (Table & Figure 2).

When TAMs gather in such areas they upregulate HIFs 1 and 2, and various HIF target genes 

like VEGFA, GLUT1 and MMP7 (76,77). TAMs are recruited into these sites by 

chemokines upregulated due to hypoxia, including C-X-C motif chemokine 12 (CXCL12), 

endothelial cell monocyte-activating polypeptide-II (EMAP-II), endothelin 2, VEGFA and 

SEMA3A (78–80). Hypoxic TAMs become immobilized in hypoxic areas by the direct, 

inhibitory effect of hypoxia on their mobility (81) and their reduced expression of receptors 

for tumor-derived chemokines CCR2, CCR5 and NRP1 (79).

Hypoxic TAMs promote tumor angiogenesis, immune evasion and metastasis in various 

experimental models. For example, they upregulate an array of proangiogenic and 

immunosuppressive cytokines in hypoxic tumor areas (76,77,82,83), and when their entry 

into hypoxic tumor areas is impeded by SEMA3A/NRP1 signaling blockade, tumor 

angiogenesis is markedly reduced, and antitumor immunity restored (80). Hypoxic TAMs 

are also able to suppress T cell activation in a number of ways including their upregulation 

of IL-10 and negative checkpoint regulators such as PD-L1 (80). A recent study also showed 

that macrophages co-cultured with hepatoma cells under hypoxic conditions have increased 

indoleamine 2, 3-dioxygenase (IDO) expression which suppresses the proliferation of local 

cytotoxic T cells and expands Treg cells (84).

While exposure to hypoxia per se fails to skew TAMs towards a tumor-promoting, 

phenotype (85), some studies have shown that a low pH and lactate (which accumulate in 

poorly vascularized, hypoxic areas due to the poor vascular supply) act in concert to induce 

a proangiogenic phenotype in TAMs, which, in turn, restores blood perfusion (85–87). 

Indeed, lactic acid can stimulate expression of VEGFA by macrophages (87). As mentioned 

previously, this cytokine is not only proangiogenic in tumors but also capable of stimulating 

the intravasation of cancer cells. It remains to be seen whether VEGFA released by TAMs in 

poorly vascularized areas (i.e. away from blood vessels) contributes to the latter 

phenomenon.

Tumor hypoxia can also modulate TAM functions indirectly by stimulating cancer cells to 

release high-mobility group box 1 protein (HMGB1) that, in turn, stimulates IL-10 

production by TAMs. Furthermore, this hypoxia-HMGB1-IL-10 axis has been shown to 

stimulate metastasis in the murine B16 tumor model (88). Hypoxia also induces metabolic 

changes in TAMs which then impact directly on the functions of neighboring cells. For 

example, hypoxia stimulates their expression of REDD1, an mTOR inhibitor and key 

modulator of metabolism in response to nutrient availability and energy requirement. The 

resultant inhibition of mTOR in TAMs strongly reduces their glucose uptake and glycolysis, 

leaving more glucose for neighboring endothelial cells. This results in a more hyperactive 

and leaky vascular network and the provision of more escape sites for cancer cells into the 

circulation. So, it is hardly surprising that this mechanism in primary tumors has been shown 

to drive the formation of distant metastases (89).
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Concluding Remarks

A number of experimental studies in mice have now confirmed the ability of different tumor 

compartments to differentially regulate the phenotype of TAMs. The importance of this is 

underscored by clinical reports showing that the number and/or phenotype of TAM in 

specific tumor areas correlate with RFS and/or survival in human tumors (Table).

We are beginning to identify the factors regulating this spatial heterogeneity of TAMs in 

tumors. As mentioned earlier, genetic changes taking place during early neoplasia can be 

‘sensed’ by neighboring macrophages and trigger their tumor-promoting functions. 

Activation of the oncogene, c-Myc, and mutations in the tumor suppressor gene, p53, in 

breast epithelial cells are prominent in high-grade DCIS, and regulate the function of 

macrophages in such in such preinvasive lesions (15,90–92). Later, in established tumors, 

nest TAMs are exposed to tumor cell-derived factors, hypoxia, low pH and high lactate 

concentration (due to the tumor vasculature being unable support the metabolic needs of 

rapidly proliferating tumor cells) (93,94). Alternatively, TAMs in the stroma receive a 

diverse array of signals, including those released by, or expressed on the surface, of 

endothelial cells, pericytes, fibroblasts, lymphocytes, other myeloid cells, and ECM 

constituents. However, it may be over-simplistic to assume that any two similar areas within 

a tumor (e.g. stromal areas) are identical, and thus regulate TAM behavior in the same way. 

Furthermore, the phenotype of TAMs in a given area will likely change over time as each 

site changes within the tumor mass.

It also remains to be seen whether TAMs in different tumor areas are variants of the same 

monocyte/TAM pool conditioned to perform specific functions in response to local signals, 

or whether they also have different origins. As described earlier, newly recruited monocytes 

can migrate from one tumor area to another [e.g. nests to the perivascular niche (68)] and, in 

doing so, change their phenotype (68). This finding attests to the plasticity - and potential 

inter-conversion - of TAMs in different sites in tumors. However, this does not exclude the 

possibility that some TAM subsets may be recruited from distinct subsets of circulating 

monocytes (95) or from the proliferation of a local TAM progenitor pool (96).

Also mentioned earlier, a recent cell fate-mapping study has shown that TAMs in mouse 

brain tumors are derived from both resident brain macrophages (microglia) and blood 

monocytes (97). While they shared a common, tumor-induced gene expression signature, 

they also exhibited considerable differences in their transcriptional profile, suggesting the 

retention of certain ontogeny-specific characteristics (6). However, it is not known yet 

whether this phenomenon is limited to brain tumors, or whether it contributes to the spatial 

diversity of TAMs in tumors. We also have much to learn about the development of TAM 

subsets in different areas of metastatic tumors, as virtually every study on this so far has 

been in the primary setting.

Evidence is also emerging for the role of TAM subsets in certain tumor areas limiting tumor 

responses to treatment. For example, irradiation, vascular disrupting agents and cytotoxic 

drugs induce the expansion of the perivascular TAMs, which contributes to tumor 
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angiogenesis and relapse after therapy (69,70,98). Hypoxic TAMs have also been implicated 

in tumor resistance to several anticancer treatments and to promote relapse (83).

The demonstration that TAMs stimulate a number of tumor-promoting mechanisms in 

mouse tumor models prompted the development of therapeutic approaches to deplete or 

reprogram them (99). To date, general TAM inhibitors, including those targeting the CSF-1-

CSF-1R and the CCL-CCR2 axis, have largely failed to show efficacy in cancer clinical 

trials as monotherapies (100–102), although they may prove to be effective in combination 

with other therapeutic agents. Although the CSF1-R inhibitor PLX3397 have shown 

significant efficacy in tenosynovial giant cell tumors, treatments have also revealed 

pathologies resulting from the long-term depletion of all macrophages via this inhibitor 

(103). Targeting specific TAM subsets in tumors may also be a better way forward - in order 

to deplete or re-educate those that are tumor-promoting, while leaving or increasing those 

capable of being tumoricidal and/or promoting anti-tumor immunity. Advances in our 

understanding of how the phenotype of TAM subsets in different tumor areas is influenced 

by their ontogeny, activation status and complex array of local cues will help to develop this 

therapeutic approach. Unravelling such a complex array of influences on TAM behavior will 

likely require a multifaceted approach including cell fate mapping studies, high-dimensional, 

single-cell analysis techniques, and systems biology/computer modelling. However, this 

could then lead to personalized approach to the selective targeting of appropriate TAM 

subsets.
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Figure 1. Macrophages in pre-invasive lesions.
Epithelial cells within the basement membrane (BM) undergo transformation in response to 

a number of stimuli. This causes them to release factors that stimulate both the recruitment 

of Ly6C+ monocytes and the migration and/or gene expression of surrounding macrophages. 

These include CSF1, CCL2, EGF, MMPs and cathepsins. Co-operation may takes place 

between invading cancer cells (expressing CSF1) and macrophages (expressing EGF), to 

facilitate the movement of cancer cells towards neighboring blood vessels. Perivascular 

VEGFA+ macrophages then promote the escape of cancer cells into the circulation. 

Macrophage release of VEGFA also stimulates angiogenesis as pre-invasive lesions progress 

to invasive ones. Invading cancer cells are protected from anti-tumor immunity by the 
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expression of PD-L1 and IL-23 by macrophages in such sites. (green - macrophages; blue - 

epithelial/cancer cells; red - blood vessels).

Yang et al. Page 18

Cancer Res. Author manuscript; available in PMC 2019 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. The phenotype of TAMs in different compartments within established primary tumors.
A small sub-compartment within a tumor is shown consisting of 3 tumor ‘nests’ (areas of 

high cancer cell density) containing hypoxic/necrotic (H/N) areas; the tumor-stroma border 

(TSB) at the edge of tumor nests (grey dashed line); the stroma (which in most solid tumors 

is highly vascularized; red); and an invasive front (IF) between this part of the tumor mass 

and surrounding non-malignant tissue (pink). [Box – cell surface markers, enzymes and 

cytokines expressed by TAMs in these different regions. The main functions of the various 

TAM subsets have also been listed].
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