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Abstract

Decision making based on behavioral and neural observations of living systems has been

extensively studied in brain science, psychology, neuroeconomics, and other disciplines.

Decision-making mechanisms have also been experimentally implemented in physical pro-

cesses, such as single photons and chaotic lasers. The findings of these experiments sug-

gest that there is a certain common basis in describing decision making, regardless of its

physical realizations. In this study, we propose a local reservoir model to account for choice-

based learning (CBL). CBL describes decision consistency as a phenomenon where making

a certain decision increases the possibility of making that same decision again later. This

phenomenon has been intensively investigated in neuroscience, psychology, and other

related fields. Our proposed model is inspired by the viewpoint that a decision is affected by

its local environment, which is referred to as a local reservoir. If the size of the local reservoir

is large enough, consecutive decision making will not be affected by previous decisions,

thus showing lower degrees of decision consistency in CBL. In contrast, if the size of the

local reservoir decreases, a biased distribution occurs within it, which leads to higher

degrees of decision consistency in CBL. In this study, an analytical approach for characteriz-

ing local reservoirs is presented, as well as several numerical demonstrations. Furthermore,

a physical architecture for CBL based on single photons is discussed, and the effects of

local reservoirs are numerically demonstrated. Decision consistency in human decision-

making tasks and in recruiting empirical data is evaluated based on the local reservoir. This

foundation based on a local reservoir offers further insights into the understanding and

design of decision making.
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Introduction

Decision making based on behavioral and neural experimental findings has been studied in a

variety of disciplines, ranging from neuroscience to neuroeconomics [1–5]. Decision making

also forms a foundation for artificial intelligence [6]. For instance, artificially constructed phys-

ical decision-making mechanisms have been recently experimentally implemented using sin-

gle photons [7] and chaotic lasers [8]. Because decision making demands that a choice be

made between two or more various alternatives on both the neuronal level of the brain and at

the physical level of photons or chaotic lasers, a common foundation––in the form of a specific

computational mechanism––must be assumed on different levels, regardless of its physical

realizations. This concept is schematically summarized in Fig 1A.

One commonality in decision making on different levels is that previous decisions may

impact current and future decisions. For instance, choosing one option may cause one to

choose it again in the future. Such decision consistency has been described as choice-based

learning (CBL), or more precisely, choice-induced preference change, which has been exten-

sively studied in neuroscience, psychology, and other related fields [9–14]. However, the

underlying computational mechanisms of CBL remain unclear.

In this study, we propose a specific model, the local reservoir model, as one computational

mechanism that drives decision consistency in CBL. The local reservoir model highlights the

hidden architecture (or environments) behind decision making that naturally incorporates the

intrinsic attributes of the entities. In addition, the model accommodates uncertainties or fluc-

tuations in a systematic manner. In the local reservoir model, a decision between two possible

choices is represented as an energy dissipation to either of two lower energy states; dissipation

to the “left” state is correlated with one decision, while dissipation to the “right” state is associ-

ated with the other decision. Importantly, the energy dissipation should be absorbed by the

surrounding environments, which are referred to as local reservoirs. If the size of the local res-

ervoir is large enough, consecutive decision making will not be affected by past decisions, thus

demonstrating lower degrees of CBL. In contrast, if the size of the local reservoir decreases, a

biased distribution could occur in the local reservoir, leading to identical decisions with high

degrees of CBL.

This study is organized as follows. First, the local reservoir model is introduced, followed by

numerical evaluations in which decision consistency in CBL is clearly observed to be depen-

dent on the size of local reservoir. Then, we present an analytical approach for characterizing

the local reservoir and generalizing the dynamic attributes of the model. In addition, a single-

photon-based physical architecture for decision consistency in CBL is discussed as a realiza-

tion of the local reservoir model. Furthermore, empirical data on decision consistency in

human decision making are analyzed from the viewpoint of local reservoirs. Finally, we discuss

various applications of the local reservoir model, such as reinforcement learning [6,15], inter-

nally guided and externally guided decision making [10], and self [16] and consciousness [17–

19] at the neural level of the brain.

Local reservoir model

The local reservoir model is inspired by the category theoretic analysis of decision making

[20]. The decision-making issue therein was the multi-armed bandit problem (MAB), in

which an accurate and prompt decision is required to choose the most profitable slot machine

among many slot machines. The MAB problem is difficult to solve because exploratory action

is needed to find the best slot machine, but too much exploration leads to significant losses. At

the same time, hasty decision making may result in missing the best machine [6]. The category

theoretic study reveals that environmental entities are involved in the decision-making
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process, and that they appear in the form of an octahedral structure. This means that a total of

six entities are interdependent with each other [20,21]. What is important is that a decision is

tightly related to the environment, which is schematically summarized as shown in Fig 1B.

This study was inspired by this realization and examines decision consistency in CBL, or

choice-induced preference change, which have been studied in a variety of research [9–14]. To

highlight the most simplified spatial and temporal aspects of a local reservoir and its impact to

CBL, we provide discussions using a one-dimensional model. In addition, the local reservoir

approach described below can be easily extendable to other learning problems, such as rein-

forcement learning.

The number of choices considered in this study is two, and are referred to as Decision L

and Decision R hereafter. As schematically shown in Fig 2, we consider a diagram that mimics

an energy-level diagram of quantum nanostructures. In this diagram, one upper energy level

(denoted by A(U)) and two lower levels (AðLÞL and AðLÞR ) exist. An elemental excitation (e.g., an

electron) can occupy each of these levels while satisfying the condition that the number of exci-

tations sitting on a particular level is only one; namely, excitations are assumed to be fermion.

An excitation in the upper level is relaxed to one of the lower levels via energy dissipation.

Hereafter, we refer to this diagram as the visible system.

We consider the relaxation to the “left” lower level (AðLÞL ) as Decision L and the relaxation to

the “right” (AðLÞR ) as Decision R. Importantly, the energy dissipation should be absorbed by the

surrounding environments; this is where the local reservoir comes into play. If the surrounding

environment cannot accommodate energy dissipation, the excitation in the upper level cannot

be relaxed to lower levels; one such phenomenon is known as the phonon bottleneck [22].

Here, we see a direct correspondence between the relaxation in the visible system and the

energy dissipation occurring in the surrounding environment that provides the local reservoir.

The relaxation to the lower-left level in the visible system, i.e., Decision L denoted by a green

arrow (Fig 2A), corresponds to an excitation in the upper-right level in the local reservoir,

which is also indicated by the green arrow (Fig 2B). Conversely, the relaxation to the lower-

right level in the visible system, i.e., Decision R denoted by a yellow arrow, corresponds to an

excitation in the upper-left level in the local reservoir, also marked by a yellow arrow. As a

Fig 1. Decision consistency in CBL occurs both in photon systems and neural systems; we propose the local reservoir model for a common

underlying model. (A) Overall approach to the subject matter. (B) Decision making is coupled with an environment wherein the architecture is

viewed by the relation among the “visible system” and the “local reservoir”.

https://doi.org/10.1371/journal.pone.0205161.g001
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consequence, the relaxation in the visible system could be biased toward the left (or Decision

L) or right (Decision R) if the local reservoir accommodates excitations in an unbalanced man-

ner to the right or left, respectively. Ultimately, if excitations in the local reservoir are exclu-

sively allowed to the right (indicated by green arrows), for example, consecutive decisions

observed in the visible system are all Decision L (shown by the green arrow).

We then quantitively analyze the behavior using the following model. The number of lower

energy levels in the local reservoir is denoted by N, which is equal to five in the schematic dia-

gram shown in Fig 2. Each of the energy levels is denoted by LðLÞi where i ranges from 1 to N.

The upper energy levels are labeled by LðUÞi , where i ranges from 1 to N + 1. Here, we recall that

Decision L is regarded as a relaxation to the left lower energy level in the apparent system. Cor-

respondingly, one excitation located in the lower energy level in the local reservoir is excited in

the upper level on the right side. For example, the arrow denoted by L2 in Fig 2 is a rightward

excitation from LðLÞ2 to LðUÞ3 . Actually, the decision (or relaxation) observed in the apparent sys-

tem stems from such an excitation in the local reservoir. We can equate the decision indicated

by the apparent system with an excitation in the local reservoir.

Consequently, because the excitation originally located at LðLÞ2 is now excited, the possibility

of excitation from LðLÞ2 to LðUÞ2 , marked by R2, is zero. In addition, because energy level LðUÞ3 is

now occupied, another excitation resting in LðLÞ3 cannot be excited to LðUÞ3 , marked by R3. As a

result, two yellow-colored arrows (R2 and R3) are disabled; energy excitation by these means

Fig 2. Local reservoir modeling for CBL consistency. (A) A visible system, which acts as a physical system, is coupled

with (B) a local reservoir in which environmental context exerts influence. Relaxation to the lower-left level in the

visible system represents Decision L, which corresponds to an excitation in the upper-right level in the local reservoir.

Conversely, relaxation to the lower-right level in the visible system denotes Decision R, which corresponds to an

excitation in the upper-left level in the local reservoir. As a consequence, if the local reservoir accommodates

excitations in an unbalanced manner, consecutively identical decisions can be observed in the visible system.

https://doi.org/10.1371/journal.pone.0205161.g002
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is unavailable, whereas the disabled green arrow is only L2. Therefore, what follows is that the

number of green arrows is greater than the number of yellow arrows; hence, an excitation is

more likely to be induced via one of the green arrows in the local reservoir in the next step.

This means that Decision L is more preferably chosen than Decision R, demonstrating the

occurrence of CBL. Specifically, the selection of the first decision (Decision L) leads to a greater

likelihood of choosing that same decision (Decision L) in the second round. For the 3rd deci-

sion, there are three green arrows and only one yellow arrow in the local reservoir; thus, the

likelihood of Decision L is more probable than Decision R.

If the size of the local reservoir is large enough (N� 1), one decision does not create a sig-

nificant impact on the local reservoir. The imbalance between the green and yellow arrows is

negligible. Therefore, consecutive decisions will not be affected by past decisions, thereby dem-

onstrating lower degrees of CBL. In contrast, if the size of the local reservoir is small, a biased

distribution occurs in the local reservoir, as described in the abovementioned example, which

leads to a high degree of CBL.

Numerical evaluations were performed to characterize the relation between the properties

of local reservoirs and CBL. To avoid to the creation of artifacts after the “initial” state, in

which all the upper energy levels of the local reservoir are empty, we evaluated the decisions

after sufficient time had elapsed. Meanwhile, as the time elapses, all the upper energy levels

could be occupied, meaning that no more decisions are made. In reality, the excitations

induced in the upper energy levels are relaxed to the reservoir of the local reservoir. Likewise,

the empty lower energy levels in the local reservoir are filled with another excitation via its res-

ervoir. We analytically characterize the dynamics of relaxation and excitations associated with

the local reservoir in the next section. In the numerical simulations, we introduced the notion

of excitation “lifetime” in the local reservoir. When an excitation moves from a lower level to

an upper level, three paths are eventually disabled, as described above. We assume that such

disabled arrows are recovered after the lifetime-value cycles have elapsed in the numerical

model. Physically, this means that the vacant lower energy level is filled or that the occupied

upper energy level is vacant after the lifetime-value cycles.

More specifically, 3,000 consecutive decisions were made and the sequence was repeated

100,000 times. At each time step, an available excitation or arrow in the local reservoir was

selected randomly to provide either Decision L or Decision R. We used a uniformly distributed

random number based on the Mersenne Twister for the random selection. In evaluating CBL,

we first checked the decision at cycle T0 = 2,000. The decision consistency at cycle T0 + t is one

if the decision at T0 + t is the same as that at cycle T0; otherwise, the decision consistency is

zero. In the analysis shown in Fig 3A, the lifetime value was assumed to be 10. The average

decision consistency was calculated from 100,000 samples as a function of the cycle t (after T0)

with regard to a local reservoir size (N) of 4, 10, 20, 30, 40, 50, and 100, as shown in Fig 3A. As

shown in the figure, the decision consistency was higher with smaller-sized local reservoirs. At

the same time, as the time elapses, for instance when t was higher than 50, the decision consis-

tency converged to 0.5, meaning that there was no correlation between the decisions at T0 and

T0 + t. These observations demonstrate that a smaller-sized local reservoir yields a higher

degree of CBL.

The following remarks pertain to the numerical model. Decision consistency is defined as

the sameness between the decisions at T1 and at T2, where both T1 and T2 are positive integer

values. A decision is either Decision L or Decision R, and this is directly associated with the

excitation occurring in the local reservoir. Hence, we can say that an implicit decision takes

place at each step in time. Moreover, the lifetime is defined by an integer value whose unit is

equivalent to the decision-making step.

Local reservoir model for choice-based learning
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Fig 3B visualizes CBL in the simulation from the perspective of a random walker, where

Decision L is evaluated as a unit positional change in the upward direction, whereas Decision

R is presented as a unit change in the downward direction. The red-colored tracks depict sev-

eral walkers beginning with Decision L at cycle T0 whereas the blue-colored tracks represent

traces starting with Decision R at cycle T0. With a smaller-sized local reservoir (N = 4), the

blue traces and red traces are biased upward and downward, respectively, indicating that the

chance of conducting the same decisions after cycle T0 increases (Fig 3B). However, both the

blue and red traces behave similarly to a conventional random walker with a larger-sized local

reservoir (N = 100) (Fig 3(C).

Fig 3D characterizes the dependence on the lifetime value. The maximum decision consis-

tency was evaluated as a function of the size of the local reservoir when the lifetime values were

1, 5, 10, 15, and 20. As the lifetime value increased, the decision consistency exhibited values

higher than 0.5, even in larger-sized local reservoirs. This is a natural consequence because a

large lifetime value provides a higher degree of upper energy level occupations, or increased

appearances of disabled arrows in the local reservoir. It is noteworthy that a lifetime value of 1

yields a decision consistency of around 0.5 regardless of the size of the local reservoir. A life-

time value of 1 means that the upper energy levels of the local reservoir are always completely

empty, which leads to an equal probability of choosing Decision L and R, no matter the size of

the local reservoir. Therefore, CBL is not observed, regardless of the size of the local reservoir.

Fig 3E shows an evaluation of the active portion, defined as the percentage of the used
arrows in the local reservoir at cycle T0, as a function of the size of local reservoir. The active

portion decreases as the increase of the size of local reservoir while it increases as the lifetime

value increases. This is consistent with the increased decision consistency in the smaller-sized

and large-lifetime local reservoir.

Finally, it should be emphasized that there are no probabilistic parameters implemented in

the numerical model. Rather, it relies exclusively on the random selection of the available exci-

tations in the local reservoir at each time step. The versatile behavior of the decision consis-

tency observed in Fig 3 stems from the size and the lifetime value of the local reservoir.

Analytical approach to local reservoir model

The dynamics of a local reservoir are specified by three characteristics: (i) the rate at which the

lower energy levels are filled (γin), (ii) the rate of excitation from a lower energy level to an

upper energy level (γup), and (iii) the rate of excitation disappearance from the upper energy

levels (γout). To examine the impact of such dynamics, we constructed an analytical model of

the local reservoir and analyzed its steady state. Note that the aspects highlighted by the

numerical approach in the preceding section differ from those of the analytical approach

described here.

For an N = 1 system (Fig 4A) in which there are eight total states concerning the excitation

occupation in the upper levels (LðUÞ1 and LðUÞ2 ) and the lower level (LðLÞ1 ), let each state be speci-

fied by index numbers (1,. . .,8), as shown in Fig 4A. The states are related to each other by the

dynamics of one of the three aforementioned characteristics. For example, the empty state

(No. 1) is transferred to the state of owing an excitation in the lower level (No. 2) via excitation

Fig 3. CBL learning behavior via local reservoir. (A) Decision consistency, which indicates the degree of CBL, exhibits higher values

when the size of the local reservoir is small, whereas larger local reservoirs do not yield CBL. (B,C) Consecutive decisions are visualized

in a random walk in the case of small and large local reservoirs. (D) The dependency to the internal dynamics of local reservoir

(lifetime value). (E) Active portion of local reservoir as a function of the size of the local reservoir.

https://doi.org/10.1371/journal.pone.0205161.g003
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Fig 4. Analytical modeling of local reservoir. (A) The state transition diagram when the size of local reservoir (N) is 1; the

number of lower energy levels is one. (B,C) When N = 2, the probability of making the same consecutive decision is higher

than that of changing decisions when the internal dynamics of the local reservoir is slow.

https://doi.org/10.1371/journal.pone.0205161.g004
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fulfilling dynamics (γin). Consequently, the rate equation of the local reservoir is given by

dp1=dt

dp2=dt

dp3=dt

dp4=dt

dp5=dt

dp6=dt

dp7=dt

dp8=dt
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where pi (i = 1, . . ., 8) represents the probability of the occupying state, i. In the steady state, pi is

derived by solving Eq (1) and letting the left-hand side be zero, and allowing the condition of the

unity of probabilities to be as follows: ∑pi = 1.

In other words, pi (i = 1, . . ., 8) concerns with the excitation occupation in state i of the

local reservoir, as shown in Fig 4A. For example, the transition from state 2 (an excitation in

the lower level) to state 4 (an excitation in the upper-right level) refers to an excitation in the

upper-right level, as indicated by the green arrow, meaning that there was a corresponding

relaxation to the lower-left level of the visible system; that is, the decision is Decision L. Like-

wise, the transition from state 6 (two excitations in the lower level and in the upper-right level)

to the state 7 (two excitations in both of the upper levels) refers to an excitation in the upper-

left level, as indicated by the yellow arrow, meaning that there was a corresponding relaxation

to the lower-right level of the visible system; that is, the decision is Decision R.

Because our interest is focused on trends in consecutive identical decision making, we are

concerned with what the probability is for Decision L to be followed by the same decision,

referred to as P(L!L), compared to the probability of Decision L to followed by a different

decision (Decision R), denoted by P(L!R). The decision transition probability P(L!L) con-

sists of a variety of state transitions, such as "2!4!1!2!4", "2!4!6!2!4". We do not

present entire transitions here in order to avoid unnecessarily complex descriptions, but it

should be remarked that decision transition probabilities are systematically derived, even as N
becomes large, and hence the decision transition probabilities are computable. Specifically, the

imbalance of decision transition probabilities, P(L!L)−P(L!R), is easily and analytically

derived when N = 1 and is given by

gingup

ðgin þ goutÞðgup þ goutÞ

(
1

2
ðp1 þ p2Þ þ

gingout þ goutðgup þ goutÞ

2ðgin þ goutÞðgup þ goutÞ
ðp3 þ p4Þ

þ
2ð2gin þ goutÞðgup þ goutÞg

2
out þ gingoutðgin þ goutÞ

2

2ðgin þ 2goutÞðgin þ goutÞ
2
ðgup þ goutÞ

p7 þ
gout

2ðgup þ goutÞ
ðp5 þ p6 þ p8Þ

)

:

ð2Þ

In fact, an N = 1 local reservoir does not lead to CBL. This can be intuitively understood

because the occupation of one of the upper energy levels prohibits the same path of

excitations.

Note that we solve Eq 1 by letting the left-hand side be zero, meaning that we characterize

the steady state of the system. Hence, the discrete time gap between consecutive decisions is

not directly represented. Nevertheless, the model analytically provides the decision transition

probability in the steady state, such as P(L!L), that corresponds to yielding two consecutively

identical decisions.

An interesting observation occurs in CBL when N is larger than two. Because the number

of states becomes large (32), the analytical derivation of the explicit forms of state probabilities

Local reservoir model for choice-based learning
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becomes difficult to perform in practice. However, the procedure is essentially the same as in

the above example of N = 1; hence, the state transition probabilities are derived in a straightfor-

ward manner. We evaluate decision transition probabilities with respect to several representa-

tive cases when the relaxation rates (γin, γup, γout) are specified by (i) (10,1,1), (ii) (1,10,1), and

(iii) (1,1,10) (Fig 4B). As characterized in Fig 4C, the imbalance of decision transition probabil-

ities P(L!L)−P(L!R) exhibits a positive value with (γin, γup, γout) = (1, 1, 10), meaning that a

consecutive identical decision is much more probable than non-identical decisions. Physically,

this condition is consistent with the larger lifetime local reservoirs discussed in the previous

section; the excitations are clogged within the local reservoir. However, the local reservoir

dynamics of (γin, γup, γout) = (1, 10, 1) indicate that excitations are quickly excited and relaxed

to the reservoir, which corresponds to smaller lifetime-value local reservoirs that do not yield

consecutive identical decisions (or CBL).

Decision consistency in single-photon system and local reservoir model

As discussed in the introduction, CBL has been studied based on experimental observations in

humans [9,10] and monkeys [23]. Further, Yoshihara et al. experimentally demonstrated a

conditioned response for a fly, drosophila, which we consider to be another fundamental reali-

zation of CBL in living organisms [24]. In addition, an artificially constructed decision-making

mechanism has been recently investigated [7,8]. This mechanism demonstrates the fact that

learning behavior is directly implementable by utilizing intrinsic physical processes.

This section discusses a simple, single-photon-based, architecture design in which decision

consistency in CBL behavior is produced. The notion of the local reservoir is naturally intro-

duced in the system. Fig 5A shows the overall system configurations, similar to the single-pho-

ton decision maker that experimentally solves the two-armed bandit problem [7]. A linearly

polarized single photon impinges on a polarization beam splitter (PBS) and is detected by one

of two photodetectors: PD1 and PD2. Because of the probabilistic attribute of single photons,

the photon detection event occurs at a 50:50 ratio if the linear polarization is oriented by π/4

with respect to the horizontal direction. The photon detection events at PD1 (PD2) increase if

single photon polarization acts toward the horizontal (vertical) direction. This can be achieved

by controlling the half waveplate located in front of the PBS.

Here we assume that PD1 photon detection is directly associated with Decision 1, and that

PD2 photon detection is associated with Decision 2. Let the initial single photon polarization

be equal to π/4. When Decision 1 occurs, the waveplate is rotated in the horizontal direction

by a certain Δ. Likewise, Decision 2 leads the waveplate to be controlled towards the vertical

wing with a fraction given by Δ, as schematically shown in Fig 5B. Hence, it is more probable

that the same photodetector receives single photons in subsequent measurements, which is

representative of CBL behavior. In the numerical simulations, 500 consecutive decisions were

made, and this sequence was repeated 100,000 times. The decision consistency is consistent

with the above discussion in former sections. The decision consistency is defined as one when

the decision at cycle t is equal to the initial decision, and defined as zero when cycle t is not

equal to the initial decision. The amount of polarization rotation is configured by Δ = π / R,

where R ranges from 4–1000. When the orientation of the waveplate is configured outside the

range between 0 and π/2, the subsequent decisions are terminated.

The inset in Fig 5C shows the average decision consistency as a function of elapsed cycles

when assuming R values of 5, 10, 50, and 100. With smaller R values (R = 5, 10), decision con-

sistencies exhibit large values in the initial cycles because the large amount of Δ (= π /R) drasti-

cally biases the single photon polarizations. Consequently, the orientation waveplate quickly

orients vertically or horizontally, leading to the termination of the decision-making process.
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This yields a reduction in consistency decreases after a certain number of cycles. On the con-

trary, for larger R values (R = 50,100), the decision consistencies do not exhibit larger values

because the smaller Δ allows the system to stay around the initial π/4 orientation.

Indeed, the R values correspond to the size of the local reservoir discussed in the former sec-

tions. A larger R-value indicates a larger local reservoir, where the correspondence is that a

small amount of Δ gives rise to abundant fluctuations (hence, lower degree of CBL). Con-

versely, smaller R-values indicate the presence of a smaller local reservoir, which means that a

Fig 5. Single-photon-based system exhibiting CBL. (A) Architecture for a decision-making system based on single photons. The angle of a linearly polarized

single photon is configured by the half waveplate (λ/2). (B) The degree of precision (or resolution) of controlling the half waveplate. (C) The decision consistency, or

CBL, exhibits larger values when the resolution is smaller, whereas it decreases as the resolution increases. (D) Active portion in the local reservoir as a function of

the size of local reservoir.

https://doi.org/10.1371/journal.pone.0205161.g005
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large waveplate-orientation reconfiguration immediately restrict in the subsequent decisions

(hence, higher degree of CBL).

Fig 5D manifests such an aspect from the analysis of the active portion of a local reservoir.

Here, the active portion corresponds to the degree (percentage) to which the half waveplate

has rotated with respect to complete rotation to either the horizontal or vertical directions.

The more the resolution increases, the more active portion decreases, which is consistent with

the behavior observed in the original local reservoir model, which is shown in Fig 3D.

Furthermore, in the single-photon simulation shown above, the notion of “lifetime” is not

explicitly introduced, to avoid unnecessary confusion. Physically, a forced reversal to the rota-

tion of the halfwave plate toward the initial π/4 direction corresponds to forgetting the present

position, which was also experimentally implemented in [7]. If the waveplate is always forced

to return to the original π/4 angle in every single step, for example, CBL does not occur.

Mihana et al. examined the impact of the degree of forgetting (or lifetime impact) in adaptive

decision making solved by a chaotic laser system [25].

Decision consistency in human decision-making and local reservoir model

Decision making in a simple conventional cognitive brain model is summarized as schemati-

cally shown in Fig 6A. In this figure, an experimental intervention (or stimuli) impinges on a

sensory system, and then on cognitive function, the executive system, and finally motor func-

tion. The model analysis and photon system discussed previously suggest that the decision

consistency of CBL observed in human decision making could be well accommodated by the

local reservoir model.

In [10], Nakao et al. examined the behavioral analysis of CBL using 24 healthy participants.

In that study, the impact of βγpower (observed in the brain) on decision making was

highlighted, and different types of decision-making tasks (so-called internally- and externally-

guided decision making) were examined. In our study, we focus on behavioral data exclusively,

because our primary interest is its relevance to a local reservoir. The following describes the

experimental data and detailed protocols in [10], which we used to evaluate the consistency of

the participants’ decisions.

In the experiment, depictions of two professions were shown to the participants, who were

then asked to judge which of two was preferable (“Which occupation would you rather do?”).

The two professions were randomly selected from among 28 professions with the restriction

that each profession was used eight times. In total, 112 trials of profession-selection judgment

were conducted. We evaluated the decision consistency between the first and second trials, the

second and third trials, the third and fourth trials, and so on, for all eight trials for each partici-

pant. Overall, the decision consistency increased as the trials progressed. The red diamond

shapes in Fig 6B depict the decision consistency of the 24 participants. In the figure, ×M
means that M participants exhibited the same decision consistency.

More specifically, the decision consistency in Fig 6B was calculated as follows. First, the

decision consistency between the first and the second trials was determined (viz., the initial
decision consistency). Note that the decision consistency is zero and one if all the judgments are

contradictory or consistent between the trials, respectively. Next, we extracted the maximum

decision consistency among the remaining trial pairs, followed by a subtraction of the initial

decision consistency; the resultant value represents the degree of decision consistency

throughout the repeated trials. Recall that a value of 0.5 indicates that no learning progressed

in the local reservoir model, as described above. Hence, by biasing with 0.5 to the decision con-

sistency, the decision consistencies of all 24 participants were summarized, as shown by the

diamonds in Fig 6.
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The blue circular marks in Fig 6B show the calculated decision consistency in the local res-

ervoir model between the first (precisely speaking, t = 2000) and the eighth decision (t = 2008),

assuming a lifetime of 10. The decision consistency monotonically decreases from approxi-

mately 0.7–0.5 when the size of the local reservoir spans from N = 2 to N = 50. Therefore, the

empirical data depicted by the diamond-shaped marks can have a corresponding estimated

size in the local reservoir, as shown in Fig 6B. As shown in Figs 3D and 4B, the internal dynam-

ics of the local reservoir could yield a very large decision consistency, e.g., through a long life-

time; hence, the local reservoir model would accommodate the very large decision consistency

value (larger than 0.7) observed in Fig 6B.

Fig 6. Neural system exhibiting CBL. (A) Architecture for a decision-making system based on a cognitive model of the brain. (B) Decision

consistency of CBL observed in human behavioral data (Occupation preference task; Nakao, et al. Sci. Rep. 2016 [10]) and the estimated size

of local reservoir based on the model.

https://doi.org/10.1371/journal.pone.0205161.g006
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Discussion

In this study, the role of “agent,” which is the entity that reacts to the decision, is not explicitly

included, although it is one of the most important aspects of reinforcement learning [6]. Mean-

while, neural decision-making research has been extensively studied. For example, Nakao et al.
observed different trends regarding internally guided decision-making problems (wherein the stan-

dard metric of decisions is individualistic), and externally guided decision-making problems

(wherein the standard metric of decision making is shared socially) [10,26]. We consider that these

issues can be incorporated in local reservoir model naturally, because both the effect of agents and

the property of given problems can be correlated with the dynamics of the local reservoir.

The present study considers decision making involving only two selections; in order for our

model to be applicable to decisions involving multiple options, the proposed model must be

scaled. To achieve this scaling, a hierarchical approach was proposed and experimentally dem-

onstrated by using single photons [27]. Correspondingly, a hierarchical extension of a local

reservoir is a promising principle for scalability. Additionally, it is noteworthy to mention that

the local reservoir utilized in this study was based on a simple one-dimensional structure; the

energy excitation paths (or arrows in Fig 2) are limited in spatially neighboring levels. Extend-

ing to a multi-dimensional local reservoir and generalized network structure is an interesting

future study. In addition, it should be emphasized that hierarchical properties of local reser-

voirs have already been partially argued in the present study––the lifetime in the statistical

modeling and the fulfilling/exciting/outgoing dynamics (γin,γup,γout) in the analytical approach

reflect the properties of the reservoir of the local reservoir; hence, reservoir dynamics provide

different decision-making tendencies, as observed in Fig 4B. This extendibility to broader sys-

tems is one of the unique aspects of local reservoirs compared with conventional model studies

[23,28]. Both theoretical and experimental endeavors are interesting future studies.

As a deeper consideration, a local reservoir could generally characterize the background

mechanisms driving the cognitive abilities of living organisms and artificial systems. The rele-

vance to the notion of “self” [16] and “consciousness” [17–19] could come into focus. Northoff

et al. emphasizes the role of the intrinsic or spontaneous activity of the brain, e.g., its internally

generated activity, rather than simply observing the apparent reactions in neurosciences

[18,19,29]. The local reservoir model could serve as a mathematical framework to obtain addi-

tional insights into the computational relevance of the brain’s spontaneous activity for decision

making. Ultimately, the model may even be applicable in experiments that examine mental

features, such as self and consciousness.

Conclusion

In this study, we propose a local reservoir model to account for decision consistency in CBL.

The model describes a phenomenon in which making a decision increases the possibility of

making that same decision again in the future. The model is inspired by the viewpoint that a

decision made within a visible system is affected by hidden environments, which are referred

to as local reservoirs. To highlight the most simplified spatial and temporal aspects of a local

reservoir, we introduce and discuss a one-dimensional model. If the size of a local reservoir is

large enough, consecutive decision making will not be affected by past decisions, thus showing

lower degrees of decision consistency in CBL. In contrast, with a smaller-sized local reservoir,

a biased distribution is induced, which leads to high degrees of CBL. An analytical approach to

characterizing the dynamics of a local reservoir is also discussed. Furthermore, an architecture

for artificially constructed CBL based on the intrinsic physical attributes of single photons is

discussed, and the effect of local reservoir is numerically evaluated. Experimental observations

in human decision-making tasks are also evaluated with the local reservoir model. The
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architectural similarities between photon and neural systems are discussed, including the

importance of alignment issues. Finally, scalability issues are addressed, such as extending the

model to deal with feedback from the agent, as are other decision-making problems and the

potential relevance of spontaneous or internally generated activity (as, for instance, in the case

of the brain). This study creates a path toward building mathematical foundations to under-

stand computational mechanisms by providing systematic analysis. In addition, the findings of

this study suggest deeper experimental endeavors for future scientific study and applications.

Most importantly, by applying the local reservoir model to objects such as photons and brains,

it has the potential to reveal the most basic computational mechanisms in nature.
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