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Abstract

Background—Recently, several comprehensive genomic analyses demonstrated NOTCH1 and 

NOTCH3 mutations in head and neck squamous cell carcinoma (HNSCC) in approximately 20% 

of cases. Similar to other types of cancers, these studies also indicate that the NOTCH pathway is 

closely related to HNSCC progression. However, the role of NOTCH4 in HNSCC is less well 

understood.

Methods—We analyzed NOTCH4 pathway and downstream gene expression in the TCGA data 

set. To explore the functional role of NOTCH4, we performed in vitro proliferation, cisplatin 

viability, apoptosis, and cell cycle assays. We also compared the relationships among NOTCH4, 
HEY1 and epithelial mesenchymal transition (EMT) related genes using the TCGA data set and in 
vitro assays.

Results—HEY1 is specifically up-regulated in HNSCC compared with normal tissues in the 

TCGA data set. NOTCH4 is more significantly related to HEY1 activation in HNSCC in 

comparison to other NOTCH receptors. NOTCH4 promotes cell proliferation, cisplatin resistance, 

inhibition of apoptosis, and cell cycle dysregulation. Furthermore, NOTCH4 and HEY1 up-

regulation resulted in decreased E-cadherin expression and increased Vimentin, Fibronectin, 

TWIST1, and SOX2 expression. NOTCH4 and HEY1 expression were associated with an EMT 

phenotypes as well as increased invasion and cell migration.

Conclusion—In HNSCC the NOTCH4-HEY1 pathway is specifically up-regulated, induces 

proliferation and cisplatin resistance, and promotes EMT.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy in 

the world (1). Despite recent medical progress, HNSCC prognosis has not dramatically 

improved (2). Thus, defining novel therapeutic target genes and pathways provide an 

opportunity to elucidate the molecular alterations associated with HNSCC mechanism and 

improve therapeutic design. Similar to other types of cancers, HNSCC develops through 

several steps, including the accumulation of genetic and epigenetic alterations, including 

TP53 (3), CDKN2A (4), EGFR (5), and others.

The Cancer Genome Atlas (TCGA) project aims to examine genetic alterations for a better 

understanding of cancer pathology and, more importantly, identify signal pathways that can 

be used as potential targets in cancer treatment (6). Recently, using this data set, several 

types of cancers, such as lung (7), ovarian and colon cancer (8), were examined by 

comprehensive pathway analysis. For HNSCC, the comprehensive analysis of somatic 

genome alterations were also investigated using the TCGA data set (9). In this study, a 

NOTCH mutation was identified in approximately 20% of patients. In the other two articles, 

NOTCH1 is the second most frequently mutated gene after TP53 based on whole exome 

sequencing data (10, 11).

However, the NOTCH pathway changes its functional role depending on specific cancer site 

or histology. For example, an activated NOTCH pathway in cervical cancer has a poor 

prognosis (12). In the skin, a tumor suppressor function of NOTCH was reported in mouse 

keratinocyte tumor development (13). Interestingly, opposing and exclusive roles for the 

NOTCH pathway are reported in HNSCC (14). NOTCH pathway genes are up-regulated in 

HNSCC compared with normal or dysplasia tissues (15, 16). Sun et al. showed NOTCH3 
was overexpressed in HNSCC tumors compared with normal mucosa and NOTCH1 wild 

type HNSCC had increased NOTCH downstream genes HES1/HEY1 expression compared 

with normal mucosa, while NOTCH1 mutated HNSCC do not show up-regulation (17). 

Inhibition of the NOTCH pathway via a γ-secretase inhibitor decreases cell proliferation and 

invasion (18). On the other hand, NOTCH mutations in HNSCC are considered as 

inactivating types, indicating that NOTCH has a tumor suppressor function (17, 19). For 

example, Grandis et al. showed that more NOTCH1 gene mutations were observed than 

mutations in the other NOTCH receptor genes and many of NOTCH1 mutations were 

missense type (17, 19). To further explore the role of specific NOTCH receptors, we 

examined alterations in NOTCH pathway genes associated with HNSCC compared with 

normal tissue using TCGA data sets, and found NOTCH4-HEY1 pathway is specifically up-

regulated in HNSCC. Furthermore, in this study we explore the functional role of the 

NOTCH4-HEY1 pathway by using TCGA data set and in vitro experiments.

MATERIALS AND METHODS

TCGA data set

The mRNA expression data of the HNSCC patients were obtained from the TCGA data 

portal (http://tcga-data.nci.nih.gov/tcga/). We downloaded these data on 05/03/2016. These 

TCGA data included 520 HNSCC and 46 normal tissues. We used 447 HNSCC cases, 
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excluding 73 tumors with NOTCH mutations (Supplementary Table S1). NOTCH pathway 

genes included DTX1, JAG1, JAG2, DLL1, DLL3, DLL4, NOTCH1, NOTCH2, NOTCH3, 
NOTCH4, POU5F1, SOX2, NANOG, CD44 and LMO2. The HES high group was defined 

as tumors with expression 1 standard deviation greater than the mean of normal tissue for 

HES1 or HES5. HEY and NOTCH4 high groups were also defined as tumors with 

expression 1 standard deviation greater than the mean of normal tissue for HEY1 and 

NOTCH4. Other samples were defined as a low expressing group. mRNA expression was 

log2-transformed to calculate fold-change. The clinical background and prognosis of these 

patients was obtained from the firebrowse web site (http://firebrowse.org/).

Cell culture

We used SKN3, Cal27, SCC61 and SCC090 HNSCC cell lines. SKN3 was obtained from 

the Japanese Collection of Research Bioresource (Ibaraki, Osaka, Japan). SCC61 was 

obtained from the Weichselbaum Laboratory at the University of Chicago. Cal27 and 

SCC090 cells were obtained from the Gutkind Laboratory at the University of California 

San Diego, Moores Cancer Center. SCC090 was established from Human Papilloma Virus 

(HPV)-positive HNSCC tissues. Other three cells are established from HPV-negative 

HNSCC tissues. SKN3 was cultured in RPMI-1640 medium (Sigma Aldrich, St. Louis, MO, 

U.S.A.). Cal27, SCC61 and SCC090 were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM; Sigma Aldrich). Both mediums were supplemented with 10% fetal bovine serum 

(FBS) and a penicillin (50 U/ml) and streptomycin (50 μg/ml) cocktail. All cells were 

cultured under an atmosphere of 5% CO2 at 37°C.

Quantitative real-time PCR

Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate siRNA-

mediated knockdown of NOTCH4 and HEY1 and examine mRNA expression levels in each 

experiment. Briefly, total RNA was isolated from cells using the RNeasy plus mini kit 

(Qiagen, Hilden, Germany), and complementary DNA was synthesized using a high-

capacity cDNA reverse transcription kit (Thermo Fisher Scientific, Waltham, MA, U.S.A.). 

We obtained all primers from TaqMan Gene Expression Assays (catalogue number: 

#4331182. Thermo Fisher Scientific). Each gene ID is described as follows: β-actin 
(ACTB): Hs01060665_g1; NOTCH4: Hs00965895_g1; HES1: Hs00172878_m1; HEY1: 

Hs01114113_m1; E-cadherin: Hs01023895_m1; Fibronectin: Hs01549976_m1; Vimentin: 

Hs00958111_m1; TWIST1: Hs01675818_s1; ALDH1; Hs00946916_m1 and SOX2: 

Hs01053049_s1. The housekeeping gene ACTB was used as an internal control. qRT-PCR 

was performed using Quant Studio 6 Flex Real-Time PCR System (Thermo Fisher 

Scientific).

Western blotting

The following primary antibodies were added to nitrocellulose membrane with 5% non-fat 

dry milk in Tris-buffered saline and Tween 20: NOTCH4 (#2423, Cell Signaling 

Technology, Danvers, MA, U.S.A.), HES1 (#sc-25392, Santa Cruz, Dallas, TX, U.S.A.), 

HEY1 (#ab22614, Abcam, Cambridge, MA, U.S.A.), E-cadherin (#610181, BD Bioscience, 

San Jose, CA, U.S.A.), Fibronectin (#ab2413, Abcam), Vimentin (#V6630, Sigma Aldrich), 

TWIST1 (#sc-15393, Santa Cruz) and SOX2 (#2748, Cell Signaling Technology). HRP 
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conjugated goat anti-mouse (#1010-05, 1:20,000 dilution; SouthernBiotech, Birmingham, 

AL, U.S.A.) or anti-rabbit antibodies (#4010-05, 1:20,000 dilution; SouthernBiotech) were 

used as secondary antibodies.

Si-RNA and sh-RNA

HNSCC cell lines were transfected with siRNA reagents using Lipofectamine RNAi MAX 

(Thermo Fisher Scientific) according to the manufacturer’s instructions. All siRNA and si-

control reagents used ON-TARGET plus siRNA reagents (GE Dharmacon, Lafayette, CO, 

U.S.A.). Each catalogue number is described as follows: si-NOTCH4: SMART pool ON-

TARGET plus Human NOTCH4 siRNA (L-011883-00-0005); si-HES1: SMART pool ON-

TARGET plus Human HES1 siRNA (L-007770-02-0005); si-HEY1: SMART pool ON-

TARGET plus Human HEY1 siRNA (L-008709-00-0005); and si-control: ON-TARGET 

plus Non-targeting Pool (D-001810-10-20). Medium was changed 16 hours after siRNA 

transfection. mRNA inhibition was observed at a concentration of 30 nM siRNA at 48 hours 

after transfection. We also used sh-control and sh-NOTCH4 (CSHCTR001-LVRU6MP and 

HSH011877-LVRU6MP, Genecopoeia, Rockville, MD, U.S.A) to transfect Cal27 cells. The 

efficiency of down-regulation was validated by calculating mRNA and protein levels 

(Supplementary Fig. S2A,B, S3B,C,D,E,F). Thus, further analysis was performed under the 

same conditions.

Viability assay

Cells were seeded in 96-well plates at 1,500 to 9,000 cells/well. For proliferation assays, cell 

numbers were measured every 24 hours. For cisplatin viability assay, cells were cultured for 

24 hours after seeding, and 0.1 to 81 μM cisplatin was added (EMD Millipore, Billerica, 

MA, U.S.A.). The viability was measured 72 hours after cisplatin exposure. All cell 

viabilities were measured using Vita Blue Cell Viability Reagent (bimake.com, Houston, 

TX, U.S.A.). After a 1.5-hour preincubation in the assay solution, the viable cell number in 

each well was calculated by the fluorescence (Ex = 530–570 nm, Em = 590–620 nm) as 

measured by a microplate reader (BioTek, Winooski, VT, U.S.A.). The assays were 

performed three or more times.

Flow cytometry analysis

All flow cytometry analysis such as the NOTCH activity, apoptosis, cell cycle and aldefluor 

assay were performed using BD FACSCalibur (BD Bioscience). NOTCH activity was 

examined using a pGreenFire1-Notch plasmid (#TR020PA-1, System Bioscience, Palo Alto, 

CA, U.S.A.). This lentiviral transfection was performed according to the manufacturer’s 

protocol. The apoptotic cells were detected using Annexin V-FITC apoptosis detection kit 

(#C986X37, Sigma Aldrich). Cell cycle phase analysis was carried out using propidium 

iodide cell staining (#11348639001, Sigma Aldrich) and FlowJo software (ver.10, FLOWJO, 

Ashland, OR, U.S.A.). To assess ALDH1 activity, we used aldefluor kit (#01700, 

STEMCELL Technologies, Vancouver, BC, Canada) at a concentration of 50 μlml−1. 

Diethylaminobenzaldehyde (DEAB) was used to inhibit ALDH1 activity.
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Sphere formation assay

Cells were seeded in 6-well ultra-low attachment culture dishes (Corning, Tewksbury, MA, 

U.S.A.) at 10,000 cells/well. Medium consisted of Repro Stem medium (ReproCELL, 

Yokohama, Japan) and basic fibroblast growth factor (bFGF: 5 ng/ml) without FBS. After 7 

days, photos were obtained (Supplementary Fig. S3A), and sphere cells harvested to extract 

their mRNA. For qRT-PCR analysis, the adherent and sphere cells mRNA amounts are 

equalized. NOTCH4 and HEY1 expression were normalized by ACTB expression.

Migration and invasion assay

Migration assays were performed in cell culture insert (24-well 8μm pore size, #353097, 

Corning). The concentrations of cells were set from 105 to 2×105 cells/ml. Invasion assays 

were also performed in Corning BioCoat Matrigel invasion chambers (24-well 8μm pore 

size, #353097, Corning). The concentrations of cells were set from 2×105 to 4×105 cells/ml. 

Cells were seeded on uncoated or Matrigel-coated inserts in 500 ml of serum-free medium 

for migration or invasion assays respectively. The lower chambers were filled with 750 μl of 

10% FBS-supplemented medium. After 48 h, the cells on the lower surface of the insert 

were fixed and stained with crystal violet. The number of stained cells was counted at more 

than three fields under a microscope.

Statistical analysis

All in vitro experiments were performed at least three times. The statistical comparisons of 

two groups were performed using the Student’s t-test. The TCGA data set analysis of 

NOTCH pathway genes in the HES and HEY high and low groups was adjusted by false 

discovery rate using the Benjamini–Hochberg method. Clinical status was compared 

between two groups using Pearson’s chi-square test. Overall survival was compared using 

Log-Rank test. Differences were considered significant when P < 0.05. All statistical 

analyses were performed using JMP 12 software (SAS, Cary, NC, U.S.A.).

RESULTS

NOTCH4-HEY1 is upregulated in HNSCC

First, we examined which NOTCH pathway genes were significantly related NOTCH 
pathway activation in HNSCC compared with normal tissue using TCGA data sets. We 

excluded 73 NOTCH mutant samples (Supplementary Table S1). Thus, we examined 447 

HNSCC and 46 normal tissues. The NOTCH downstream genes HES1/5 and HEY1 were 

selected as indicators of downstream NOTCH activity. Two groups were divided according 

the mRNA expression of these genes compared with normal tissues. No significant 

difference in NOTCH pathway genes was noted between the HES1/5 high and low groups. 

On the other hand, HEY1 expression exhibited a significant correlation with several NOTCH 
pathway genes (DLL4, NOTCH1, NOTCH2, NOTCH3, NOTCH4, and SOX2). All NOTCH 
receptors were significantly related to HEY1 expression (Supplementary Fig. S1A). Among 

these receptors, NOTCH4 exhibited the most significant correlation to HEY1 
overexpression. NOTCH4 expression in the HEY1 high expressing group was increased 

approximately 1.58–fold compared with the HEY1 low expressing group (Fig. 1A, 
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Supplementary Fig. S1A). We also compared HES1, HES5 and HEY1 expression between 

HNSCC and normal tissues using the TCGA data set. HES1 expression in HNSCC was 

significantly decreased compared with normal tissues (P = 0.0002). HES5 expression was 

not significantly different between HNSCC and normal tissues (P = 0.1251). On the other 

hand, HEY1 expression of HNSCC significantly increased compared with normal tissues (P 
< 0.0001). HEY1 expression in tumor samples was about two times more than that of 

normal samples (Fig. 1B). In summary, HEY1 was up-regulated compared with normal 

tissues and was most related to NOTCH4 among the NOTCH receptors in HNSCC. These 

results suggested that the NOCH4-HEY1 pathway was specifically up-regulated in NOTCH 
wild type HNSCC compared with normal tissue.

NOTCH4 inhibition inhibits HNSCC and sensitizes HNSCC to cisplatin

To elucidate the properties of the NOTCH4-HEY1 pathway in HNSCC cells, we examined 

NOTCH4 function in HNSCC cells. First, we examined how NOTCH activity was affected 

by si-NOTCH4 cells (Supplementary Fig. S2A, S2B) using pGreenFire1-Notch plasmid. 

This reporter vector shows increased NOTCH activity (GFP+) cells as a result of GFP 

expression under the binding of a NOTCH specific transcriptional response element (Fig. 

2A). Using this vector, we showed si-NOTCH4 cells significantly decreased NOTCH 
activity in all cell lines (Fig. 2B, Supplementary Fig. S2C). We also compared cell 

proliferation between si-control and si-NOTCH4 (Fig. 2C). Si-NOTCH4 cells significantly 

reduced their proliferation compared with si-control cells in all cell lines. In SCC090 cells, 

si-NOTCH4 cell numbers decreased from day 2 to 3. Compared with si-control, si-NOTCH4 
cell numbers were decreased by 20~40% on day 3 (SKN3: 33.3%; Cal27: 24.9%; SCC61: 

42.0%; SCC090: 37.5%). Next, we assessed the chemo-resistance properties of si-NOTCH4 
cells (Fig. 2D, Supplementary Fig. S2D). We used cisplatin, commonly used for HNSCC 

chemotherapy. Similar to proliferation assays, si-NOTCH4 cells significantly decreased their 

cisplatin resistance compared with si-control cells in all cell lines. In comparing IC50, 

significant differences were noted between the si-control and si-NOTCH4. In particular, 

Cal27, SCC61 and SCC090 cells decreased IC50 by half to a third (Fig. 2D). These results 

demonstrated that NOTCH4 inhibition affects NOTCH activity, cell proliferation, and 

enhances chemo sensitivity in HNSCC cells.

NOTCH4 inhibits apoptosis and alters cell cycle

To elucidate what mechanism decreases si-NOTCH4 cell proliferation, we assumed it 

related to apoptosis and cell cycle alteration. First, we performed apoptosis assays 

(Supplementary Fig. S2E) and found that all the si-NOTCH4 cells statistically increased the 

apoptotic cell fraction compared to si-control cells in a modest fashion (Fig. 2E). 

Furthermore, we performed cell cycle analysis in si-NOTCH4 cells (Supplementary Fig. 

S2F). The significant increase of G0/G1 phase and decrease of S phase was noted in si-

NOTCH4 cells. This result suggested that the si-NOTCH4 cells inhibited cell cycle 

progression compared to si-control cells (Fig 2F). In these results, we can indicate that 

NOTCH4 decreases cell proliferation by regulating both apoptosis and cell cycle.
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NOTCH4 expression is correlated to EMT related gene expression

We explored other mechanisms related to NOTCH4 and HNSCC properties. NOTCH4 has 

been noted to induce epithelial mesenchymal transition (EMT) in melanoma (20). EMT 

promotes cancer proliferation (21) and can be associated with chemo-resistance (22). Thus, 

we hypothesized that NOTCH4 is also related to EMT in HNSCC and examined the 

relationship between NOTCH4 and EMT-related genes. Using the TCGA data set, we 

compared EMT related genes expression between NOTCH4 high and low groups. A 

significant decrease in the expression of E-cadherin, an epithelial marker, was noted in the 

NOTCH4 high group compared with the low group (P = 0.001, ratio = 0.760). The 

expression of mesenchymal markers, such as N-cadherin, Vimentin, and Fibronectin, was 

significantly increased in the high group compared with the low group (P < 0.0001). The 

expression of mesenchymal markers of NOTCH4 high group was several times higher than 

that of low group (N-cadherin: 2.854, Vimentin: 1.937, Fibronectin: 3.266). TWIST1 is 

known as an EMT-inducing gene, and its expression was significantly increased in the high 

group (P < 0.0001). The TWIST1 expression of NOTCH4 high group was 1.749 times more 

than that of NOTCH4 low group (Fig. 3A). SOX2 expression is also related to EMT genes 

(23). Its expression was also significantly increased in the high group (P < 0.0046). The 

SOX2 expression of NOTCH4 high group was 1.609 times more than that of NOTCH4 low 

group by using Student’s t-test (Fig. 3A). These results show an association between 

NOTCH4 and EMT in HNSCC and raise the possibility that NOTCH4 activation may in part 

drive EMT in HNSCC.

NOTCH4 promotes HNSCC EMT

To confirm this TCGA data set analysis in vitro, we generated sphere colonies 

(Supplementary Fig. S3A) that were employed to induce enrichment of EMT-related gene 

expression (24). As noted, the NOTCH4 expression was significantly increased in sphere 

cells derived from all HNSCC cell lines examined. NOTCH4 expression in sphere cells was 

increased approximately 1.8- to 3.5–fold compared with parental cells (Fig. 3B). Next, we 

also compared EMT-related genes between si-NOTCH4 and si-control cells. si-NOTCH4 
cells significantly increased E-cadherin expression in SKN3, Cal27 and SCC61 cells. On the 

contrary, si-NOTCH4 significantly reduced Vimentin (in Cal27, SCC61 and SCC090), 
Fibronectin (in the all cell lines) and TWIST1 (in Cal27, SCC61 and SCC090) expression. 

The SOX2 expressions of si-NOTCH4 cells significantly decreased in Cal27, SCC61 and 

SCC090 cells. However, a portion of si-NOTCH4 cells did not have significant changes in 

EMT-related genes. For example, E-cadherin and TWIST1 expression did not exhibit 

significant differences between si-NOTCH4 and si-control cells in SKN3 and SCC090, 

respectively. Fibronectin expression in si-NOTCH4 cells was significantly increased 

compared with si-control Cal27 cells. SOX2 expression in si-NOTCH4 cells was also 

significantly increased compared with si-control SKN3 cells (Fig. 4A). In western blot 

experiments, elevated E-cadherin expression was also found in Cal27 si-NOTCH4 cells. But, 

there was no obvious difference of E-cadherin expression between SKN3 si-control and si-

NOTCH4 cells. Fibronectin, Vimentin, TWIST1 and SOX2 expression decreased in both 

SKN3 and Cal27 si-NOTCH4 cells (Fig. 4B). Next, we examined the function of another 

HNSCC specific NOTCH pathway gene, HEY1.
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NOTCH4 specifically promotes HEY1 expression in HNSCC

Our TCGA data set analysis showed no significant difference in NOTCH pathway genes 

between the HES high and low expressing tumors. On the other hand, HEY1 expression 

exhibited a significant correlation with several NOTCH pathway genes (Fig. 1A, and 

Supplementary Fig. S1A). To confirm these findings in vitro, HES1 and HEY1 expression 

were compared between si-control and si-NOTCH4 by using qRT-PCR. No significant 

differences of HES1 expression were noted between si-control and si-NOTCH4 in SKN3, 

SCC61, and SCC090. In Cal27, HES1 expression was significantly increased in si-NOTCH4 
(Fig. 5A). On the other hand, HEY1 expression was significantly decreased in all cell lines 

with si-NOTCH4 (Fig. 5B). In western blot experiments, we obtained similar results. There 

were no HES1 expression changes between si-control and si-NOTCH4 cells, but si-

NOTCH4 cells had less HEY1 expression than si-control cells (Fig. 5C). Thus, similar to the 

TCGA data set analysis, our in vitro experiments also showed that NOTCH4 was 

significantly associated with HEY1 expression.

HEY1 inhibition decreases NOTCH4 expression in HNSCC

HEY1 is generally activated by NOTCH receptors. However, si-HEY1 cells significantly 

decreased NOTCH4 mRNA expression in all HNSCC cell lines (Fig. 5D and Supplementary 

Fig. S3B, S3C). We also found less NOTCH4 expression in si-HEY1 cells of SKN3, Cal27 

and SCC61 by western blot (Fig. 5E). These results may indicate that HEY1 also 

reciprocally regulates NOTCH4 expression in HNSCC.

HEY1 is expression is associated with EMT genes in HNSCC

Next, we hypothesized that HEY1 was also related to EMT in HNSCC similar to NOTCH4. 

Thus, using a TCGA data set similar to that used for NOTCH4 analysis, EMT-related genes 

were compared between HEY1 high and low groups (Fig. 6A). In contrast to NOTCH4, E-
cadherin expression was not significantly decreased in the HEY1 high group (P = 0.10, ratio 

= 0.825). However, the expressions of N-cadherin (P = 0.0038), Vimentin (P = 0.0068), 
Fibronectin (P = 0.0002), TWIST1 (P = 0.0025), and SOX2 (P < 0.0001) were significantly 

increased in the HEY1 high group (Fig. 6A). The expression of other EMT related genes of 

HEY1 high group were several times more than that of low group (N-cadherin: 2.332, 

Vimentin: 1.249, Fibronectin: 1.720, TWIST1: 1.228, SOX2: 3.724).

Similar to the previous NOTCH4 experiment, we compared HEY1 expression between 

parental and sphere cells. HEY1 expression significantly increased in sphere cells of all 

HNSCC cell lines. HEY1 expression in sphere cells was increased approximately 1.4- to 

3.5–fold compared with parental cells (Fig. 6B). To summarize our sphere cells experiments 

as shown Fig. 3B and 6B, sphere cells were enriched in both NOTCH4 and HEY1 
expression.

We also ascertained the relation of HEY1 and EMT genes in vitro. As shown in Fig. 7A, si-

HEY1 cells significantly increased E-cadherin expression in the all cell lines. On the 

contrary, si-NOTCH4 significantly reduced Vimentin, Fibronectin and TWIST1 expression 

in the all cell lines. The SOX2 expressions of si-HEY1 cells significantly decreased in 

SKN3, SCC61 and SCC090 cells. However, only si-HEY1 Cal27 cells did not have 
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significant changes of SOX2 expression (Fig. 7A). In western blot experiments, we also 

noted that si-HEY1 cells had higher E-cadherin expression and less mesenchymal marker 

gene (Vimentin, Fibronectin, TWIST1 and SOX2) expression than si-control cells. Only 

Cal27 cells lacked an obvious difference of E-cadherin expression (Fig. 7B). Furthermore, to 

assess whether these expression changes affect the cell phenotype, we performed migration 

and invasion assays. We found significant decrease of migrated and invaded cells in si-

NOTCH4 and si-HEY1 cells compared to si-control cells (Fig. 7C, 7D and 7E). In these 

results, we concluded that the NOTCH4-HEY1 pathway induces EMT in HNSCC.

Stable transfectants using sh-NOTCH4 were created in Cal27 cells, however, despite RNA 

knockdown, protein levels of NOTCH4 were unchanged, indicating that NOTCH4 
expression is obligate for survival in cell line systems (Supplementary Fig. S3D, S3E, S3F).

DISCUSSION

The NOTCH pathway is highly conserved through evolution and plays important roles 

during embryonic development (25). The NOTCH pathway also affects normal tissue cell 

proliferation and inhibits apoptosis (26). In mammals, the NOTCH pathway has four 

receptors (NOTCH1, 2, 3 and 4) and five ligands (JAG1 and 2, DLL1, 3 and 4), all of which 

are type 2 transmembrane proteins (27). This pathway is activated by a ligand binding to a 

NOTCH receptor. Subsequently, the γ-secretase complex releases the intracellular domain 

of the NOTCH receptor, which moves to the nucleus, resulting in the transcriptional 

activation of NOTCH target genes, such as the HES/HEY family (27, 28).

The NOTCH pathway is also an attractive cancer therapeutic target. For instance, inhibition 

of the NOTCH pathway by the γ-secretase inhibitor (GSI) decreases cell proliferation and 

invasion (18). Thus, several clinical trials use GSI for cancer treatment (29–32). However, 

GSI exhibits toxicity in normal stem cells and clinically results in gastrointestinal toxicity, 

diarrhea, hepatotoxicity and nephrotoxicity (33–37). Wu et al. considered that these adverse 

events resulted from GSI nonspecific effect for NOTCH pathway. Thus, they showed that 

inhibition of NOTCH1 or NOTCH2 alone mildly affected intestinal morphology and some 

goblet cell metaplasia, but that inhibition of both NOTCH1 and 2 caused severe intestinal 

toxicity in their mouse model (36). Furthermore, many studies assumed that GSIs used for 

clinical trails have biological equivalent effect for each NOTCH receptors. But, Ran et al. 
examined the NOTCH inhibition potential of several GSIs and showed these GSIs had 

different effect for each NOTCH receptors. For instance, not all GSIs had sufficient 

pharmacological effect for NOTCH4 (38). Harrison et al. also showed that two GSIs (DAPT 

and Dibenzazepine) had no effect on NOTCH4 in breast cancer cells (39).

Our TCGA data set analysis showed that that only HEY1 is up-regulated among the NOTCH 
downstream genes compared with normal tissues, in addition NOTCH4 is the most 

significantly associated with HEY1 activation in HNSCC. Next, we used pGreenFire1-Notch 

plasmid in order to examine to what extent NOTCH4 related to NOTCH activity. Wicha et 
al. used this vector to assess the NOTCH activity and show that NOTCH activity is related to 

tumorigenicity, cancer stem cells (CSCs), and poor prognosis in lung adenocarcinoma and 

breast cancer (40, 41). NOTCH4 receptor was expressed at 3-5 fold higher levels in the 
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NOTCH high activity cells compared to NOTCH low activity breast cancer cell lines. (41). 

We also show that si-NOTCH4 cells significantly decreased NOTCH activity in all cell lines. 

NOTCH4 is known to promote mouse mammary epithelial transformation and 

tumorigenesis (42). This report is the first study linking NOTCH4 and a cancer phenotype. 

Soriano et al. also demonstrated that normal mammary cells exhibited altered shape and 

promoted an invasive and tumorigenic phenotype by NOTCH4 (43). Thus, we next 

examined NOTCH4 function in HNSCC and showed NOTCH4 affected HNSCC cell 

proliferation and cisplatin resistance in vitro. There are several papers indicates that the 

NOTCH pathway affects cell cycle and apoptosis. For instance, Demarest et al. indicates that 

the NOTCH pathway promotes cell cycle progression and inhibits apoptosis by using T-ALL 

cells (44). As a result of our apoptosis and cell cycle analysis, we can suggest that NOTCH4 
decreases cell growth by regulating both apoptosis and the cell cycle.

Lombardo et al. showed that the EMT phenotype was induced by NOTCH4 in breast cancer 

cells (45). NOTCH4 is also known as an EMT trigger and promotes the metastasis of 

melanoma cells (20). EMT promotes cancer migration, invasion, metastasis (46) and is also 

related to poor prognosis. Thus, EMT represents one of the most important phenotypes in 

cancer therapy. In the melanoma study, NOTCH4 was also related to SOX2 expression and 

cell invasion. Clinically, approximately 60% of melanoma tissues express high levels of 

NOTCH4 protein. High NOTCH4 expression is related to metastasis and poor prognosis 

(20). We also demonstrated that NOTCH4 was related to EMT gene expression in HNSCC 

using the TCGA data set. By qRT-PCR and western blot analysis, not all cell lines exhibited 

a significant change in EMT-related genes upon NOTCH4 knockdown.

Using the TCGA data set, we demonstrated that HEY1 was significantly up-regulated in 

tumors compared with normal tissue among the NOTCH downstream genes. qRT-PCR and 

western blot analysis revealed the same result. In general, HEY1 is related to the 

development of the heart, neurogenesis and osteogenesis (47–51). In cardiovascular studies, 

HEY1 regulates endocardia EMT in septum and valve development (52). In heart 

development, HEY1 cooperates with TWIST1 to promote EMT (53). In cancer studies, 

HEY1 is an indicator of poor clinical prognosis in several cancer types, such as pancreas 

(54), colon (55), esophagus (56), and thyroid (57). In a thyroid cancer study, HEY1 
expression was also related to recurrence and metastasis (57). Lung metastasis of 

osteosarcoma cells was also promoted by HEY1 in a nude mouse model (58). However, few 

studies about EMT and HEY1 in cancers have been performed. Our current study is the first 

HNSCC study that assesses the relationship between HEY1 and EMT. In the TCGA data set 

analysis, TWIST1 and mesenchymal genes such as N-cadherin, Vimentin and Fibronectin 
were significantly increased in the HEY1 high group. But, E-cadherin expression was not 

significantly decreased in the HEY1 high group (Fig. 6A). However, this finding may result 

from the method used to divide the groups. For example, if the group was divided by the 

average of HNSCC HEY1 expression, E-cadherin had significant differences similar to other 

EMT-related genes (Supplementary Fig. S4A). Furthermore, our in vitro experiments 

showed that E-cadherin, Vimentin, Fibronectin and TWIST1 expressions exhibit significant 

differences between si-HEY1 and si-control cells in all cell lines. We also revealed that the 

NOTCH4-HEY1 pathway was significantly correlated with SOX2 in the TCGA data set and 

in vitro. SOX2 is a marker gene of tissue stem cells (59), CSCs (60) as well as EMT (23) in 
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the head and neck region. Furthermore, SOX2 is reported to co-expressed with HEY1/HEY2 
in the inner ear (61) and regulated by the NOTCH pathway in the developing inner ear. 

During inner ear development, HEY1 expression is significantly increased in the regulation 

of SOX2 (62). The NOTCH pathway is also necessary to maintain SOX2-positive stem cells 

in the pituitary gland (63). In our TCGA results, the HEY1 high group exhibited 3.72–fold 

increased SOX2 expression (Fig. 6A). In in vitro experiments, inhibition of HEY1 resulted 

in significantly decreased SOX2 expression. In these contexts, we suggest that HEY1 may 

regulate SOX2 as well as other EMT related genes in HNSCC (Fig. 7A, 7B). EMT is known 

to enhance cell migration and invasion (64). We also showed that both NOTCH4 and HEY1 
promoted migration and invasion properties (Fig. 7C, 7D and 7E). Thus, we concluded that 

the NOTCH4–HEY1 pathway induces EMT in HNSCC.

NOTCH4 expression is also reported to increase in breast CSCs (65). EMT is closely 

correlated with CSCSs (66). In HNSCC, CD10 (67), CD44 (68) and ALDH1 (69) are 

defined as CSCs markers. Thus, the expressions of these markers were compared between 

NOTCH4 and HEY1 high/low groups using the TCGA data set. Significant differences in 

ALDH1 and CD10 but not CD44 expression were noted between NOTCH4 high and low 

groups (Supplementary Fig. S5A). The ALDH1 expression also significantly increased in 

the HEY1 high group compared with the HEY1 low group. CD10 and CD44 expression did 

not exhibit a significant difference between HEY1 high and low groups (Supplementary Fig. 

S5B). Regarding ALDH1 expression, the NOTCH4 high group exhibited 1.63-fold increased 

expression and the HEY1 high group exhibited 5.87-fold increased expression compared 

with each low group. To elucidate the relationships between NOTCH4-HEY1 and ALDH1 
in vitro, ALDH1 expression was compared by using qRT-PCR, and significantly increased in 

both si-NOTCH4 and si-HEY1 of all HNSCC cell lines except Cal27 si-NOTCH4 cells 

(Supplementary Fig. S5C). We also performed aldefluor assays and found similar results, 

with both si-NOTCH4 and si-HEY1 cells showing and increased ALDH1+ fraction 

(Supplementary Fig. S5D, S5E). Young et al. show ALDH1 regulates NOTCH1 expression 

in ovarian cancer cells (70). In our results, we also suggest that ALDH1 can regulate 

NOTCH4-HEY1 pathway.

Wicha et al. showed high NOTCH4 and HEY1 expression in primary breast cancer patient 

samples correlated with poor overall survival using a TCGA data set (41). Simões et al. also 

showed NOTCH4 high breast cancer had high HEY1 expression and worse clinical 

prognosis, such as overall survival and metastasis free survival (65). Thus, we also compared 

the clinical background and prognosis between the NOTCH4/HEY1 high and low group 

using a TCGA data set (Supplementary Fig. S6A, S6B and Supplementary Table S2). We 

noted is no significant difference between the NOTCH4/HEY1 high and low group except 

the age of the HEY1 high/low group (Supplementary Table S2), as well as no difference in 

overall survival between the NOTCH4/HEY1 high and low group. (Supplementary Fig. 

S6A, S6B).

HEY1 is generally activated by NOTCH receptors. However, we demonstrate that si-HEY1 
cells significantly decreased NOTCH4 expression in all HNSCC cell lines (Fig. 5D, 5E). 

Whether this effect is direct or indirect is not known; however, this result may indicate that 
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HEY1 also regulates NOTCH4 expression. In other words, the NOTCH4-HEY1 pathway 

may create a positive feedback loop in HNSCC.

In this study, we used one HPV-positive HNSCC cell line, SCC090. The gene expression 

and pathways of HPV-positive HNSCC differs from HPV-negative HNSCC (71, 72). 

Regarding cancer therapy, HPV-positive HNSCC is more sensitive to radiation and 

chemotherapy than HPV-negative cancer (73). However, in our experiments, there were no 

differences in the results between SCC090 and the other HPV-negative HNSCC cell lines. 

This finding indicates that the function of the NOTCH4-HEY1 pathway does not change 

regardless of HPV status.

In conclusion, we demonstrate that the NOTCH4-HEY1 pathway of HNSCC is specifically 

up-regulated and promotes EMT. NOTCH4 is also related to proliferation, chemoresistance, 

apoptosis inhibition, and cell cycle alteration in HNSCC. Thus, this pathway may represent a 

novel target for HNSCC therapy or may serve as a target to improve chemotherapeutic 

sensitivity.
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STATEMENT OF TRANSLATIONAL RELEVANCE

The identification of HNSCC specific genes and pathways may be essential for targeted 

cancer therapy. Recently, several comprehensive genomic analyses reveal that the 

NOTCH pathway is closely related to HNSCC progression. However, defining which 

NOTCH pathway predominantly affects HNSCC development is not well examined and 

understood. In this study, we examined the role of NOTCH4 using the TCGA data set 

and in vitro experiments. Consequently, we demonstrate that the NOTCH4-HEY1 
pathway is specifically up-regulated in HNSCC compared with normal tissue. We also 

demonstrate that NOTCH4 promotes HNSCC proliferation, cisplatin resistance, a 

reduction in apoptosis and cell cycle alterations. Finally, we indicate that the NOTCH4-
HEY1 pathway promotes EMT by examining EMT-related genes such as E-cadherin, 
Vimentin, Fibronectin, TWIST1 and SOX2. This finding has great potential for 

expanding our knowledge regarding the NOTCH pathway in cancer biology and may 

provide guidance in the development of novel specific HNSCC therapies.
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Figure 1. TCGA data set analysis of HES/HEY and NOTCH4 relation
(A) NOTCH4 expression is compared between the HES (HES1+HES5) and HEY1 high/low 

group using the TCGA data set. Ratio is calculated by dividing the mRNA expression of the 

HES or HEY1 high group by that of the low group. (B) HES1, HES5 and HEY1 expression 

are compared between HNSCC and normal tissue using the TCGA data set. Ratio is 

calculated by dividing the mRNA expression of the tumor samples by that of the normal 

samples. Whiskers indicate the minimum and maximum values. P value is calculated by 

using Student’s t-test.
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Figure 2. NOTCH activity, proliferation, cisplatin viability, apoptosis assay and cell cycle analysis 
of si-NOTCH4 cells
(A) pGreenFire1-Notch plasmid vector was transfected to SKN3 cell. Scale bar indicates 

100 μm. (B) NOTCH activity assay of si-control and si-NOTCH4 cells. GFP positive cells 

have high NOTCH activity. (C) Proliferation assays. si-NOTCH4 cells are compared cell 

growths to si-control cells on day 3. (D) IC50 of cisplatin in parental, si-control and si-

NOTCH4 cells. The IC50 differences between si-control and si-NOTCH4 cells are 

compared. (E) Apoptosis assays. Total apoptotic fraction is defined as the sum of early and 

late apoptosis cells. (F) Cell cycle analysis. Each cell cycle phase is compared between si-

control and si-NOTCH4 cells. P value is calculated by using Student’s t-test. *: P < 0.05, **: 

P < 0.01.
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Figure 3. Comparison of EMT-related genes between the NOTCH4 high and low groups using the 
TCGA data set. Comparison of NOTCH4 expression between sphere and parental cells
(A) The NOTCH4 high group is defined as tumors with expression 1 standard deviation 

greater than the mean of normal tissue for NOTCH4. The other tumors are defined as the 

low group. The boxes represent the interquartile range (25th-75th), and horizontal lines inside 

the boxes indicate the median. Whiskers indicate the minimum and maximum values. Ratio 

is calculated by dividing the mRNA expression of the high group by the expression of the 

low group. (B) NOTCH4 expression is compared between parental and sphere cells using 

qRT-PCR. P value is calculated by using Student’s t-test. **: P < 0.01.
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Figure 4. The expression of EMT-related genes in si-NOTCH4 cells
(A) EMT-related gene (E-cadherin, Vimentin, Fibronectin, TWIST1, and SOX2) expression 

in parental, si-control and si-NOTCH4 cells is measured by qRT-PCR. The expression 

differences between si-control and si-NOTCH4 cells are compared. P value is calculated by 

using Student’s t-test. *: P < 0.05, **: P < 0.01, N.S.: not significant. (B) Western blots of 

EMT-related genes in si-control and si-NOTCH4 of SKN3 and Cal27 cells. GAPDH 
antibody is used as a control.
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Figure 5. HES1/HEY1 expression in si-NOTCH4 cells and NOTCH4 expression in si-HEY1 cells
HES1 (A) and HEY1 (B) expression in parental, si-control and si-NOTCH4 cells. mRNA 

expression is measured by qRT-PCR. The expression differences between si-control and si-

NOTCH4 cells are compared. (C) Western blots of HES1 and HEY1 in si-control and si-

NOTCH4 cells. (D) NOTCH4 expression of parental, si-control and si-HEY1 cells. mRNA 

expression is measured by qRT-PCR. The expression differences between si-control and si-

HEY1 cells are compared. (E) Western blots of NOTCH4 in si-control and si-HEY1 cells. 

GAPDH antibody is used as a control. P value is calculated by using Student’s t-test. *: P < 

0.05, **: P < 0.01, N.S.: not significant.
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Figure 6. Comparison of HEY1 and EMT-related genes using TCGA data set. Comparison of 
HEY1 expression between sphere and parental cells
(A) Comparison of EMT-related genes between HEY1 high and low groups using the TCGA 

data set. The boxes represent the interquartile range (25th-75th), and horizontal lines inside 

the boxes indicate median. Whiskers indicate the minimum and maximum values. Ratio is 

calculated by dividing the mRNA expression of the high group by the expression of the low 

group. (B) HEY1 expression is compared between parental and sphere cells using qRT-PCR. 

P value is calculated by using Student’s t-test. **: P < 0.01.
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Figure 7. HEY1 relates to EMT gene expression and EMT functions
(A) The comparisons of EMT-related gene (E-cadherin, Vimentin, Fibronectin, TWIST1 and 

SOX2) expressions among parental, si-control and si-HEY1 cells. The expression 

differences between si-control and si-HEY1 cells are compared. (B) Western blots of EMT-

related genes in si-control and si-HEY1 cells. (C) Representative images of migration and 

invasion assays. The cell line is SCC090. (D, E) Migration and invasion assays in parental, 

si-control, si-NOTCH4 and si-HEY1 cells. The migration and invasion indexes were 

calculated by deviding the number of parental cells thorough the chamber. The differences 

between si-control and si-NOTCH4/si-HEY1 cells are compared. P value is calculated by 

using Student’s t-test. *: P < 0.05, **: P < 0.01, N.S.: not significant.
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