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Automatic differentiation of Glaucoma
visual field from non-glaucoma visual filed
using deep convolutional neural network
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Abstract

Background: To develop a deep neural network able to differentiate glaucoma from non-glaucoma visual fields
based on visual filed (VF) test results, we collected VF tests from 3 different ophthalmic centers in mainland China.

Methods: Visual fields obtained by both Humphrey 30–2 and 24–2 tests were collected. Reliability criteria were
established as fixation losses less than 2/13, false positive and false negative rates of less than 15%.

Results: We split a total of 4012 PD images from 1352 patients into two sets, 3712 for training and another 300 for
validation. There is no significant difference between left to right ratio (P = 0.6211), while age (P = 0.0022), VFI
(P = 0.0001), MD (P = 0.0039) and PSD (P = 0.0001) exhibited obvious statistical differences. On the validation set
of 300 VFs, CNN achieves the accuracy of 0.876, while the specificity and sensitivity are 0.826 and 0.932, respectively. For
ophthalmologists, the average accuracies are 0.607, 0.585 and 0.626 for resident ophthalmologists, attending
ophthalmologists and glaucoma experts, respectively. AGIS and GSS2 achieved accuracy of 0.459 and 0.523
respectively. Three traditional machine learning algorithms, namely support vector machine (SVM), random
forest (RF), and k-nearest neighbor (k-NN) were also implemented and evaluated in the experiments, which
achieved accuracy of 0.670, 0.644, and 0.591 respectively.

Conclusions: Our algorithm based on CNN has achieved higher accuracy compared to human ophthalmologists and
traditional rules (AGIS and GSS2) in differentiation of glaucoma and non-glaucoma VFs.
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Background
Glaucoma is currently the second leading cause of irre-
versible blindness in the world, [1] which is commonly
characterized by sustained or temporary elevation of IOP
and defects in visual field. According to population-based
studies, prevalence of glaucoma in China was about 3%.
[2–4] However, less than 20% glaucoma patients had been

diagnosed, especially in rural area. [2] We seriously need
better tool and method to assist screening and diagnosis
of glaucoma.
Different from other ocular diseases such as corneal dis-

eases or fundus diseases, which can be diagnosed according
to obvious anatomical changes, diagnosis of glaucoma de-
pends on the information from various clinical examinations
including visual field (VF), optical coherence tomography
(OCT) and fundus photo. [1, 5] In clinical practice, VF is
widely used as the gold standard to judge whether patients
have typical glaucomatous damage. In clinical practice, VF is
measured by perimetry. There are several types of perime-
ters, such as Humphrey Field Analyzer or the Oculus.
During VF tests, light spots are flashed at varying intensities
at fixed locations in the inner sphere of perimeters. When
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the subjects see the spots, they should make a response by
pressing a button so that doctors would get a report about
the light sensitivities at different locations in the subjects’
VF. There are 2 forms of perimetry commonly used in diag-
nosis and follow-up of glaucoma: 30–2 and 24–2. For oph-
thalmologists who are not specialized in glaucoma, it may
be difficult for them to interpret a single VF report. Specific
patterns of defects such as nasal step and arcuate scotoma
shown in visual field indicate existence of glaucoma. [6, 7]
Researchers have developed several algorithms based on

data from clinical studies, such as Advanced Glaucoma
Intervention Study (AGIS) criteria and Glaucoma Sta-
ging System (GSS) criteria to grade glaucomatous VFs.
[6, 8–10] However, it is hard to diagnose glaucoma de-
pending on VF alone and for early stage glaucoma, even
if retinal nerve fiber layer (RNFL) had been damaged there
can be no obvious defect in VF. Therefore, it is necessary
to develop new algorithm for glaucoma diagnosis.
Machine learning community has developed a family

of powerful tools that grant computers the ability to
learn from and make predictions on data. Various algo-
rithms have been proposed for solving the classification
problem, such as Support Vector Machine, Random For-
est, Boosting, etc. However, these algorithms mainly rely
on the manually designed features for the task, and may
not be able to generalize to unseen data. Recently, deep
convolutional neural networks (CNN) have achieved
state-of-the-art performance on a variety of tasks in arti-
ficial intelligence. It is able to jointly optimize the feature
extraction and classification tasks. Deep networks have
also been successfully utilized in diagnosis of certain dis-
eases, whose diagnostic process involves mostly imaging
reports. Currently machine learning-based automatic
diagnosis of diseases depends on input of large amount
of clinical data with definite labels. In 2016, machines
have been trained to identify diabetic retinopathy (DR)
from fundus photography, achieving high sensitivity and
specificity. [11] Diagnosis of congenital cataract (CC) by
artificial intelligence has also been carried out. [12] With
self-adopted deep neural network, machines are able to
learn and make accurate diagnosis. Besides DR and CC,
researchers also trained neural network to identify pre-
perimetric glaucoma from VF reports. [13]
Unlike DR or CC, diagnosis of glaucoma cannot be sim-

ply made upon photos. Thus, we designed this study to
investigate the performance of deep neural network to
identify glaucomatous VFs from non-glaucomatous VFs
and to compare the performance of machine against hu-
man ophthalmologists.

Methods
Data preparation
The study was approved by the Ethical Review Committee
of the Zhongshan Ophthalmic Center and was conducted

in accordance with the Declaration of Helsinki for
research involving human subjects. The study has been
registered in clincaltrials.gov (NCT: 03268031). All the
visual fields (VFs) were obtained by either Humphrey
Field Analyzer 30–2 or 24–2 tests. To guarantee reliabil-
ity, only VFs with fixation losses of less than 2/13, false
positive and false negative rates of less than 15% were
selected in the experiments. Representative examples of
non-glaucoma and glaucoma PD plots are shown in
Additional file 1: Figure S1. The probability map of
pattern deviation (PD image) is then cropped from the VF
report and resized to 224 × 224 as the input of a deep
CNN. All the VFs of both eyes of a single patient are
assigned to either training or validation set to avoid data
leakage. In this way, we split a total of 4012 PD images into
two sets, 3712 for training and another 300 for validation.
For data augmentation, we randomly flip the PD images in
the training set horizontally to obtain final 7424 training
samples. Cross validation is performed by randomly split-
ting the training and validation sets 3 times and no signifi-
cant difference is observed. The validation set consists of
150 glaucomatous PD images and 150 non-glaucomatous
PD images. The non-glaucomatous PD images include 50
images with only cataract and 150 images with no ocular
disease, retinal diseases or neuro-ophthalmic diseases.

Diagnostic criteria of Glaucoma
Glaucoma was diagnosed with similar criteria to UKGTS
study. [14] VFs of patients who have glaucomatous damage
to optic nerve head (ONH) and reproducible glaucomatous
VF defects were included. A glaucomatous VF defect was
defined as a reproducible reduction of sensitivity compared
to the normative database in reliable tests at: (1) two or
more contiguous locations with P < 0.01 loss or more, (2)
three or more contiguous locations with P < 0.05 loss or
more. ONH damage was defined as C/D ratio ≥ 0.7, thin-
ning of RNFL or both, without a retinal or neurological
cause of VF loss.

Deep CNN for VF differentiation
We adopted the powerful VGG [15, 16] as our network
structure. The VGG network consists of 13 convolution
layers and 3 fully connected layers. We modified the
output dimension of the penultimate layer fc7 from
4096 to 200. And the last layer is modified to output a
two-dimension vector which corresponds to the predic-
tion scores of healthy VF and glaucoma VF. The network
is first pre-trained on a large scale, natural image classi-
fication dataset ImageNet [17] to initialize its parame-
ters. Then we modified the last two layers as mentioned
above and initialized their parameters by drawing from a
Gaussian distribution. All the parameters of the network
were updated by the stochastic gradient descend algorithm
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with the softmax cross-entropy loss. The network structure
is shown in Fig. 1.

Comparison between CNN-based algorithm and human
ophthalmologists in differentiation of VFs
We compared diagnostic accuracy between our algo-
rithm based on deep neural network and ophthalmolo-
gists. We chose 9 ophthalmologists in 3 different levels
(glaucoma experts: Professor YL-L, XC-D and SJ-F; at-
tending ophthalmologists: Dr. T-S, WY-L and WY-Y;
resident ophthalmologists: Dr. X-G, WJ-Z and YY-W),
from 4 eye institutes (see details in acknowledgements).
None of them has participated in the current research.
Attending ophthalmologists are doctors who have clin-
ical training in ophthalmology for at least 5 years, while
resident ophthalmologists are doctors who have clinical
training in ophthalmology for 1–3 years. Ophthalmologists
were shown the PD images alone and requested to assign
one of five labels to each PD image, i.e., non-glaucoma, likely
non-glaucoma, uncertain, likely glaucoma and glaucoma.

Traditional methods for VF differentiation
As a comparison, we also evaluated several rule-based
methods and traditional machine learning methods for
glaucoma diagnosis.
Rule-based methods included AGIS and GSS methods.

For AGIS, a VF is considered to be abnormal if three or
more contiguous points in the TD plot are outside of nor-
mal limits. [9] GSS2 uses both MD and PSD values to
classify VFs into 6 stages. [10] Only stage 0 is considered
healthy and other stages are treated as glaucoma.
Moreover, we also compared our method with three

other non-deep machine learning algorithms. Support
Vector Machine (SVM) [18] maps training samples into
high dimensional points that can be separated by a hy-
perplane as wide as possible. Random Forest (RF) [19]

constructs a set of decision trees, and each sample is
classified according to the number of training samples of
different categories falling into the same leaf node. For
k-Nearest-Neighbor (k-NN) [20] method, the sample is
classified as non-glaucoma or glaucoma by majority voting
from its k nearest training samples. Throughout these ex-
periments, we used 52 PD values in VFs obtained in 24–2
test. For 30–2 test, 22 outermost values were discarded so
that they can be treated equally. We optimized all the algo-
rithms to improve their performance, e.g., we experimented
whether to use Principal Component Analysis (PCA) for
preprocessing, different kernel types in SVM, different
numbers of trees in RF and various k values in k-NN.

Results
Baseline characteristics are shown in Table 1. We totally
collected 4012 VF reports, including glaucoma and
non-glaucoma reports. To compare the statistical differ-
ence between non-glaucoma group and glaucoma group,
we run an unpaired test for numerical data and chi-square
test for categorical data. It can be observed that
there was no significant difference between left eye
to right eye ratio (P = 0.6211, chi-square test), while
age (P = 0.0022, unpaired t test), VFI (P = 0.0001, un-
paired t test), MD (P = 0.0039, unpaired t test) and
PSD (P = 0.0001, unpaired t test) exhibited obvious
statistical differences.
To evaluate the effectiveness of the algorithm for dif-

ferentiation of glaucoma and non-glaucoma VFs, we
summarized the performance of the proposed algorithm
in Table 2.
On the validation set of 300 VFs, our algorithm based

on CNN achieved an accuracy of 0.876, while the specifi-
city and sensitivity was 0.826 and 0.932, respectively. In
order to compare the results of ophthalmologists with ma-
chines, we also developed a software to collect evaluation

Fig. 1 Diagram showing the modified VGG network. VGG15 was adopted as our network structure. We modified the output dimension of the
penultimate layer fc7 from 4096 to 200. And the last layer is modified to output a two-dimension vector which corresponds to the prediction scores of
healthy VF and glaucoma VF. The network is first pre-trained on a large scale, natural image classification dataset ImageNet16 to initialize its parameters.
Then we modified the last two layers as mentioned above and initialized their parameters by drawing from a Gaussian distribution
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results from ophthalmologists. Ophthalmologists were
shown the PD images alone and requested to assign one
of five labels to each image, i.e., non-glaucoma, likely
non-glaucoma, uncertain, likely glaucoma and glaucoma.
They were strongly advised not to choose the uncertain
label. For final evaluation, the non-glaucoma and likely
non-glaucoma labels were counted as normal, while the
likely glaucoma and glaucoma labels were counted as
glaucoma, and the uncertain level is considered as a
wrong answer. Although the ophthalmologists included
three resident ophthalmologists, three attending ophthal-
mologists and three glaucoma experts, we did not observe
significant differences among these three groups. The
average accuracies are 0.607, 0.585 and 0.626 for resident
ophthalmologists, attending ophthalmologists and glau-
coma experts, respectively. However, there exists a huge

performance gap between ophthalmologists and CNN,
which indicates that CNN may have strong ability to iden-
tify the complex patterns presented in the PD images for
glaucoma diagnosis. Two rule-based methods, AGIS and
GSS2, were also compared in the experiment. Both
methods are not able to achieve satisfactory results. Inter-
estingly, all the ophthalmologists performed better than
GSS2 and AGIS, indicating the importance of human ex-
perience in the decision-making process. Three traditional
machine learning algorithms were also included in the
experiments. SVM performed best among these machine
learning methods, but still much worse than CNN.
As shown in Fig. 2, we examined the receiver operating

characteristic curve (ROC) of CNN and the compared
methods. Our algorithm achieved an AUC of 0.966 (95%CI,
0.948–0.985). It outperformed all the ophthalmologists, rule
based methods and traditional machine learning methods
by a large margin.
We also studied the relative validation set accuracy as a

function of the number of images in the training set. The
training set is randomly chosen as a subset of the original
training set at rates of (5%, 10%, …, 100%). Each set includes
all the images in the smaller subset. As shown in Fig. 3, we
can see the performance does not improve too much after
the training set includes more than 3612 images.

Discussion
In our study, we presented two meaningful contributions:
1) we designed a project to develop our algorithm for dif-
ferentiation of VFs, which consisted of 4 steps: data collec-
tion, model design, training strategy design and model
validation; 2) we have developed a deep learning based
method that can differentiate glaucoma from non-glau-
coma VFs and verified its efficacy on interpretation of VFs
and advantage over human ophthalmologists. Our
approach based on CNN achieved both higher sensitivity
and specificity than traditional machine learning method
and the algorithms concluded from clinical trials such as
AGIS. [9] Applying CNN to the interpretation of VFs, we
found that the method is both sensitive and reliable. Al-
though ophthalmologists performed better than AGIS and
GSS2, CNN-based algorithm is even better at recognizing
patterns presented in the PD images. Our results demon-
strated the possibility of applying CNN to assist screening
and diagnosis of glaucoma.
In clinical practice, diagnosis of glaucoma usually

needs combination of different test results including VF,
OCT and fundus photo. For some glaucoma patients,
they may show typical patterns in VF directly indicating
glaucomatous damage. [21] However, for other patients,
patterns in their VFs are untypical and hard to recognize
or interpret. On this occasion, it’s hard to determine
whether the VF belongs to a glaucoma patient or not.
Because CNN is able to learn from mass data and

Table 1 Baseline characteristics of participants

Non-glaucoma Group Glaucoma Group P Value

No. of images 1623 2389 –

Age (SD) 47.2 (17.4) 49.2 (16.3) 0.0022*

left/right 635/919 607/911 0.6211

VFI (SD) 0.917 (0.126) 0.847 (0.162) 0.0001*

MD (SD) − 5.0 (23.5) −9.0 (44.8) 0.0039*

PSD (SD) 3.6 (3.3) 6.7 (22.2) 0.0001*

*shows results with a significant difference

Table 2 Performance of the algorithm and the compared methods

Methods Accuracy Specificity Sensitivity

Ophthalmologists resident #1 0.640 0.767 0.513

resident #2 0.593 0.680 0.507

resident #3 0.587 0.630 0.540

attending #1 0.533 0.213 0.853

attending #2 0.570 0.670 0.473

attending #3 0.653 0.547 0.760

glaucoma
expert #1

0.663 0.700 0.647

glaucoma
expert #2

0.607 0.527 0.687

glaucoma
expert #3

0.607 0.913 0.300

Rule based methods AGIS 0.459 0.560 0.343

GSS2 0.523 0.500 0.550

Traditional machine
learning methods

SVM 0.670 0.618 0.733

RF 0.644 0.453 0.863

k-NN 0.591 0.347 0.870

CNN 0.876 0.826 0.932
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summarize its own rules of judgement, we designed this
research and tried to develop a self-designed algorithm
based on CNN to see whether well-trained deep networks
have the ability to able to extract effective patterns from
VFs for glaucoma discrimination and even find hidden
clues that human experts cannot recognize.
In our first step, we compared the performance of our

algorithm based on CNN against human ophthalmologists
of different levels. As expected, glaucoma experts achieved
the highest accuracy in VF interpretation, although there

was just 2% and 4% different when compared to attending
and resident doctors respectively. With accumulation of
clinical experience, doctors tend to have higher specificity
while lower sensitivity. Such results are understandable.
Because doctors only have VFs as accessory examination
to make a diagnosis, their diagnostic ability was restricted,
and they would tend to be more careful about their deci-
sion. However, machines got the highest score in the test,
achieving highest sensitivity while keeping high specificity.
In our second step, we compared performance of our

Fig. 2 Validation set performance for glaucoma diagnosis. Performance of CNN, ophthalmologists and traditional algorithms are presented. There
were 9 ophthalmologists participating in evaluation of VFs. On the validation set of 300 VFs, CNN achieved an accuracy of 0.876, while the
specificity and sensitivity was 0.826 and 0.932, respectively. The average accuracies are 0.607, 0.585 and 0.626 for resident ophthalmologists,
attending ophthalmologists and glaucoma experts, respectively. Both AGIS and GSS2 are not able to achieve satisfactory results. Three traditional
machine learning algorithms were also included in the experiments. SVM performed best among these machine learning methods, but still much worse
than CNN. We also examined the receiver operating characteristic curve (ROC) of CNN and the compared methods. CNN achieved an AUC of 0.966
(95%CI, 0.948–0.985), which outperformed all the ophthalmologists, rule based methods and traditional machine learning methods by a large margin

Fig. 3 Relative validation set accuracy versus number of training images. We studied the relative validation set accuracy as a function of the
number of images in the training set. The training set is randomly chosen as a subset of the original training set at rates of (5%, 10%, …, 100%).
Each set includes all the images in the smaller subset. As shown in the figure, the performance does not improve too much after the training set
includes more than 3712 images
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algorithm against 2 criteria summarized from clinical trials,
AGIS and GSS2. [9, 10] AGIS and GSS2 criteria were built
to evaluate severity and staging of glaucoma based on VF.
VF is divided into different areas with different weights.
These algorithms, however, were based on regression ana-
lysis, so it is typically linear and won’t have good perform-
ance with complex VFs. In the last step, we compared
performance of our CNN-based algorithm with traditional
machine learning method, including RF, SVM and k-NN. A
previous study used feed forward neural network (FNN) to
detect preperimetric glaucoma, which showed overwhelm-
ing advantage over traditional machine learning methods.
[13] In our study, similar results were obtained. This is be-
cause these algorithms are all shallow models which cannot
extract representative features of the PD images.
VFs have various patterns, making them complex to inter-

pret. With current techniques, it is still difficult to explain
the details on how CNN works to differentiate different VFs.
But we are certain that CNN has used a non-linear algo-
rithm by stacking multiple linear and non-linear layers in in-
terpretation of VFs, which is obviously better than humans
and other algorithms. When looking at aVF report, ophthal-
mologists tend to find specific pattern from it. Relationship
between adjacent and distant test points may also matter,
but there is no theory built about these aspects. If we can
extract the patterns or rules used by CNN in differentiation
of VFs, it may greatly help clinical diagnosis of glaucoma,
which will be our future work.
It should be noted that this study had several limita-

tions. First, we used only pattern deviation images as the
input of machine learning algorithms. Thus, preperimetric
glaucoma may not be effectively detected by machine. We
don’t consider VF from cross-sectional test is able to help
diagnose early stage disease, that’s why we didn’t try to dif-
ferentiate preperimetric glaucoma in our study. In future
studies, we plan to combine VF with OCT scans. With in-
put from different imaging modalities, it is expected that
deep networks may be able to make more accurate diag-
nosis. Second, at current stage, the program we developed
can just tell glaucoma from non-glaucoma VFs. Various
diseases, such as neuro-ophthalmic diseases and cataract,
may influence VFs. We hope to extend the function of our
deep models to diagnose more ocular diseases.

Conclusion
In summary, our algorithm based on CNN has achieved
higher accuracy compared to human ophthalmologists
and traditional rules (AGIS and GSS2). The accuracy is
0.876, while the specificity and sensitivity are 0.826 and
0.932, respectively, indicating advantages of CNN-based
algorithms over humans in diagnosis of glaucoma. It
will be a powerful tool to distinguish glaucoma from
non-glaucoma VFs and may help screening and diagno-
sis of glaucoma in the future.
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