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Abstract

Animal testing alone cannot practically evaluate the health hazard posed by tens of thousands of 

environmental chemicals. Computational approaches making use of high-throughput experimental 

data may provide more efficient means to predict chemical toxicity. Here, we use a supervised 

machine learning strategy to systematically investigate the relative importance of study type, 

machine learning algorithm, and type of descriptor on predicting in vivo repeat-dose toxicity at the 

organ-level. A total of 985 compounds were represented using chemical structural descriptors, 

ToxPrint chemotype descriptors, and bioactivity descriptors from ToxCast in vitro high-throughput 

screening assays. Using ToxRefDB, a total of 35 target organ outcomes were identified that 

contained at least 100 chemicals (50 positive and 50 negative). Supervised machine learning was 

performed using Naïve Bayes, k-nearest neighbor, random forest, classification and regression 

trees, and support vector classification approaches. Model performance was assessed based on F1 

scores using five-fold cross-validation with balanced bootstrap replicates. Fixed effects modeling 

showed the variance in F1 scores was explained mostly by target organ outcome, followed by 

descriptor type, machine learning algorithm, and interactions between these three factors. A 

combination of bioactivity and chemical structure or chemotype descriptors were the most 

predictive. Model performance improved with more chemicals (up to a maximum of 24%) and 

these gains were correlated (ρ= 0.92) with the number of chemicals. Overall, the results 

demonstrate that a combination of bioactivity and chemical descriptors can accurately predict a 

range of target organ toxicity outcomes in repeat-dose studies, but specific experimental and 

methodologic improvements may increase predictivity.
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1 INTRODUCTION

The US Environmental Protection Agency (EPA), other international regulatory agencies, 

and pharmaceutical and consumer product companies need new tools to efficiently and 

effectively assess toxicity across a large number of chemicals. Under the current system, 

determining the toxicological hazards posed by chemicals relies heavily on animal 

experimentation.1 In a regulatory risk assessment context, these experiments are typically 

based on test guidelines whose protocols have been standardized and agreed upon across 

international agencies (e.g., OECD). Depending on the toxicological endpoint of interest and 

the specific test guideline, a single study can take a year or more to complete and costs 

thousands to more than a million dollars.2 In addition, multiple test guideline studies are 

often required to fully evaluate a chemical for potential toxicities.

There are more than 85,000 substances3 listed on the Toxic Substances Control Act (TSCA 

1976) inventory, and close to 144,000 chemicals4 pre-registered under the Registration, 

Evaluation, Authorisation and Restriction of Chemicals (REACH 2006) regulation. The cost 

and duration of animal testing render it virtually impossible to fully evaluate the health 

hazards posed by the many thousands of environmental and industrial chemicals on these 

lists5. A long-term strategy for addressing this challenge was presented in the National 

Research Council (NRC) report entitled, Toxicity Testing in the 21st Century: A Vision and 
a Strategy.6 This vision of 21st-century toxicology called for a change in toxicity testing to 

utilize in vitro high-throughput screening (HTS) assays to evaluate thousands of chemicals 

for their molecular effects on specific pathways linked to toxicity. The US EPA, National 

Institutes of Health, and National Toxicology Program formed the Tox21 partnership7 to 

implement the NRC vision. In addition, the US EPA undertook implementation of the NRC 

vision through the ToxCast project. 8,9,10 Collectively, Tox21 and ToxCast have generated 

one of the largest data sets on biological activities as related to environmental and industrial 

chemicals.11

A key objective of ToxCast and Tox21 has been to use in vitro bioactivity data to identify 

potential hazards and prioritize data-poor chemicals for additional testing and assessment.9 
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The identification of potential hazards and prioritization for additional testing has occurred 

using a variety of modeling and analysis approaches. First, the in vitro bioactivity data have 

been used to identify chemicals that activate molecular initiating events (MIEs) in adverse 

outcome pathways (AOPs).12 One example of a model of an MIE is thyroperoxidase 

inhibition for chemically-induced thyroid toxicity.13 Second, in vitro bioactivity assays from 

ToxCast have been aggregated in a biological pathway or process context to prioritize 

chemicals for additional study or predict toxicity including endpoints such as endocrine 

disruption,14 obesity,15 development, 16 and cancers.17 Finally, in vitro bioactivity has been 

used in supervised machine learning analyses to predict a range of toxicological responses 

from in vivo studies including developmental,18 reproductive19 and chronic toxicity.20

Machine learning methods are also widely used for building quantitative structure–activity 

relationships (QSAR). QSARs are classification and regression models for mapping 

molecular structural features of chemicals to their physical, chemical, or biological 

properties (see https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/

predictive_toxicology). While a complete review of QSAR models is beyond the scope of 

this work, the work of Low et al21 on integrating chemical and bioactivity (genomics) data 

for predicting hepatotoxicity is relevant for introducing the notion of “hybrid” descriptors 

and predictive models. Motivated by their work, we recently used a combination of chemical 

structure and in vitro bioactivity to predict histopathological sub-classes of rodent 

hepatotoxicity using hybrid models.22

One of the most important challenges in building useful predictive models for evaluating 

chemical safety is identifying high quality chemistry, bioactivity and toxicology data.23 We 

recognize the importance of curation24,25 in building publicly available chemistry resources. 

Each of the sources of data used in this analysis, including chemical11, bioactivity26 and 

toxicity27 data are continuously evaluated for quality and updates are released publicly.

In this study, we expanded on the approaches used to predict hepatotoxicity22 and used a 

similar supervised machine learning strategy to predict 35 in vivo target organ toxicity 

outcomes across a range of repeat-dose guideline study types. We objectively evaluated three 

main types of chemical descriptors including 821 in vitro HTS assay endpoints from 

ToxCast, 2,048 extended connectivity chemical fingerprints (specifically Morgan 

fingerprints), and 729 expert-derived chemical descriptors (namely ToxPrint chemotypes). 

We also evaluated the performance of two types of hybrid bioactivity and chemical structure 

descriptors by combining the in vitro HTS assays endpoints with Morgan fingerprints and 

with chemotypes. We treated each target organ toxicity as a separate class and used five-fold 

cross-validation testing to systematically analyze factors that impact classification 

performance. The main factors include five different descriptor types, eight learning 

algorithms, and the number of descriptors. Our analysis provides an estimate of the best 

baseline predictive accuracy by study and target organ toxicity.
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2 MATERIALS AND METHODS

1. Overview of the approach

Our analysis comprised environmental and pharmaceutical chemicals from the ToxCast and 

ToxRefDB data sets. The ToxCast data set included in vitro bioactivity measurements from 

821 HTS assays, while ToxRefDB incorporates data from up to 10 different in vivo 
guideline testing study types. Across the different in vivo guideline studies, we identified 35 

target-organ toxicity outcomes across four study types containing at least 100 chemicals (50 

positives and 50 negative chemicals) and used a supervised machine learning approach to 

comprehensively examine the ability of chemical structure and in vitro bioactivity to predict 

the potential for target organ toxicity.

2. Data sources

In vivo animal toxicity data—Toxicity data were obtained from ToxRefDB,27 which 

describes the in vivo effects of hundreds of compounds from animal testing studies. All data 

are publicly available for download (https://www.epa.gov/chemical-research/toxicity-

forecaster-toxcasttm-data; Version Nov2014). ToxRefDB includes information about the 

effects of chemicals on different species and target organs in US EPA, OECD or other 

regulatory guideline or guideline-like studies. For this analysis, in vivo outcomes for 985 

chemicals taken from ToxRefDB were aggregated at the level of a study type and target site 

of the effects (e.g., the target organ affected) across multiple species. The study types 

included chronic toxicity (CHR), developmental toxicity (DEV), developmental 

neurotoxicity (DNT), multigenerational toxicity (MGR), neurotoxicity (NEU), reproductive 

toxicity (REP), acute toxicity (ACU), sub-acute toxicity (SAC), and sub-chronic toxicity 

(SUB). All other toxicity testing studies (i.e., where a specific guideline was not reported) 

were grouped into a category that was referred to as “other” (OTH). There were 129 unique 

target effects in ToxRefDB (found in the column “effect_target” of the ToxRefDB data file). 

If a chemical produced a significant effect in a particular study type at any dose, and in any 

species, then it was categorized as positive for that target effect. Effects not associated with a 

specific target organ such as body weight changes, clinical chemistry, and urinalysis, were 

excluded from the analysis. For example, if a chemical produced statistically significant 

treatment-related effects and, therefore, resulted in an assignment of a “positive” call for 

liver and kidney effects in a sub-chronic study, then it was considered both a “sub-chronic 

liver toxicant” (denoted as, SUB:Liver), and “sub-chronic kidney toxicant” (denoted as, 

SUB:Kidney). If a substance did not produce any statistically significant treatment-related 

effect on a target site whose evaluation was required in a study, then a negative call was 

assigned. The number of negative chemicals for all organs was inferred because their 

evaluation is mandatory in these studies. For example, the assessment of hepatic effects is 

necessary for guideline chronic testing studies. As a result, chemicals that were tested in 

chronic studies but do not produce hepatic changes were considered negative for chronic 

liver toxicity. However, it is not possible to infer negative chemicals for organs whose 

assessment is not compulsory in a guideline study. In these cases we could not distinguish 

between untested and negative chemicals. For instance, the evaluation of hepatic effects is 

not a requirement in multigenerational and developmental toxicity studies. As a result, we 
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know the number of positive chemicals but not the number of negative chemicals for hepatic 

effects.

Negative or positive effects were aggregated across sex and species within a study type but 

not across study types (i.e., a chemical could have a positive effect in a chronic study, but be 

negative in a subchronic study). We recognize that summarizing different effects across 

different types of clinical outcomes in different species oversimplifies complex pathology. 

However, in the interest of investigating whether any inferences could be made and 

quantified for a large number of substances, this type of aggregation was a necessary, yet 

pragmatic, approach to performing the subsequent computational analysis. All toxicity data 

are provided as supplemental material (S1).

In vitro bioactivity data—The in vitro assay data were generated from the in vitro HTS 

of ToxCast Phase I and Phase II compounds and is publicly available (https://www.epa.gov/

chemical-research/toxicity-forecaster-toxcasttm-data; version Nov2014). The data were 

collected on 821 HTS assays from 6 different technology platforms: ACEA Biosciences 

(ACEA); Apredica (APR); Attagene, Inc. (ATG); NovaScreen panel (NVS); Odyssey Thera 

(OT); and Tox21. In ToxCast, each assay datum was reported as the chemical concentration 

(micromolar) at half maximal efficacy (AC50). An overall activity call is also made based on 

whether there is a statistically significant concentration-response. The criteria for 

determining a statistically significant response varies with the type of assay but is generally 

a multiple of the baseline median absolute deviation or minimal efficacy cutoff. Full 

documentation regarding the criteria for determining a significant response can be found on 

the ToxCast data download page (https://www.epa.gov/chemical-research/toxicity-

forecaster-toxcasttm-data).

For the machine learning analysis, all active and inactive assay results were converted to 

binary values (active=1 and inactive=0, respectively). The bioactivity data (denoted as, Xbio) 

of each chemical (i) is given by: Xi
bio = xi

1, xi
2, xi

3, …, xi
bio, …, xi

nbio , where xi
bio represents a 

bioactivity assay (bio) result. When more than one bioactivity value was available for a 

given chemical-assay pair, the results were combined with a logical OR operation (that is, 

xbio = xi
bio ∨ x j

bio). The total number of bioactivity assays are denoted as nbio (nbio =821). All 

bioactivity (denoted as, bio) data are available as supplemental material (S2).

Each of the bioactivity descriptors is based on a specific ToxCast HTS assay in which 

chemicals were tested. The assay designation includes some information about the 

technology, the biological target, the exposure duration, and the direction of the effect. For 

instance, assays beginning with ATG (Attagene) measure multiplexed transcriptional 

activities in human HepG2 hepatoma cells 28. The “ATG NF kB CIS up” assay measures 

increase in cis-activation of the Rel protein, which is the DNA binding subunit of the NF-

kappa-B (NFKB1) complex. Assays beginning with the prefix NVS (NovaScreen) measure 

protein activities in a cell-free system 29. For instance, the “NVS NR hPPARg” assay 

measures the biochemical function of the human peroxisome proliferator activator receptor 

gamma (PPARG). Finally, the assays beginning with APR (Apredica) are conducted in 

human HepG2 hepatoma cells, and they combine fluorescently labeled antibodies with 
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automated imaging (high-content imaging) to measure cell level changes 30. Some examples 

of the APR assays include: cJun phosphorylation at 1 h (denoted as, APR HepG2 

StressKinase 1h up), increase in phosphorylated tubulin at 72 h (APR HepG2 

MicrotubuleCSK 72h up), cell cycle progression changes at 72 h (APR HepG2 

CellCycleArrest 72h dn) and a decrease in cell number at 24 h (APR HepG2 CellLoss 24h 

dn). Detailed descriptions of all assays are available from the ToxCast download page 

(https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data).

Chemical structure data—The chemical descriptors (chm) used in this study relied upon 

previously published structural fingerprints. Fingerprints were calculated using “QSAR-

ready” chemical structures, obtained according to the chemical curation workflow reported 

by Mansouri et al31, were obtained from the DSSTox11 database. The workflow results in 

the removal of salts and inorganic counterions, the conversion of tautomers to unique 

representations, the neutralization of charged structures, when possible, and the removal of 

stereochemistry information. Fingerprints were represented as binary (bit) vectors where the 

elements themselves represent the presence or absence of a certain feature. We calculated 

structural fingerprints using Morgan fingerprints,32 which are a type of extended-

connectivity fingerprint. They are constructed by defining the molecular subgraphs in the 

neighborhood of each non-hydrogen atom in circular layers up to a defined diameter. These 

subgraphs are mapped to integer codes by a hashing procedure resulting in a bit vector. The 

Morgan fingerprints were calculated using the freely available python RDKit 

cheminformatics library.33 The total number of chemical descriptors were denoted as nchm 

(nchm = 2,048). The fingerprints were generated for 1,733 chemicals, and all chemical 

structure data are provided as supplemental material (S3).

ToxPrint Chemotype data—ToxPrint chemotypes are publicly available, expert-derived 

structural fragments based on medicinal chemistry.34 The ChemoTyper software was used to 

search the occurrence of 729 chemotypes in each chemical structure. The chemotype 

descriptors (ct) for each chemical were represented as a bit vector where presence was 

signified by 1 and absence by 0. Chemotype descriptors for all chemicals are provided as 

supplemental material (S4).

Hybrid descriptors—In addition to the three primary descriptor subtypes (i.e., bio, chm, 

and ct), we constructed two sets of “hybrid” descriptors for each compound. Hybrid 

descriptors represent high dimensional spaces formed by the union of disparate descriptor 

types.21 First, we merged the in vitro bioactivity (bio) and chemical (chm) descriptors to 

create a set of hybrid descriptors (denoted as bc). Second, we merged in vitro bioactivity 

(bio) and chemotype (ct) descriptors to create a second set of hybrid descriptors (denoted as 

bct).

Toxicity data selection—A total of 35 target organ endpoints possessed a minimum 

subset of at least 50 positive and 50 negative chemicals. Each outcome was denoted by 

concatenating the study and target organ and denoted as β. For example, “CHR:Liver” and 

“MGR:Ovary” indicate chronic liver effects and multigenerational ovarian effects 

respectively. We constructed toxicity data sets (X) for the 35 target organ outcomes for each 
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of the five descriptor types including chemical (Xchm), bioactivity (Xbio), chemotype (Xct), 

bioactivity and chemical (Xbc), and bioactivity and chemotype (Xbct).

Most of the target organ toxicity endpoints had more negative than positive chemicals 

(CHR:Liver, SUB:Liver and CHR:Kidney being the only exceptions). A significant 

imbalance in positive and negative examples in the training set can bias supervised machine 

learning algorithms and reduce their performance on unseen data. To avoid this bias we 

randomly sampled ten balanced subsets from each target organ toxicity data set (without 

replacement) beginning with 50 positive and negative chemicals up to the maximum number 

possible (in steps of ten positives and ten negatives). For each target organ toxicity endpoint 

the minimal dataset was defined as one with the smallest number of examples (i.e., 50 

positives and 50 negatives). Similarly, we identified the full data set as one with the largest 

number of cases. We represented each balanced toxicity data subset (denoted as, X jα,β) 

using the five different descriptors (denoted as, α, where α ∈ {chm, bio, ct, bc, bct}), and 

excluded chemicals with missing values for any of the descriptors. For example, the 

CHR:Kidney data set contained 539 chemicals with target organ toxicity data from 

ToxRefDB. Out of these 539 chemicals there were 324 positives and 215 negatives, and 

7,056 descriptors in all. For these 539 chemicals there were: 532 chemicals with 1,992 chm 

descriptors, 428 chemicals with 777 bio descriptors, 421 chemicals with 370 ct descriptors, 

421 chemicals with 1,147 bct descriptors, and 421 chemicals with 2,769 bc descriptors. We 

randomly sampled 10 balanced subsets for each descriptor type using 100, 120, 140, 160, 

180, 200, 220, 240, 260, 280, 300, 320, 340, 360 and 380 chemicals (producing 15*10*5 = 

750 data subsets). We applied the same procedure to create data subsets for each of the 35 

target organ toxicities.

3. Supervised machine learning

Predictive models of each of the 35 target organ toxicity endpoints were developed using the 

chm, bio, ct, bc and bct descriptors via supervised machine learning. For each of the 35 

endpoints balanced subsets containing equal numbers of positive and negative chemicals 

were constructed for cross-validation testing.

Classification algorithms—Five different classification algorithms were used including 

naïve Bayes (NB), support vector machines classification (SVC), classification and 

regression trees (CART), k-nearest neighbors (KNN), and random forest (RF). The NB 

algorithm is a probabilistic method based on Bayes theorem that assumes that all features 

are independent.35 SVC approaches find decision boundaries that can maximize the margin 

between the positive and negative classes of compounds.36, 37 The SVC were trained using 

both linear or radial basis kernels and the corresponding classifiers denoted as SVCL and 

SVCR respectively. CART-based methods partition the feature space into a set of rectangles 

and then fit a simple model in each one.38 We trained the CART algorithm by either pruning 

decision trees to a maximum depth of 10 (denoted as, CART0), or by allowing the learning 

algorithm to find the best number of splits based on the data (denoted as, CART1). The 

KNN method assigns the label of its nearest neighbor to an observation and determines the 

class by majority vote.35 The KNN classifiers were trained using k=3 nearest neighbors 

(KNN0) and k=5 nearest neighbors (KNN1).
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Cross-validation testing—Five-fold cross-validation testing was used to evaluate model 

performance. Each data set was randomly partitioned into five equal size subsets. Four 

subsets were used for training while the last subset was used for testing. The cross-validation 

testing was repeated ten times. For each step in the cross-validation loop the subset of the 

best nds descriptors was filtered using the ANOVA F-value to measure the association 

between the class and the descriptor. To avoid over-fitting, the maximum number of 

descriptors was limited to 25 (nds ≤ 25). Classification accuracy was evaluated on each 

iteration of the 5-fold cross-validation testing from which the mean and standard deviation 

were calculated for the different performance metrics. The F1 score is the weighted average 

of sensitivity and specificity defined as F1 = 2 ∗ sensitivity ∗ specificity
sensitivity + specificity  . Each toxicity data 

subset was analyzed ten times by five-fold cross-validation testing with in-loop descriptor 

selection. We selected the best 5 to 25 (with a step size of 1) descriptors using the ANOVA 

F-value. We recorded cross-validation performance using sensitivity, specificity, accuracy, 

and F1 score (along with means and standard deviations for each statistic). We also stored 

the entire toxicity data subset (defined by positive and negative chemicals) along with the 

performance results in a database.

The outline of the entire supervised machine learning workflow is given below:

1. Select target organ toxicity

Identify target organ toxicities (β) from ToxRefDB

1.1. Identify chemicals associated with β

Find the positive chemicals (Iβ+), negative chemicals (Iβ−), and total 

chemicals (Iβ = Iβ+ UIβ−)

nβ
+ = number(Iβ+), nβ

− = number(Iβ−) and nβ = nβ
+ + nβ

−

Identify β where nβ
+ ≥ 50 and nβ

− ≥ 50

Construct (nβ × 1) binary vector Xβ to represent positive (1) and 

negative (0) chemicals

1.2. Obtain data for chemicals associated with β

For descriptor type α ∈ {chm, bio, ct, bc, bct} construct data matrices 

Xα for Iβ chemicals

Construct Xα,β by merging Xα and Xβ using unique chemical 

identifiers in Iβ

2. Predict and evaluate toxicity using supervised machine learning

 For each descriptor α ∈ {chm, bio, ct, bc, bct}:

   For ni = 50 to min(nβ
+, nβ

− with stepsize of 10:

     Construct balanced subsets of Xα,β
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     Repeat 10 times:

      Ii
+, Ii

− = random subset of ni chemicals from Iβ
+, Iβ

− 

and Ii = Ii
+ ⋃ Ii

−

      Xj
α,β = Xα,β[Ii] i.e. Xj

α,β ⊂ Xα,β

           Vary number of descriptors (nds) from 5 to 25:

                Repeat 10 times:

                    Conduct 5-fold cross-validation 

testing:

                     Split Xj
α,β into {Xj,1

α,β, 

Xj,2
α,β, Xj,3

α,β, Xj,4
α,β, Xj,5

α,β} balanced subsets

                     For k ∈ {1,2,3,4,5}:

                       Xtrain = Xj,m
α,β ⋃ Xj,m′

α,β 

⋃ Xj,m″
α,β ⋃ Xj,m‴

α,β where k ∉ {m,..,m‴}

                       Xtest = Xj,k
α,β

                       Build Classifier (C) using 

Xtrain with top nds descriptors using

                        ANOVA F-value

                       Test C using Xtest

                    Save the performance scores for 

{β, α, ni, nds, C}

Statistical comparisons of classification methods—We used analysis of variance 

(ANOVA) to evaluate statistical differences in F1 scores between target organ toxicities, 

machine learning algorithms and descriptor types. First, we used one-way ANOVA to 

independently compare the impact of machine learning algorithm and descriptor type on F1 

scores. This was followed by Tukey’s honest significance difference (HSD) test for multiple 

comparisons of differences between means.39 Second, we used fixed effects linear models to 

explain the variance in F1 scores using organ toxicity, machine learning algorithm, and 

descriptor type as well as interactions between these factors. We calculated the proportion of 

variance in F1 scores explained by each of the factors using the η2 (Eta-squared) statistic.40

Identifying descriptors frequently used in classification models—We used the 

following approach to calculate the relative usage of each descriptor of type α (where α ∈ 
{chm, bio, ct, bc, bct}) across all machine learning models for predicting a target organ 
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toxicity β. First, accurate machine learning models (F1 score ≥ F10) constructed using 

different numbers of descriptors (nds ≤ nds0) were identified. Second, the frequency of 

occurrence of each descriptor (xi
α) across the machine learning models for each target organ 

toxicity outcome β was calculated (denoted as f β, i
α ). Third, a descriptor-toxicity frequency 

matrix (denoted as Φ) was constructed in which the rows and columns corresponded to 

target organ toxicity outcomes (β) and descriptors xi
α , respectively. This matrix was 

populated with frequencies f β, i
α , μβ

α σβ
α and the columns were sorted by their median value 

(to aid selection of most frequent descriptors). Finally, Φ was row standardized to correct for 

any differences in the number of models across target organ toxicities. Row standardization 

was carried out with the formula: /
σβ

α

f β, i
α − μβ

α

, where μβ
α and σβ

α are the row-wise means 

and standard deviations, respectively. Each row of the matrix (denoted as Φβ) represents the 

descriptor “signature” for toxicity outcome β. In its simplest form, a signature Φβ defines 

relevant descriptors ({x1
α, x2

α, …, xi
α, …}) for predicting a target organ toxicity outcome β 

along with scores ({φβ1
α , φβ2

α , …, φβi
α , …}) to capture their relevance.

Software—Data processing and analysis was conducted in the Python programming 

language (version 2.7) using RDKit (version 2014-09-02),33 and the matplotlib package 

(version 0.99.1.2)41 for visualization. All code will be made available on GitHub under 

(github.com/i-shah/ml-organ-tox).

3 RESULTS

1. Data sets

A total of 47 target organs were identified with outcomes from five or more chemicals across 

at least one guideline study type (Figure 1). The five most frequent chronic organ outcomes 

in descending order were the liver (414 positives and 125 negatives), kidney (324 positives 

and 215 negatives), spleen (205 positives and 334 negatives), adrenal gland (188 positives 

and 351 negatives), and lung (183 positives and 356 negatives). These five organs were also 

frequent sites of chemical effects in subchronic, and multigenerational studies. A decrease in 

the number of positive chemicals for these organs was observed in the subchronic, 

multigenerational and developmental studies when compared to the chronic studies. With the 

exception of the liver and kidney endpoints in the chronic and subchronic study types, more 

negative than positive chemicals were identified. Across all endpoints and study types, the 

negative chemicals outweighed the positive chemicals by a 3.4:1 ratio (on average). From 

the larger set of target organ endpoints and study types, 35 outcomes possessed at least 50 

positive and 50 negative chemicals that could be used in the supervised machine learning 

analysis. These 35 outcomes comprised of 20 target organs and three guideline study types. 

The target organs included: adrenal gland, bone marrow, brain, eye, heart, kidneys, liver, 

lungs, lymph nodes, mammary glands, ovaries, pancreas, pituitary gland, spleen, stomach, 

testes, thymus, thyroid gland, urinary bladder, and uterus. In descending order of the number 

of outcomes, chronic studies showed the greatest number of chemical effects (19/35; 54.3%) 
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followed by subchronic (12/35; 34.3%), and multigenerational (4/35; 11.4%). None of the 

35 outcomes were observed in developmental studies.

2. Predictive accuracy using minimal data sets

To establish the performance baseline for predicting target organ toxicity, we used the 

minimal data sets (defined by 50 positive and 50 negative chemicals) for each of the 35 

target organ outcome and study type pairs. Across all toxicities, descriptor types and 

classifiers, the maximum F1 score was 0.85±0.09 for predicting MGR:Brain) (Figure. 2). 

There was no appreciable increase in the F1 score beyond 24 descriptors for most target 

organ toxicities except for chronic liver and kidney outcomes.

A broad assessment of cross-validation performance was undertaken for the minimal data set 

across all machine learning algorithms, descriptor types, and target organ outcomes (Figure 

3; Supplemental Material, S5). The mean F1 score across all target organ outcomes, machine 

learning algorithms, and descriptor types was 0.69. When broken down by machine learning 

algorithm, the mean F1 scores across all target organ data sets and descriptor types in 

descending order were: KNN0 0.73, KNN1 0.72, RF0 0.70, SVCR0 0.70, CART 0.69, 

SVCL0 0.69 and NB 0.61. Based on Tukey’s HSD post hoc analysis, differences in mean F1 

scores between machine learning algorithms were statistically significant (p<0.01) except 

between CART0 and CART1, and between KNN0 and KNN1. NB algorithms produced 

classification models with the greatest variability across all performance metrics. Notably, 

NB models together with chm descriptors consistently produced the least accurate 

classification models. In contrast, KNN-based classification models were generally the most 

sensitive, but also the least specific across all target organ toxicities. Decision tree-based 

algorithms (RF and CART) and support vector classification models were distinct from 

KNN in their predictive performance trends across different toxicities with a greater balance 

between sensitivity and specificity scores.

When broken down by descriptor types, the mean F1 scores across all target organ data sets 

and machine learning algorithms in descending order were: bc 0.70, bct 0.70, bio 0.70, ct 

0.68 and chm 0.67. Based on Tukey’s HSD post hoc analysis of different descriptor types, 

differences in performance due to the descriptor types were statistically significant (p<0.01) 

except between bc and bct. The general performance of the different descriptor types had a 

greater impact on some study types and endpoints compared with others. For example, the 

type of descriptor had little impact on predicting chronic brain (CHR:Brain) or eye outcomes 

(CHR:Eye). In contrast, the different descriptors had a greater impact on predicting chronic 

liver (CHR:Liver) and adrenal outcomes (CHR:Adrenal Gland).

Given the temporal and other design differences in study types we evaluated the trends in 

target organ toxicity predictions between chronic and subchronic studies. For the same target 

organ and classification method (i.e., machine learning algorithm, descriptor type and 

number of descriptors), the F1 scores for subchronic outcomes were generally greater than 

the equivalent chronic outcomes (i.e., with a difference in mean F1 score of greater than 5%) 

for the adrenal gland (24%), lungs (24%), thyroid gland (13%), stomach (8%) and spleen 

(8%). In contrast, chronic outcomes could be predicted more accurately (with a difference in 

mean F1 score of greater than 5%) for the liver (7%) and thymus (6%). The difference in F1 
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scores between chronic and subchronic outcomes for the brain, bone marrow, spleen, 

thymus, and heart were less than 5%.

To systematically examine the impact of different factors on predictive performance, we 

constructed a fixed effects model to explain the variance in F1 scores based on target organ 

outcome, study type, descriptor type and machine learning algorithm. The magnitudes of the 

effects on F1 scores were the highest for target organ toxicity (η2 = 0.7) followed by 

machine learning algorithm (η2 = 0.2), descriptor type (η2 = 0.03) and study type (η2 = 

0.008). Based on these results, we decided to further investigate the underlying reasons for 

the significant effect (η2) of the machine learning algorithm on the F1 score. In the one-way 

ANOVA analysis, we found the NB algorithm (mean F1 score=0.61) had the largest 

contribution among machine learning algorithms on F1 scores. The visualizations in Figure 

3 also suggested that the NB algorithm consistently underperformed in comparison to other 

machine learning algorithms. To reduce the potential bias on the fixed effects modeling, the 

NB results were excluded from the analysis and the results recalculated. In the updated fixed 

effects analysis, target organ toxicity still had the greatest effect (η2 = 0.8) on F1 scores 

followed by machine learning algorithm (η2 = 0.05) and descriptor type (η2 = 0.03). Further 

analysis of the pairwise interactions between target organ toxicity, machine learning 

algorithm, and descriptor type showed significant effects on F1 score as follows (in 

descending order): target organ toxicity and descriptor type (η2 = 0.02), target organ toxicity 

and machine learning algorithm (η2 = 0.02), and machine learning algorithm and descriptor 

type (η2 = 0.008). For the minimal data sets, the results suggest that predictive performance 

was significantly determined by the target organ toxicity outcome being considered followed 

by the machine learning algorithm, and then the descriptor type.

3. Predictive accuracy using full data sets

The full data sets were used to determine whether the use of additional data changed the 

estimates of baseline performance or affected the relative impact of different factors on 

predicting target organ outcomes. Thirty (30) out of the 35 target organ toxicity classes had 

more than 100 chemicals (i.e., more than 50 positive and 50 negatives). Table 2 shows the 

performance of the optimal classifiers for each target organ toxicity ranging from a 

maximum F1 score of 0.85±0.09 (MG:Brain) to a minimum F1 score of 0.67±0.10 

(SUB:Kidney). Although the mean F1 score for the full data sets was 0.69 (the same as the 

minimal data sets), we found some improvements in cases where there were more than 200 

chemicals. On average the best F1 scores improved by 17%, sensitivity by 20% and 

specificity by 11% for 18/35 full data sets in which there were more than 200 chemicals. 

When aggregated across all descriptor types and machine learning algorithms (excluding 

NB), we found that the improvement in F1 score, sensitivity and specificity were highly 

correlated with the number of chemicals (Pearson’s ρ= 0.9, 0.7, 0.7, respectively). The top 

five improvements in F1 scores were observed for subchronic kidney outcomes (29%), 

chronic kidney outcomes (27%), chronic spleen outcomes (20%), chronic lung outcomes 

(20%), and chronic adrenal gland outcomes (18%).

When broken down by machine learning algorithm, the mean F1 scores by machine learning 

algorithms in descending order were: KNN1 0.73, KNN0 0.73, RF0 0.72, CART1 0.71, 
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CART0 0.71, SVCR0 0.70, SVCL0 0.70 and NB 0.62. The rank order of the machine 

learning algorithms was the same as that observed for the minimal data sets. However, with 

more chemicals in the full data set, the more complex classification methods, such as SVC, 

RF, and CART were used more frequently, and they performed better. Based on Tukey’s 

HSD post hoc analysis, pairwise differences in mean F1 scores between machine learning 

algorithms were statistically significant (p<0.01) except between KNN0 and KNN1. When 

broken down by descriptor types, the mean F1 scores across all target organ outcomes and 

machine learning algorithms were, in descending order: bct 0.72, bc 0.72, bio 0.72, ct 0.69 

and chm 0.68. The rank order of the relative performance of the descriptor types is also the 

same as the minimal data sets. Based on Tukey’s HSD post hoc analysis, differences in 

performance due to all descriptor types were statistically significant (p<0.01).

To systematically examine the impact of different factors on predictive performance, we 

constructed a fixed effects model to explain the variance in F1 scores based on target organ 

toxicity, study type, descriptor type and machine learning algorithm. As in the case of the 

minimal data sets, we excluded the performance results from the NB machine learning 

algorithm from the fixed effects model. The effects of the different factors on F1 scores were 

the greatest for target organ outcome (η2 = 0.17), followed by machine learning algorithm 

(η2 = 0.26) and then descriptor type (η2 = 0.08). The effect of study type was not significant. 

Further analysis of the pairwise interactions between target organ toxicity, machine learning 

algorithm, and descriptor type showed significant effects on F1 score as follows (in 

descending order): target organ toxicity and descriptor type (η2 = 0.04), target organ toxicity 

and machine learning algorithm (η2 = 0.03), and machine learning algorithm and descriptor 

type (η2 = 0.01). In comparison to the fixed effects analysis on the minimal data set, 

predictive performance was still determined largely by the target organ toxicity outcome 

being considered. However, the relative effect of target organ outcome was reduced nearly 

threefold while the effect of machine learning algorithm increased by a similar amount.

4. Relevance of bioactivity and chemotype descriptors for predicting target organ toxicity

We investigated the bioactivity-toxicity and structure-toxicity associations as described in 

the Methods. Briefly, we constructed the normalized descriptor-toxicity matrix using F1 

score ≥ 75th percentile, nds ≤ 25 and then retained the 50 most frequently used bio 

descriptors (columns) for predicting chronic target organ toxicity outcomes (rows). The 

matrix was then hierarchically clustered to putatively group similar organs and bioactivity 

descriptors, which were then visualized as a heat map (Figure 4). In this heat map, strong 

positive associations are shown in red. Each row of the heat map shows the relative 

importance of the bio descriptors for predicting specific chronic target organ toxicity 

outcomes.

As an illustrative example, we considered a subset of bio descriptors in the heat map (Figure 

4) to evaluate their biological relevance to pathological outcomes including: (a) ATG CEBP 

CIS up and Tox21 PPARg BLA Agonist ratio, and (b) APR HepG2 StressKinase 1h up, 

APR HepG2 MicrotubuleCSK 72h up and ATG PBREM CIS up, and (c) APR HepG2 

CellCycleArrest 72h dn and APR HepG2 CellLoss 24h dn.
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In bio descriptor set (a) the “ATG CEBP CIS up” assay measured the increase in activity of 

the CCAAT/enhancer-binding protein (C/EBP) β via binding to a DNA regulatory region, 

and “Tox21 PPARg BLA Agonist ratio” measured the change in PPARG activity. The 

C/EBP family of proteins regulate pro-inflammatory signaling and are involved in 

tumorigenesis.42 In addition, the C/EBP transcription factors are highly enriched in the liver 

where they are involved in the acute phase response.43 PPARG is primarily known for its 

role in regulating lipid metabolism. However, it is also expressed in macrophages, where it is 

involved in inflammation.44 Inflammation is a physiological response to tissue injury caused 

by chemical exposure and recognized as a key step in the pathogenesis of chronic diseases in 

the kidneys45 and liver.46 Overall, the two assays in descriptor set (a) could represent 

markers of inflammation, which is a well-known effect of chemicals on multiple target 

organs.

Descriptor set (b) contained “APR HepG2 StressKinase 1h up”, “APR HepG2 

MicrotubuleCSK 72h up” and “ATG PBREM CIS up”, which measured c-Jun 

phosphorylation, cytoskeletal stabilization, and activation of the constitutive androstane 

receptor (CAR), respectively. CAR, which is a member of the nuclear receptor (NR) 

superfamily, binds to the PBREM and controls the expression of diverse genes including 

xenobiotic metabolism, liver injury, and hepatocarcinogenesis.47 Sustained activation of 

CAR can cause oxidative stress, cellular injury (which can manifest as a cytoskeletal 

disruption) and regenerative proliferation, which is a key event in hepatocarcinogenesis.48 

The c-Jun protein is part of the AP-1 complex, which is involved in mediating the 

transcriptional response to oxidative stress.49 Collectively, descriptor set (b) could represent 

different markers of cellular stress responses that are induced in the liver, kidneys and 

multiple other organs.

Finally, bio descriptor set (c) contains “APR HepG2 CellCycleArrest 72h dn” and “APR 

HepG2 CellLoss 24h dn,” which measured the increase in cell cycle arrest and the cell loss, 

respectively. Proliferating cells (such as HepG2 cells used in both of these assays) may be 

unable to progress beyond S-phase in response to stress due to cellular stress and injury.50 

Cell loss can be caused either by the disruption of the cell cycle leading to apoptosis or via 

other pathways that lead to necrosis. Therefore, assays in descriptor set (c) could be 

considered as markers of cellular injury and death, which is a phenomenon that is widely 

observed in multiple target organs.

The bio descriptors found within these three sets are generally overrepresented across a 

range of chronic toxicity outcomes, but are particularly overrepresented in chronic liver, 

kidney and spleen toxicities as well as heart, brain, and adrenal responses. The descriptors 

are consistent with adaptive stress responses, cell injury, cell death, and inflammation 

playing a major in these pathological outcomes.

We also analyzed structure-toxicity associations using the chemotype (ct) descriptors and 

visualized the results as a heat map (Figure 5). The strongest associations between ct 

descriptors (columns) and target organ toxicities (columns) are highlighted in red. We 

evaluated the ct-tox associations identified by us in terms of already known relationships, or 

established through reference to structural alerts that are available in typical in silico tools 
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such as the OECD Toolbox51 and Derek Nexus52 (within the Nexus 2.1 platform, Lhasa 

Ltd). Derek Nexus has by far the largest library of organ toxicity alerts. Alerts were available 

for a number of the toxicity outcomes highlighted here including adrenal gland toxicity, 

cardiotoxicity, hepatotoxicity and nephrotoxicity. For example, alerts such as 

“Phenylethyltriazole or analogue” and “2-Thio-benzimidazole, -benzothiazole or -

benzoxazole” which were identified for adrenal toxicity from 28 day studies appear to be 

well aligned with the heteroatom ring chemotypes highlighted in the heat map. There are 97 

alerts for heptatoxicity within Derek Nexus, many of them are associated with the pyridine, 

triazole and 5 membered heteroaromatic chemotypes highlighted in the heat map. Examples 

include the alert for “Pyrroline or pyrrole ester” (the mechanistic basis of which is discussed 

in part in the 1988 WHO report53,http://www.inchem.org/documents/ehc/ehc/ehc080.htm) 

or “2-Mercaptoimidazole” where one of the lines of evidence underpinning the alert 

included Mizutani et al (2000) who implicated metabolic activation in the liver dysfunction 

induced by methimazole and related analogues in glutathione (GSH) depleted mice54. A 

systematic assessment of the chemistry to toxicity relationships forms part of our ongoing 

analysis.

4 DISCUSSION

In this work, we used a number of supervised machine learning to evaluate the utility of in 
vitro bioactivity data from HTS studies and a variety of chemical structure descriptors for 

predicting 35 target organ toxicity outcomes. Our approach did not utilize any prior 

knowledge about the relevance of in vitro assays to in vivo key events, but used an 

automated and objective approach to systematically explore the impact of five descriptor 

types, eight classification algorithms, numbers of descriptors and numbers of chemicals on 

predictive performance for each target organ toxicity. Due to the considerable variation in 

the numbers of positive and negative chemicals, we created balanced subsets of chemicals 

for each outcome to reduce any inherent bias in the machine learning modeling. All target 

organ outcomes (35/35) had minimal balanced data sets with at least 100 chemicals, and 

many outcomes (30/35) had larger data sets of more than 100 chemicals. We first used the 

minimal data sets to establish predictive performance baselines for all target organ toxicity 

outcomes, and then evaluated changes in performance using the full data sets. The mean F1 

score across all of these factors was 0.69.

While a predictive performance of 0.69 is far from perfect, it is a substantial improvement 

over earlier findings based on the smaller set of 309 ToxCast Phase I chemicals.55 For the 

minimal data sets, we found KNN classifiers with hybrid descriptors (either bc or bct) 

produced the most accurate models, which is consistent with previous findings.22 For some 

full data sets, SVC, RF, and CART performed better than KNN. Compared to the high 

sensitivity and low specificity of KNN classifiers, SVC generally offered a greater balance 

between sensitivity and specificity with a comparable F1 score. This gain in performance of 

more complex classification algorithms (SVC, RF, and CART) could be attributed to the 

availability of additional positive and negative chemicals for defining predictive rules about 

toxicity outcomes. Also, when there were more than 200 chemicals, using the full data sets 

produced improvements in F1 scores (12%), sensitivity (15%) and specificity (8%). While 

the performance results for the optimal classification models are promising, we believe that 
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using the minimal data sets, with the same number of chemicals for each class, provides 

greater objectivity in comparing the influence of different factors in predicting different 

types of toxicity outcomes.

We also evaluated the impact of the various factors on performance using fixed effects 

modeling and found the target organ toxicity outcome was the biggest determinant of 

predictive performance, followed by the type of descriptor, and then machine learning 

method. The type of descriptor had a much greater impact on F1 scores in the full data sets 

(η2 = 0.152) as compared to the minimal data sets (η2 = 0.060). This suggests, not 

unexpectedly, that some target organ toxicities may be more difficult to predict than others,
56 but the appropriate choice of descriptors57 and machine learning algorithm22 can improve 

performance. Importantly, bio descriptors in combination with chm or ct descriptors were 

the most predictive (which is consistent with previous work 57,22), and chemical structure 

alone was the least predictive.

Apart from the relative importance of the type of descriptor, we also identified a significant 

pairwise interaction between toxicity outcome and descriptor type. This suggests that 

specific endpoints were predicted better with specific types of descriptors. It is possible that 

the specific types of descriptors contain inherent biases for specific endpoints. For example, 

ct descriptors may have been constructed using data from a limited number of endpoints 

while the bio descriptors may be biased towards pathways important in more frequently 

observed toxicological responses. Greater coverage of biological chemotype space may 

reduce the level of interaction.

Although the systematic analysis performed in this study identified several important 

conclusions, the approaches and data sets used in the analysis also have limitations. First, the 

number of chemicals, number and type of descriptors,58 and classification algorithm 

required for accurately predicting a particular toxicity outcome cannot be known a priori; 
they have to be empirically evaluated.59 When only a handful of chemicals have toxicity 

data, mining the relationships between descriptors and toxicities is more challenging, and 

predictive models more likely to be subject to overfitting.60 Despite a large number of 

chemicals in our data set, it still represents a very limited sample of environmental 

chemicals, and it is possible that the results are inflated due to overfitting. Second, although 

one of our objectives was to compare the impact of different factors (e.g., machine learning 

algorithms, descriptors types) on predicting diverse target organ toxicities, there are few 

established statistical approaches for comparing the performance across different 

classification methods.61,62 In relatively simple designs when comparing the performance of 

two different classification methods on a single data set, the mean performance (e.g. F1 

score, sensitivity or specificity) and variance are estimated from repetitive random sampling 

from the same data (i.e. each fold of a cross-validation trial) and can be easily compared. 

However, multivariate comparisons are much more difficult. Because the samples across 

cross-validation trials for different classification methods are related, the estimates of 

performance are not independent and traditional parametric approaches have a high 

likelihood of detecting differences when there are none.61 Generally, this is less of an issue 

when comparing performance scores of different classification methods between unrelated 

data sets.62 In addition, in our case, the estimates of performance across data sets may also 
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be biased because a single chemical can cause multiple target organ toxicities.20 Due to their 

high Type I error, we avoided paired t-tests for comparing model performance in favor of 

traditional analysis of variance techniques (especially since we have a completely balanced 

data set). Nevertheless, we recognize the challenges in comparing the machine learning 

results using traditional statistical approaches and hope to address this issue in future work.

Defining a suitable representation for chemicals63 to predict their toxicity accurately is 

challenging problem. This is because toxicity, which includes a broad array of abnormal 

changes in tissue structure or function, can arise via multiple pathways. These pathways can 

span multiple levels of biological organization (i.e. molecular, cellular, organ), they are 

highly dynamic and have a complicated relationship with the dose and the duration of 

chemical exposure 64. It has been suggested that a finite number of “key” events could 

determine the outcome of complex pathways.12 These key events can include receptor 

activation, gene regulation, or cellular phenotypic changes – all of which may play critical 

roles in the response of biological systems to chemical exposure. Machine learning provides 

an unbiased approach to identifying putative biological and chemical descriptors whose 

higher-order associations map to adverse outcomes.22 Our preliminary analysis of the 

bioactivity signatures suggests that machine learning identified a number of plausible key 

events including adaptive stress responses, cell injury/death, and inflammation. These key 

events are broadly involved in many pathophysiological processes.65 Further work is 

required for identifying key events involved in specific pathways leading to target organ 

toxicities.

CONCLUSIONS

This work has several important implications and applications for predicting the hazard 

classifications of new chemicals. First, we have demonstrated that a combination of 

bioactivity and chemical descriptors can predict a range of target organ toxicity outcomes in 

chronic, multigenerational, and subchronic guideline studies. These types of predictions are 

instructive in providing an initial profile of the potential toxicity effects of concern for a 

chemical which is critical in prioritization as well as in directing analogue identification and 

evaluation steps in a read-across workflow. Second, we demonstrated that bioactivity 

descriptors produced more accurate classifiers than the chemical descriptors that were tested. 

This underscores the importance of continuing to generate HTS data for improving hazard 

classifications for untested chemicals. Third, the type of descriptor showed significant 

interaction with the target organ outcome with respect to predictive performance. While 

certain descriptors may be inherently better at predicting certain toxicological responses, it is 

likely that the subset of descriptors used in the analysis also contains inherent biases in their 

construction. For example, most of the 821 in vitro assays used in our analysis measured 

well-known molecular targets in a limited set of cell lines and may over-represent targets 

involved in a subset of common toxicological responses. Therefore, expanding the biological 

coverage of the HTS assays, both in terms of the cell types and the molecular targets, may 

increase the broad predictivity of the machine learning models. Finally, the number of legacy 

chemicals with published in vivo information must be increased (by curation) to reduce the 

potential for overfitting with limited data. We believe that addressing these issues will 
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further to improve our ability to predict the target organ toxicities of untested chemicals and 

reduce our dependence on repeat-dose animal testing experiments.
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Abbreviations

5

(Q)SAR quantitative structure activity relationship

ACEA ACEA Biosciences, Inc.

ACU acute toxicity

AOP adverse outcome pathway

APR Apredica, Inc.

ATG Attagene, Inc.

bc hybrid chemical and bioactivity descriptor

bct hybrid chemotype and bioactivity descriptor

bio bioactivity descriptor

C/EBP CCAAT/enhancer-binding protein

CAR constitutive androstane receptor

CART classification and regression trees

chm chemical description

CHR chronic toxicity

ct chemotype descriptor

DEV developmental toxicity

DNT developmental neurotoxicity

DSSTox US EPA Distributed Structure-Searchable Toxicity Database
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EPA Environmental Protection Agency

F1 F1-score

HSD Tukey’s honest significance difference

HTS high-throughput screening

KNN k-nearest neighbors

MGR multigenerational toxicity

MIE molecular initiating event

NB naïve Bayes

NRC National Research Council

NVS NovaScreen, Inc.

OECD Organization for Economic Cooperation and Development

OT Odyssey Thera, Inc.

PBREM phenobarbital response element

PPARG peroxisome proliferator-activated receptor gamma

REACH Registration, Evaluation, Authorisation and Restriction of Chemicals

REP reproductive toxicity

RF random forest

SAC sub-acute toxicity

SUB sub-chronic toxicity

SVC support vector machines classification

tox toxicity descriptor

ToxCast US EPA Toxicity Forecaster

ToxRefDB US EPA Toxicology Reference Database

TSCA Toxic Substances Control Act

η2 Eta-squared statistic

7 References

(1). Wagner K, Fach B, and Kolar R (2012) Inconsistencies in data requirements of EU legislation 
involving tests on animals. ALTEX 29, 302–332. [PubMed: 22847257] 

(2). Everts S (2009) Cost Of REACH Underestimated. Chemical and Engineering News 87, 7.

(3). EPA. (2016) TSCA Chemical Substance Inventory, U.S. Environmental Protection Agency.

Liu et al. Page 19

Chem Res Toxicol. Author manuscript; available in PMC 2018 November 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



(4). ECHA. (2016) European Chemicals Agency (ECHA): Pre-registered Substances. Pre-registered 
substances - ECHA.

(5). Rovida C, and Hartung T (2009) Re-evaluation of animal numbers and costs for in vivo tests to 
accomplish REACH legislation requirements for chemicals - a report by the transatlantic think 
tank for toxicology (t(4)). ALTEX 26, 187–208. [PubMed: 19907906] 

(6). Committee on Toxicity, T., and Assessment of Environmental Agents, N. R. C. N. (2007) Toxicity 
Testing in the 21st Century: A Vision and a Strategy. The National Academies Press, 
Washington, D.C.

(7). Collins FS, Gray GM, and Bucher JR (2008) Toxicology. Transforming environmental health 
protection. Science 319, 906–907. [PubMed: 18276874] 

(8). Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, and Kavlock RJ (2007) The ToxCast 
program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95, 5–12. 
[PubMed: 16963515] 

(9). Kavlock R, and Dix D (2010) Computational toxicology as implemented by the U.S. EPA: 
providing high throughput decision support tools for screening and assessing chemical exposure, 
hazard and risk. J Toxicol Environ Health B Crit Rev 13, 197–217. [PubMed: 20574897] 

(10). Kavlock R, Chandler K, Houck K, Hunter S, Judson R, Kleinstreuer N, Knudsen T, Martin M, 
Padilla S, Reif D, Richard A, Rotroff D, Sipes N, and Dix D (2012) Update on EPA’s ToxCast 
program: providing high throughput decision support tools for chemical risk management. Chem 
Res Toxicol 25, 1287–1302. [PubMed: 22519603] 

(11). Richard AM, Judson RS, Houck KA, Grulke CM, Volarath P, Thillainadarajah I, Yang C, 
Rathman J, Martin MT, Wambaugh JF, Knudsen TB, Kancherla J, Mansouri K, Patlewicz G, 
Williams AJ, Little SB, Crofton KM, and Thomas RS (2016) ToxCast Chemical Landscape: 
Paving the Road to 21st Century Toxicology. Chemical Research in Toxicology.

(12). Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols 
JW, Russom CL, Schmieder PK, Serrrano JA, Tietge JE, and Villeneuve DL (2010) Adverse 
outcome pathways: a conceptual framework to support ecotoxicology research and risk 
assessment. Environ. Toxicol. Chem 29, 730–741. [PubMed: 20821501] 

(13). Paul Friedman K, Watt ED, Hornung MW, Hedge JM, Judson RS, Crofton KM, Houck KA, and 
Simmons SO (2016) Tiered High-Throughput Screening Approach to Identify Thyroperoxidase 
Inhibitors Within the ToxCast Phase I and II Chemical Libraries. Toxicol Sci 151, 160–180. 
[PubMed: 26884060] 

(14). Browne P, Judson RS, Casey WM, Kleinstreuer NC, and Thomas RS (2015) Screening 
Chemicals for Estrogen Receptor Bioactivity Using a Computational Model. Environ Sci Technol 
49, 8804–8814. [PubMed: 26066997] 

(15). Auerbach S, Filer D, Reif D, Walker V, Holloway AC, Schlezinger J, Srinivasan S, Svoboda D, 
Judson R, Bucher JR, and Thayer KA (2016) Prioritizing Environmental Chemicals for Obesity 
and Diabetes Outcomes Research: A Screening Approach Using ToxCast High-Throughput Data. 
Environ Health Perspect 124, 1141–1154. [PubMed: 26978842] 

(16). Knudsen T, Martin M, Chandler K, Kleinstreuer N, Judson R, and Sipes N (2013) Predictive 
models and computational toxicology. Methods in Molecular Biology (Clifton, N.J.) 947, 343–
374.

(17). Kleinstreuer NC, Dix DJ, Houck KA, Kavlock RJ, Knudsen TB, Martin MT, Paul KB, Reif DM, 
Crofton KM, Hamilton K, Hunter R, Shah I, and Judson RS (2013) In vitro perturbations of 
targets in cancer hallmark processes predict rodent chemical carcinogenesis. Toxicol Sci 131, 40–
55. [PubMed: 23024176] 

(18). Sipes NS, Martin MT, Reif DM, Kleinstreuer NC, Judson RS, Singh AV, Chandler KJ, Dix DJ, 
Kavlock RJ, and Knudsen TB (2011) Predictive models of prenatal developmental toxicity from 
ToxCast high-throughput screening data. Toxicol Sci 124, 109–127. [PubMed: 21873373] 

(19). Martin MT, Knudsen TB, Reif DM, Houck KA, Judson RS, Kavlock RJ, and Dix DJ (2011) 
Predictive model of rat reproductive toxicity from ToxCast high throughput screening. Biol 
Reprod 85, 327–339. [PubMed: 21565999] 

Liu et al. Page 20

Chem Res Toxicol. Author manuscript; available in PMC 2018 November 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



(20). Martin MT, Judson RS, Reif DM, Kavlock RJ, and Dix DJ (2009) Profiling chemicals based on 
chronic toxicity results from the U.S. EPA ToxRef Database. Environ. Health Perspect 117, 392–
399. [PubMed: 19337514] 

(21). Low Y, Uehara T, Minowa Y, Yamada H, Ohno Y, Urushidani T, Sedykh A, Muratov E, Kuz’min 
V, Fourches D, Zhu H, Rusyn I, and Tropsha A (2011) Predicting drug-induced hepatotoxicity 
using QSAR and toxicogenomics approaches. Chem Res Toxicol 24, 1251–1262. [PubMed: 
21699217] 

(22). Liu J, Mansouri K, Judson RS, Martin MT, Hong H, Chen M, Xu X, Thomas RS, and Shah I 
(2015) Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. 
Chemical Research in Toxicology 28, 738–751. [PubMed: 25697799] 

(23). Fourches D, Muratov E, and Tropsha A (2010) Trust, but verify: on the importance of chemical 
structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50, 
1189–1204. [PubMed: 20572635] 

(24). Williams AJ, and Ekins S (2011) A quality alert and call for improved curation of public 
chemistry databases. Drug Discov Today 16, 747–750. [PubMed: 21871970] 

(25). Williams AJ, Ekins S, and Tkachenko V (2012) Towards a gold standard: regarding quality in 
public domain chemistry databases and approaches to improving the situation. Drug Discov 
Today 17, 685–701. [PubMed: 22426180] 

(26). Judson R, Houck K, Martin M, Knudsen T, Thomas RS, Sipes N, Shah I, Wambaugh J, and 
Crofton K (2014) In vitro and modelling approaches to risk assessment from the U.S. 
Environmental Protection Agency ToxCast programme. Basic Clin Pharmacol Toxicol 115, 69–
76. [PubMed: 24684691] 

(27). Martin MT, Judson R, Richard A, Houck KA, and Dix DJ (2007) ToxRefDB: Linking Regulatory 
Toxicological Information on Environmental Chemicals with High-Throughput Screening and 
Genomic Data, In International Forum on Computational Toxicology.

(28). Romanov S, Medvedev A, Gambarian M, Poltoratskaya N, Moeser M, Medvedeva L, Gambarian 
M, Diatchenko L, and Makarov S (2008) Homogeneous reporter system enables quantitative 
functional assessment of multiple transcription factors. Nat Methods 5, 253–260. [PubMed: 
18297081] 

(29). Knudsen TB, Houck KA, Sipes NS, Singh AV, Judson RS, Martin MT, Weissman A, Kleinstreuer 
NC, Mortensen HM, Reif DM, Rabinowitz JR, Setzer RW, Richard AM, Dix DJ, and Kavlock RJ 
(2011) Activity profiles of 309 ToxCast chemicals evaluated across 292 biochemical targets. 
Toxicology 282, 1–15. [PubMed: 21251949] 

(30). Shah I, Setzer RW, Jack J, Houck KA, Judson RS, Knudsen TB, Liu J, Martin MT, Reif DM, 
Richard AM, Thomas RS, Crofton KM, Dix DJ, and Kavlock RJ (2016) Using ToxCast Data to 
Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure. 
Environ Health Perspect 124, 910–919. [PubMed: 26473631] 

(31). Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth 
A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, 
Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, 
Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, 
Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, 
and Judson RS (2016) CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. 
Environ Health Perspect 124, 1023–1033. [PubMed: 26908244] 

(32). Rogers D, and Hahn M (2010) Extended-Connectivity Fingerprints. Journal of Chemical 
Information and Modeling 50, 742–754. [PubMed: 20426451] 

(33). Landrum G (2015) RDKit.

(34). Yang C, Tarkhov A, Marusczyk J, Bienfait B, Gasteiger J, Kleinoeder T, Magdziarz T, Sacher O, 
Schwab CH, Schwoebel J, Terfloth L, Arvidson K, Richard A, Worth A, and Rathman J (2015) 
New publicly available chemical query language, CSRML, to support chemotype representations 
for application to data mining and modeling. J Chem Inf Model 55, 510–528. [PubMed: 
25647539] 

(35). Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu 
PS, Zhou Z-H, Steinbach M, Hand DJ, and Steinberg D (2008) Top 10 algorithms in data mining. 
Knowledge and Information Systems 14, 1–37.

Liu et al. Page 21

Chem Res Toxicol. Author manuscript; available in PMC 2018 November 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



(36). Cortes C, and Vapnik V Support-vector networks. Mach Learn 20, 273–297.

(37). Guyon I, Boser B, and Vapnik V (1993) Automatic Capacity Tuning of Very Large VC-
dimension Classifiers, pp 147–155, Morgan Kaufmann.

(38). Breiman L, Friedman J, Stone CJ, and Olshen RA (1984) Classification and Regression Trees. 
Taylor & Francis.

(39). Tukey JW (1949) Comparing individual means in the analysis of variance. Biometrics, 99–114. 
[PubMed: 18151955] 

(40). Cohen J (1973) Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educational 
and psychological measurement.

(41). Hunter JD (2007) Matplotlib: A 2D graphics environment. Comput Sci Eng 9, 90–95.

(42). Balamurugan K, and Sterneck E (2013) The many faces of C/EBPdelta and their relevance for 
inflammation and cancer. Int J Biol Sci 9, 917–933. [PubMed: 24155666] 

(43). Schrem H, Klempnauer J, and Borlak J (2004) Liver-enriched transcription factors in liver 
function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, 
carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene 
regulation. Pharmacol Rev 56, 291–330. [PubMed: 15169930] 

(44). Szeles L, Torocsik D, and Nagy L (2007) PPARgamma in immunity and inflammation: cell types 
and diseases. Biochim Biophys Acta 1771, 1014–1030. [PubMed: 17418635] 

(45). Suarez-Alvarez B, Liapis H, and Anders HJ (2016) Links between coagulation, inflammation, 
regeneration, and fibrosis in kidney pathology. Lab Invest 96, 378–390. [PubMed: 26752746] 

(46). Zoller H, and Tilg H (2016) Nonalcoholic fatty liver disease and hepatocellular carcinoma. 
Metabolism 65, 1151–1160. [PubMed: 26907206] 

(47). Kobayashi K, Hashimoto M, Honkakoski P, and Negishi M (2015) Regulation of gene expression 
by CAR: an update. Arch Toxicol 89, 1045–1055. [PubMed: 25975989] 

(48). Kazantseva YA, Pustylnyak YA, and Pustylnyak VO (2016) Role of Nuclear Constitutive 
Androstane Receptor in Regulation of Hepatocyte Proliferation and Hepatocarcinogenesis. 
Biochemistry (Mosc) 81, 338–347. [PubMed: 27293091] 

(49). Healy S, Khan P, and Davie JR (2013) Immediate early response genes and cell transformation. 
Pharmacol Ther 137, 64–77. [PubMed: 22983151] 

(50). Raza H, John A, and Benedict S (2011) Acetylsalicylic acid-induced oxidative stress, cell cycle 
arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells. Eur J 
Pharmacol 668, 15–24. [PubMed: 21722632] 

(51). Dimitrov SD, Diderich R, Sobanski T, Pavlov TS, Chankov GV, Chapkanov AS, Karakolev YH, 
Temelkov SG, Vasilev RA, Gerova KD, Kuseva CD, Todorova ND, Mehmed AM, Rasenberg M, 
and Mekenyan OG (2016). QSAR Toolbox - workflow and major functionalities. SAR QSAR 
Environ Res. 19, 1–17.

(52). Bhhatari B, Wilson DM, Parks AK, Carnery EW, and Spencer PJ (2016) Evaluation of TOPKAT, 
Toxtree, and Derek Nexus in Silicol Models for Ocular Irritation and Development of a 
Knowledge-Based Framework to Improve the Prediction of Severe Irritation. Chem Res Toxicol 
29, 810–822. [PubMed: 27018716] 

(53). (WHO), W. H. O. (1988) Pyrrolizidine alkaloids, In International Programme on Chemical 
Safety, Geneva.

(54). Mizutani T, Yoshida K, Murakami M, Shirai M, and Kawazoe S (200) Evidence for the 
involvement of N-methylthiourea, a ring cleavage metabolite in the hepatotoxicity of 
methimazole in glutathione-depleted mice: structure-toxicity and metabolic studies. Chem Res 
Toxicol 13, 170–176. [PubMed: 10725113] 

(55). Thomas RS, Black MB, Li L, Healy E, Chu TM, Bao W, Andersen ME, and Wolfinger RD 
(2012) A comprehensive statistical analysis of predicting in vivo hazard using high-throughput in 
vitro screening. Toxicol Sci 128, 398–417. [PubMed: 22543276] 

(56). Ekins S (2014) Progress in computational toxicology. J Pharmacol Toxicol Methods 69, 115–140. 
[PubMed: 24361690] 

(57). Low Y, Sedykh A, Fourches D, Golbraikh A, Whelan M, Rusyn I, and Tropsha A (2013) 
Integrative chemical-biological read-across approach for chemical hazard classification. 
Chemical Research in Toxicology 26, 1199–1208. [PubMed: 23848138] 

Liu et al. Page 22

Chem Res Toxicol. Author manuscript; available in PMC 2018 November 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



(58). Blum AL, and Langley P (1997) Selection of relevant features and examples in machine learning. 
Artificial intelligence 97, 245–271.

(59). Weiss SM, and Kapouleas I (1990) An empirical comparison of pattern recognition, neural nets 
and machine learning classification methods. Readings in machine learning, 177–183.

(60). Dietterich T (1995) Overfitting and undercomputing in machine learning. ACM computing 
surveys (CSUR) 27, 326–327.

(61). Dietterich TG (1998) Approximate statistical tests for comparing supervised classification 
learning algorithms. Neural computation 10, 1895–1923. [PubMed: 9744903] 

(62). Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. Journal of Machine 
learning research 7, 1–30.

(63). Sahoo S, Adhikari C, Kuanar M, and Mishra BK (2016) A Short Review of the Generation of 
Molecular Descriptors and Their Applications in Quantitative Structure Property/Activity 
Relationships. Curr Comput Aided Drug Des.

(64). Edwards SW, and Preston RJ (2008) Systems biology and mode of action based risk assessment. 
Toxicol Sci 106, 312–318. [PubMed: 18791183] 

(65). Becker RA, Ankley GT, Edwards SW, Kennedy SW, Linkov I, Meek B, Sachana M, Segner H, 
Van Der Burg B, Villeneuve DL, Watanabe H, and Barton-Maclaren TS (2015) Increasing 
Scientific Confidence in Adverse Outcome Pathways: Application of Tailored Bradford-Hill 
Considerations for Evaluating Weight of Evidence. Regul Toxicol Pharmacol 72, 514–537. 
[PubMed: 25863193] 

Liu et al. Page 23

Chem Res Toxicol. Author manuscript; available in PMC 2018 November 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 1. 
Distribution of positive and negative chemicals across the in vivo guideline toxicity testing 

studies and target organs. From left to right these bar graphs show the number of positive 

(pos, red) and negative (neg, green) chemicals for chronic (CHR), subchronic (SUB), 

multigenerational (MGR) and developmental (DEV) studies. The target organs are labeled 

on the ordinate and the number of chemicals on the abscissa. The negative chemicals are 

missing for guideline studies where the evaluation of the specific target organ effect was not 

compulsory.
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Figure 2. 
Relationship between F1 score and number of descriptors for the best performing 

classification models and illustrative examples of minimal datasets. In each graph, the effect 

and descriptor type are given in the title (denoted as study:target-organ), the mean F1 score, 

and the standard deviation is shown in blue and gray, respectively. The number of 

descriptors and F1 score for the best classifier are signified on the ordinate and abscissa, 

respectively, by vertical and horizontal red lines. Each graph shows the cross-validation F1 

score (ordinate) and number of descriptors (abscissa) for predicting toxicities (shown in the 

title and denoted as study:target-organ) using classification methods (shown in title)
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Figure 3. 
Summary of performance for target organ outcomes for select minimum datasets by 

classification algorithms and descriptors. The visualization shows the predictive 

performance for illustrative examples of target organ outcomes in rows (denoted as, 

study:target organ) using eight machine learning algorithms (columns): naïve Bayes (NB), 

k-nearest neighbor classification (KNN0 and KNN1) classification and regression trees 

(CART0 and CART1) and support vector classifiers (SVCL0 and SVCR0). The predictive 

performance is compared across five different descriptors including: chemical (chm), 

chemotype (ct), in vitro bioactivity (bio), a combination of in vitro bioactivity and chemical 

(bc), and a combination of in vitro bioactivity and chemotype (ct). The performance of a 

classification method for predicting an outcomeusing a descriptor type was measured using 

specificity (green), F1 score (red) and sensitivity (blue), which are visualized as vertical 

glyphs. The center, top, and bottom of the glyphs correspond to the mean ±1 SD. In all, the 

performance results for 40 classification methods (8 machine learning algorithms and five 

descriptor types) are visualized for each target organ toxicity. The grey horizontal bars on 

each graph signify the best mean F1 score ±1 SD (across all 5-fold cross-validation trials). 

The best performing classification model and descriptor set for each target organ outcome 

are denoted with a vertical red line.
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Figure 4. 
Summary of frequently used bioactivity descriptors in chronic target organ toxicity 

prediction models. The visualization shows a heat map in which the rows correspond to 

chronic target organ toxicities, columns correspond to the fifty most frequently used 

bioactivity descriptors, and values represent row standardized frequencies of occurrence of 

descriptors (column) in predictive models of target organ toxicities (row). The colors signify 

the row standardized frequencies for the bioactivity descriptors where positive values are 

red, negative values are blue and the level of saturation is directly related to magnitude. The 

row dendrogram show the cosine similarity between the frequency of bioactivity descriptors 

and target organ toxicity outcomes, respectively, by average linkage clustering.
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Figure 5. 
Summary of frequently used chemotype descriptors in chronic target organ toxicity 

prediction models. The visualization shows a heat map in which the rows correspond to 

chronic target organ toxicities, columns correspond to the fifty most frequently used 

chemotype descriptors, and values represent row standardized frequencies of occurrence of 

descriptors (column) in predictive models of target organ toxicities (row). The colors signify 

the row standardized frequencies for the chemotype descriptors where positive values are 

red, negative values are blue and the level of saturation is directly related to magnitude. The 

row dendrogram shows the cosine similarity between the frequency of chemotype 

descriptors and target organ toxicity outcomes, respectively, by average linkage clustering.
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Table 1.

Performance baseline of optimal classifiers for the minimal data sets (50 positive and 50 negative chemicals). 

From left to right the columns show the classifier identified (Classifier id), the organ toxicity (denoted as 

study:target organ), the machine learning algorithm (Algorithm), the descriptor type (dt), the number of 

descriptors used (nds), the F1 score ± 1 SD, sensitivity± 1 SD and specificity± 1 SD.

Classifier id Organ Toxicity Algorithm dt n_ds F1 Score Sensitivity Specificity

MGR:Brain:100/SVCR0/bio:24 MGR:Brain SVCR0 bio 24 0.85±0.09 0.79±0.13 0.95±0.06

CHR:Urinary Bladder:100/SVCR0/bct:24 CHR:Urinary Bladder SVCR0 bct 24 0.85±0.09 0.80±0.13 0.93±0.07

CHR:Mammary Gland:100/SVCR0/bc:24 CHR:Mammary Gland SVCR0 bc 24 0.83±0.10 0.77±0.14 0.93±0.07

CHR:Pancreas:100/KNN0/bc:22 CHR:Pancreas KNN0 bc 22 0.81±0.07 0.89±0.10 0.75±0.07

SUB:Bone Marrow:100/KNN0/bct:13 SUB:Bone Marrow KNN0 bct 13 0.81±0.07 0.90±0.10 0.74±0.07

CHR:Lymph Node:100/KNN0/bct:24 CHR:Lymph Node KNN0 bct 24 0.81±0.07 0.89±0.10 0.74±0.07

MGR:Ovary:100/KNN0/bc:24 MGR:Ovary KNN0 bc 24 0.81±0.08 0.87±0.11 0.75±0.07

CHR:Thymus:100/KNN0/bc:22 CHR:Thymus KNN0 bc 22 0.80±0.08 0.87±0.11 0.75±0.08

CHR:Bone Marrow:100/KNN0/bct:24 CHR:Bone Marrow KNN0 bct 24 0.79±0.07 0.89±0.10 0.72±0.07

CHR:Uterus:100/KNN0/bct:23 CHR:Uterus KNN0 bct 23 0.79±0.08 0.86±0.12 0.73±0.08

SUB:Lung:100/KNN0/ct:23 SUB:Lung KNN0 ct 23 0.78±0.07 0.91±0.10 0.69±0.07

MGR:Testes:100/KNN0/bct:24 MGR:Testes KNN0 bct 24 0.78±0.08 0.86±0.12 0.72±0.08

SUB:Stomach:100/KNN0/ct:22 SUB:Stomach KNN0 ct 22 0.78±0.07 0.90±0.11 0.69±0.07

CHR:Pituitary Gland:100/KNN0/bio:24 CHR:Pituitary Gland KNN0 bio 24 0.77±0.08 0.86±0.12 0.71±0.08

SUB:Thyroid Gland:100/KNN0/bio:22 SUB:Thyroid Gland KNN0 bio 22 0.77±0.08 0.86±0.11 0.71±0.09

CHR:Eye:100/KNN0/bc:21 CHR:Eye KNN0 bc 21 0.77±0.08 0.84±0.12 0.72±0.08

SUB:Thymus:100/KNN0/bio:22 SUB:Thymus KNN0 bio 22 0.77±0.09 0.86±0.13 0.70±0.08

SUB:Adrenal Gland:100/KNN0/bc:22 SUB:Adrenal Gland KNN0 bc 22 0.76±0.09 0.82±0.13 0.71±0.09

CHR:Heart:100/KNN0/bct:21 CHR:Heart KNN0 bct 21 0.75±0.09 0.81±0.13 0.72±0.09

SUB:Brain:100/KNN0/bio:24 SUB:Brain KNN0 bio 24 0.75±0.09 0.83±0.13 0.69±0.08

SUB:Heart:100/KNN0/bc:22 SUB:Heart KNN0 bc 22 0.74±0.09 0.82±0.13 0.69±0.08

CHR:Liver:100/SVCR0/bio:23 CHR:Liver SVCR0 bio 23 0.74±0.08 0.86±0.11 0.66±0.09

CHR:Stomach:100/KNN0/bct:23 CHR:Stomach KNN0 bct 23 0.74±0.09 0.81±0.13 0.69±0.09

SUB:Testes:100/KNN0/bc:23 SUB:Testes KNN0 bc 23 0.74±0.09 0.83±0.13 0.67±0.08

MGR:Kidney:100/KNN0/ct:22 MGR:Kidney KNN0 ct 22 0.73±0.08 0.88±0.12 0.63±0.08

SUB:Liver:100/SVCR0/bct:24 SUB:Liver SVCR0 bct 24 0.72±0.10 0.85±0.15 0.64±0.10

CHR:Brain:100/KNN0/ct:24 CHR:Brain KNN0 ct 24 0.72±0.08 0.86±0.13 0.62±0.08

CHR:Thyroid Gland:100/KNN0/ct:23 CHR:Thyroid Gland KNN0 ct 23 0.71±0.08 0.86±0.13 0.62±0.08

SUB:Spleen:100/KNN0/bio:24 SUB:Spleen KNN0 bio 24 0.70±0.09 0.79±0.14 0.65±0.09

CHR:Lung:100/KNN0/bct:19 CHR:Lung KNN0 bct 19 0.70±0.09 0.79±0.14 0.64±0.09

CHR:Testes:100/KNN0/ct:22 CHR:Testes KNN0 ct 22 0.70±0.08 0.85±0.13 0.60±0.08

CHR:Adrenal Gland:100/KNN0/bio:23 CHR:Adrenal Gland KNN0 bio 23 0.69±0.10 0.77±0.15 0.65±0.10

CHR:Kidney:100/SVCR0/bio:24 CHR:Kidney SVCR0 bio 24 0.69±0.12 0.83±0.18 0.62±0.11

CHR:Spleen:100/KNN0/ct:23 CHR:Spleen KNN0 ct 23 0.68±0.08 0.85±0.12 0.58±0.08
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Classifier id Organ Toxicity Algorithm dt n_ds F1 Score Sensitivity Specificity

SUB:Kidney:100/KNN0/bio:20 SUB:Kidney KNN0 bio 20 0.67±0.10 0.77±0.14 0.61±0.10

Machine learning algorithms: Naïve Bayes (NB), support vector classifiers with radial basis function kernel (SVCR0), k-nearest neighbors 
(KNN0/k=3 and KNN1/k=5), and random forest (RF0).
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Table 2.

Performance baseline of optimal classifiers for the full data sets. From left to right the columns show the 

classifier identified (Classifier id), the organ toxicity (denoted as study:target organ), the machine learning 

algorithm (Algorithm), the descriptor type (dt), the number of chemicals (nchm), the number of descriptors 

used (nds), the F1 score ± 1 SD, sensitivity± 1 SD and specificity± 1 SD.

Classifier id Organ Toxicity Algorithm dt n_ds F1 Score Sensitivity Specificity

SUB:Bone Marrow:164/SVCR0/bio:23 SUB:Bone Marrow SVCR0 bio 23 0.88±0.06 0.87±0.09 0.90±0.05

CHR:Mammary Gland:128/SVCR0/bc:23 CHR:Mammary Gland SVCR0 bc 23 0.88±0.07 0.85±0.10 0.93±0.06

CHR:Urinary Bladder:106/SVCR0/bc:24 CHR:Urinary Bladder SVCR0 bc 24 0.87±0.08 0.82±0.12 0.93±0.06

CHR:Pancreas:130/SVCR0/bct:23 CHR:Pancreas SVCR0 bct 23 0.87±0.07 0.82±0.11 0.93±0.06

SUB:Lung:170/SVCR0/bc:23 SUB:Lung SVCR0 bc 23 0.87±0.06 0.85±0.09 0.89±0.06

MGR:Testes:182/SVCR0/bct:23 MGR:Testes SVCR0 bct 23 0.86±0.06 0.83±0.09 0.91±0.05

CHR:Heart:250/SVCR0/bio:24 CHR:Heart SVCR0 bio 24 0.86±0.06 0.80±0.09 0.96±0.05

CHR:Uterus:170/SVCR0/bct:23 CHR:Uterus SVCR0 bct 23 0.86±0.07 0.80±0.11 0.94±0.06

MGR:Brain:102/SVCR0/bio:23 MGR:Brain SVCR0 bio 23 0.86±0.09 0.80±0.13 0.94±0.06

SUB:Brain:230/SVCR0/bct:24 SUB:Brain SVCR0 bct 24 0.86±0.06 0.81±0.09 0.92±0.05

CHR:Bone Marrow:156/SVCR0/bct:24 CHR:Bone Marrow SVCR0 bct 24 0.85±0.07 0.81±0.11 0.91±0.06

SUB:Thymus:200/SVCR0/bio:24 SUB:Thymus SVCR0 bio 24 0.85±0.06 0.82±0.09 0.90±0.06

MGR:Ovary:130/SVCR0/bct:24 MGR:Ovary SVCR0 bct 24 0.85±0.08 0.80±0.12 0.92±0.07

SUB:Thyroid Gland:176/RF0/bct:24 SUB:Thyroid Gland RF0 bct 24 0.85±0.06 0.86±0.09 0.85±0.06

MGR:Kidney:290/RF0/bct:24 MGR:Kidney RF0 bct 24 0.85±0.05 0.87±0.07 0.83±0.05

CHR:Lymph Node:140/SVCR0/bc:24 CHR:Lymph Node SVCR0 bc 24 0.85±0.08 0.79±0.11 0.94±0.06

SUB:Testes:318/RF0/bio:24 SUB:Testes RF0 bio 24 0.85±0.04 0.89±0.06 0.81±0.05

SUB:Adrenal Gland:250/RF0/bct:24 SUB:Adrenal Gland RF0 bct 24 0.84±0.05 0.85±0.08 0.84±0.05

CHR:Eye:186/SVCR0/bio:24 CHR:Eye SVCR0 bio 24 0.84±0.07 0.77±0.11 0.94±0.06

SUB:Heart:268/SVCR0/bio:24 SUB:Heart SVCR0 bio 24 0.84±0.06 0.82±0.09 0.87±0.06

SUB:Stomach:176/KNN0/bc:23 SUB:Stomach KNN0 bc 23 0.84±0.05 0.92±0.08 0.78±0.06

CHR:Stomach:268/SVCR0/bc:24 CHR:Stomach SVCR0 bc 24 0.84±0.06 0.82±0.10 0.86±0.06

CHR:Thymus:140/SVCR0/bct:24 CHR:Thymus SVCR0 bct 24 0.84±0.08 0.77±0.11 0.93±0.06

SUB:Spleen:352/RF0/bio:24 SUB:Spleen RF0 bio 24 0.84±0.05 0.85±0.07 0.83±0.05

CHR:Testes:320/KNN0/bct:24 CHR:Testes KNN0 bct 24 0.83±0.04 0.92±0.06 0.76±0.05

CHR:Brain:260/SVCR0/bct:24 CHR:Brain SVCR0 bct 24 0.83±0.06 0.78±0.10 0.90±0.06

CHR:Thyroid Gland:320/RF0/bio:24 CHR:Thyroid Gland RF0 bio 24 0.83±0.05 0.83±0.08 0.84±0.05

CHR:Pituitary Gland:152/SVCR0/bio:23 CHR:Pituitary Gland SVCR0 bio 23 0.83±0.08 0.79±0.12 0.90±0.08

CHR:Spleen:410/RF0/bio:24 CHR:Spleen RF0 bio 24 0.83±0.05 0.84±0.07 0.83±0.05

CHR:Lung:366/KNN0/bct:24 CHR:Lung KNN0 bct 24 0.83±0.04 0.92±0.07 0.76±0.05

CHR:Liver:240/SVCR0/bio:24 CHR:Liver SVCR0 bio 24 0.83±0.06 0.88±0.07 0.79±0.08

CHR:Adrenal Gland:376/RF0/bct:24 CHR:Adrenal Gland RF0 bct 24 0.83±0.05 0.81±0.08 0.84±0.05

CHR:Kidney:350/SVCR0/bct:24 CHR:Kidney SVCR0 bct 24 0.82±0.05 0.87±0.07 0.78±0.06

SUB:Liver:230/SVCR0/bct:24 SUB:Liver SVCR0 bct 24 0.79±0.07 0.83±0.09 0.77±0.08
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Classifier id Organ Toxicity Algorithm dt n_ds F1 Score Sensitivity Specificity

SUB:Kidney:428/KNN0/bio:24 SUB:Kidney KNN0 bio 24 0.78±0.05 0.87±0.08 0.71±0.07

Machine learning algorithms: Naïve Bayes (NB), support vector classifiers with radial basis function kernel (SVCR0), k-nearest neighbors 
(KNN0/k=3 and KNN1/k=5), random forest (RF0) and classification and regression trees (CART0/max-depth=5, CART1/max-depth=automatic).
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