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Abstract

Background: Actions of general anaesthetics on activity in the cortico-thalamic network likely contribute to loss of con-
sciousness and disconnection from the environment. Previously, we showed that the general anaesthetic isoflurane prefer-
entially suppresses cortically evoked synaptic responses compared with thalamically evoked synaptic responses, but how
this differential sensitivity translates into changes in network activity is unclear.
Methods: We investigated isoflurane disruption of spontaneous and stimulus-induced cortical network activity using multi-
channel recordings in murine auditory thalamo-cortical brain slices.
Results: Under control conditions, afferent stimulation elicited short latency, presumably monosynaptically driven, spiking
responses, as well as long latency network bursts that propagated horizontally through the cortex. Isoflurane (0.05–0.6 mM)
suppressed spiking activity overall, but had a far greater effect on network bursts than on early spiking responses. At isoflur-
ane concentrations >0.3 mM, network bursts were almost entirely blocked, even with increased stimulation intensity and in
response to paired (thalamo-corticalþ cortical layer 1) stimulation, while early spiking responses were <50% blocked.
Isoflurane increased the threshold for eliciting bursts, decreased their propagation speed and prevented layer 1 afferents
from facilitating burst induction by thalamo-cortical afferents.
Conclusions: Disruption of horizontal activity spread and of layer 1 facilitation of thalamo-cortical responses likely contrib-
ute to the mechanism by which suppression of cortical feedback connections disrupts sensory awareness under
anaesthesia.
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General anaesthetics produce loss of consciousness (LOC) and
alter responsiveness to external stimuli by acting throughout
the neural axis. While anaesthetic action on subcortical sites
likely contributes to LOC,1–3 there is an emerging consensus
on the importance of cortical loci. Specifically, anaesthetics
disrupt cortical network connectivity,4 5 a mechanism with

extensive experimental support.6–12 Recently, we showed
that cortico-cortical synaptic inputs to auditory cortex are
more sensitive to isoflurane than are thalamo-cortical (TC)
inputs, both in vivo and in brain slices,13 further supporting
anaesthetic mechanisms involving disrupted cortico-cortical
signalling.
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Here, we investigated the effects of isoflurane in mouse
auditory TC brain slices on evoked and spontaneous neuronal
responses, focusing on polysynaptic, propagating network
activity (‘bursts’). Our interest in network bursts derives from
the importance of the activity of ensembles, rather than of
single neurones, in cortical processing.14–16 In auditory cortex,
the ‘desynchronized’ state can in fact be described in terms of
overlapping UP states during which ‘packets’ of spiking activity
lasting �50–300 ms occur.17 Although the absence of neuromo-
dulatory signals and ongoing thalamic input in brain slices
precludes the expression of desynchronized activity as in vivo,
the same local networks are likely engaged during these
bursts,18 and their activity in the presence of anaesthetics
reveals the extent to which anaesthetics disrupt these
connections.

Methods

All experimental protocols conformed to American Physiological
Society/National Institutes of Health guidelines and were
approved by the University of Wisconsin Animal Care and Use
Committee.

Slice preparation and electrophysiological recordings

Auditory TC brain slices were prepared from mice of either sex
(n¼24 animals; age range: p28–p92 days)13 (see Supplementary
Methods for additional details). Multisite recordings were made
in the auditory cortex using a multichannel electrode with 16
recording sites that spanned 1.5 mm.13 19 For most recordings
the probe was oriented with the shanks parallel to the pia
(‘horizontal’ orientation, in layer 5, spanning multiple columns;
Fig. 1A, n¼20 slices). Afferents were activated using stimulating
electrodes inserted into the superior thalamic radiation, rostral
to the hippocampus (TC afferents) or cortical layer 1 >500 lm
caudal to the recording probe (L1 afferents). Stimuli consisted
of either single pulses or short trains (4�40 Hz). For ‘paired’
stimulation, TC and L1 stimuli were presented simultaneously.
Isoflurane was prepared and applied to the slice in the aqueous
phase13 and concentrations confirmed after the experiment
using gas phase measurements (Poet II Anesthesia Monitor,
Criticare Systems, Waukesha, WI, USA).

Data analysis

Multi-unit activity (MUA) was extracted from the raw data by
bandpass filtering (500-3000 Hz), rectifying and then low-pass

filtering to obtain the MUA signal used for detecting and quanti-
fying responses to afferent stimuli (Fig. 1B and C). Induced MUA
responses often consisted of two components (Fig. 1B and C):
short-latency ‘early responses,’ likely reflecting monosynapti-
cally evoked spikes, and longer latency network bursts.
Spontaneous bursts were also observed and analysed as for
induced bursts. MUA response magnitude was measured as the
integral of the signal. We also measured the probability of burst
occurrence [P(Bu)] and the latency to burst onset, from which
horizontal propagation speed was derived.

Quantification of isoflurane effects

The effects of isoflurane on early and burst response magni-
tudes, burst latency and propagation were assayed by compari-
son with control values. To distinguish the effects on burst
initiation, as opposed to propagation, the effects on burst
properties were assessed at recording sites in the array that were
closest to their initiation site (see Supplementary Methods).

In the majority of experiments, 2–4 stimulation strengths
were applied, which reliably elicited network bursts in the
control condition but which were at least partly rendered sub-
threshold by isoflurane, particularly at higher concentrations. As
a result of time constraints during an experiment, it was not
always possible to test all combinations of stimulus strength and
isoflurane condition, nor to anticipate the stimulation levels that
would be required to elicit network activity following exposure to
isoflurane. Therefore, stimulation strength was adjusted during
most experiments. When possible, the responses were compared
directly between isoflurane conditions. However, when stimula-
tion strengths applied in control and isoflurane did not match,
we used linear interpolation to estimate the lower and upper
bounds of stimulation threshold (see Supplementary Methods).

Statistical analyses

Parameters with skewed distributions or largely different var-
iances between groups were analysed with non-parametric sta-
tistics. For comparisons of two groups, we computed the area
under the receiver-operating curve (AUROC), a non-parametric
measure of effect size20 related to the Mann–Whitney U-test
statistic. AUROC ranges from zero to unity, representing the
probability that randomly sampled scores from the groups
are different. A value of 0.5 indicates no difference, and the
further its value deviates from this value, the stronger the effect.
95% confidence intervals (CI95) were computed via bootstrap-
ping. AUROC values were complemented by P-values from
Wilcoxon’s signed rank test for paired data and by P-values
from Kruskal–Wallis tests for several groups.

Interactions between isoflurane and response (‘early’, ‘late’)
or burst (‘TC’, ‘L1’) type were analysed by fitting generalized lin-
ear mixed models (fitglme function, MATLAB, Statistics Toolbox,
MathWorks, Natick, MA, USA) using maximum pseudolikeli-
hood to allow for flexible analysis of repeated measures with
unequal numbers of observations within subjects. Slice was
treated as a random effect with random slopes. Link functions
and distributions appropriate to the measures tested were used:
log link/gamma distribution for integral, identity link/normal
distribution for latency and threshold, and logit link/binomial
for burst probability. Statistical significance of the interaction
was determined using a v2 test on the log-likelihood of models
including vs omitting interaction terms.

Editor’s key points

• General anaesthetics appear to produce unconsciousness
by disrupting cortical network connectivity by unclear
mechanisms.

• Effects of isoflurane on mono- and polysynaptic activity
were investigated in mouse thalamo-cortical brain slices
by multi-electrode recordings.

• Isoflurane suppressed monosynaptic activity, but had a
far greater effect on polysynaptic network bursts.

• Disruption of network level interactions likely contrib-
utes to anaesthetic-induced loss of consciousness.
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Results
Afferent stimulation of TC slices elicits multiple
response components

Stimulation of both TC and L1 afferents in auditory cortical slices
elicits short latency monosynaptic responses (‘early’ responses)
often followed by much larger, longer and more variable polysy-
naptic network bursts (Fig. 1).13 Early responses to TC stimuli rep-
resent monosynaptic TC synaptic responses. Early responses to
L1 stimuli likely reflect a mixture of extralemniscal TC afferent
responses and feedback cortico-cortical (CC) afferent responses.21

All long latency, polysynaptic network responses correspond to
activity dependent on CC synaptic connections. Bursts occur
spontaneously as well, and are similar to UP states in slice prepa-
rations of somatosensory and visual neocortex.19 22 23 We have
shown19 that these bursts originate in layer 5. Here, we character-
ized their occurrence and intercolumnar propagation as well as
their sensitivity to isoflurane (Fig. 1).

Early MUA responses to TC stimulation were usually
observed at multiple recording sites (median of 10 sites in 17 of
20 slices). Averaged across slices, they were homogeneously
distributed throughout the array (Fig. 1D). Early responses to L1
stimulation were comparatively sparse (median 2.5 sites in 10 of

20 slices), and responsive sites were mostly close to the stimula-
tion site (Fig. 1D), likely because of the decay of cortical monosy-
naptic connection probability with distance. Early responses to
paired stimuli were an amalgam of TC and L1 early responses
(Fig. 1D; tested in 17 slices, median of nine responsive sites).

Network bursts, which had a much larger magnitude, longer
duration and longer latency than early responses, were observed
in all slices. When triggered by TC stimuli of sufficient intensity
(TC bursts), they occurred with near unity probability across the
recording array in 19/20 slices (Fig. 1E, left). In most cases, we
observed a block of 4–8 adjacent electrodes with near uniform,
short latencies (Fig. 2A and B), indicating a broad initiation zone,
usually in the interior of the array, from which activity propagated
bidirectionally. For bursts induced by L1 stimuli (L1 bursts), latency
was always shortest at the electrode closest to the stimulation
site, and bursts propagated horizontally in the rostro-caudal direc-
tion (Fig. 2A and B). Combined with the observation that early
MUA responses to L1 stimuli were sparse (Fig. 1D), this observation
suggests that L1 bursts were usually initiated in a column outside
the recording site and recorded as propagating activity along the
array. L1 stimuli were less effective at driving bursts throughout
the recording array, even at stimulation strengths that were far
supra-threshold for recording sites proximal to the stimulation
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Fig 1 Early and late responses to afferent stimulation in slices. (A) Left, arrangement of stimulation electrodes and recording array within auditory thalamo-corti-

cal (TC) slice. MG, medial geniculate nucleus; Au1, primary auditory cortex; L1, layer 1; Stim, stimulation; Rec, recording. Right, representative raw data trace (one
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site (Fig. 1E, middle). As TC bursts and bursts induced by paired
stimulation (P bursts) could reliably be recorded at these same
sites (Fig. 1E), we presumed that in these slices remotely generated
network bursts did not propagate in a reliable manner, at least not
in the rostro-caudal direction for the extent of the recording array.
Therefore, in analyses below that are applied across the recording
array (e.g. Figs 2, 3, 5 and 6), recording sites with P(Bu)<0.75 even
at the highest stimulation strength were excluded from analysis.
As would be expected, P bursts exhibited a latency profile that
shared features of both inputs (Fig. 2A and B).

Network bursts also occurred spontaneously (Fig. 2A), albeit
rarely (13/20 slices, median rate 0.0086 s�1), propagating in either
direction. Propagation speeds of spontaneous (S) and induced
bursts did not depend on their origin (Fig. 2C; Kruskal–Wallis test

comparing TC, L1 and S bursts; P¼0.99). All four categories of
bursts (TC, L1, P and S) originated from different, spatially segre-
gated sets of activated afferents and therefore exhibited clear
differences in latency profiles and propagation. Nonetheless,
they were almost identical in magnitude (Fig. 2D and E) and
duration (data not shown), suggesting that once a critical num-
ber of neurones was active, internal cortical dynamics governed
the extent of activity.

We investigated P bursts in detail, as coordinated stimula-
tion of TC and L1 afferents could be a model for feedback (CC)
modulation of feedforward (TC) responses. That is, in addition
to interacting with TC afferents at the single-cell level, L1 affer-
ent input might facilitate TC responses at the network level
(e.g. by speeding up the generation of network bursts or, in the

TCA

B

C D E

L1 P S

TC

0.3

0.2

0.1

40
1.5

0.5

0

1

1.5

0.5

0
0 0.5 1 1.5

120

10

TC

TC

L1

L1

S

S
P

In
te

g B
u 

(m
V

×
m

s)

In
te

g B
u 

(m
V

×
m

s)

TC: IntegBu (mV×ms)

5

0
30

0
60

0
90

0
12

00
15

00 0
30

0
60

0
90

0
12

00
15

00

0
30

0
60

0
90

0
12

00
15

00

0
30

0
60

0
90

0
12

00
15

00 0
30

0
60

0
90

0
12

00
15

00

La
te

nc
y B

u 
(s

)

L1

Electrode position (mm)

Electrode position (mm)

P S

0.05 mV

40 ms

|s
pe

ed
| (

m
m

 s
–1

)

Fig 2 Properties of network bursts. (A) Excerpts of peri-stimulus MUA signals depicting thalamo-cortical (TC), L1, P and S network bursts for the experiment

shown in Fig. 1A–C. Grey lines are individual trials (n¼10 for TC, L1 and P), coloured lines are the means. (B) Summary across slices of latencies of TC, L1, P and S

network bursts vs electrode position (grey lines, individual slices; coloured lines, means). Only caudo-rostrally propagating S bursts are shown; these were plotted

with an arbitrary offset to allow for a comparison of inter-electrode latency differences with stimulated bursts. (C) Propagation speed of network bursts. Open

grey circles are individual slices; black circles and error bars are the medians and inter-quartile ranges, respectively. (D) Magnitudes of bursts vs electrode

position (coloured lines, means; shaded areas, standard deviations). (E) Scatter plot of L1, P and S burst magnitude (averaged across recording sites) vs TC burst

magnitude (same colour code as in B and D). P, paired; S, spontaneous; IntegBu, burst integral; L1, layer 1; MUA, multi-unit activity.

688 | Hentschke et al.

Deleted Text: Figure 
Deleted Text: Figure 
Deleted Text: Figure 
Deleted Text: -
Deleted Text: <italic>p</italic>
Deleted Text:  
Deleted Text: , 


case of sparse inputs, by increasing the number of neurones
with spiking responses to the ‘critical mass’ required to give rise
to network bursts). Conversely, in case either of the afferent
pathways preferentially recruited inhibitory interneurones,
pairing stimuli could delay or impede burst generation. Burst
latency profiles of individual slices were suggestive of the for-
mer (example in Fig. 3A): particularly at recording sites close to
the intersection of TC and L1 burst latency profiles, pairing
stimuli predominantly sped up burst generation, albeit to vary-
ing degrees (Fig. 3B; median D latency of 12.9 ms; Wilcoxon’s
signed rank test P¼0.0016).

As the finding that paired stimulation shortened burst onset
suggested a positive interaction of TC and L1 afferents, we also
investigated the probability of occurrence of bursts, P(Bu). For
very weak TC stimuli (i.e. those unreliable for inducing bursts),
pairing with equally unreliable L1 stimuli resulted in non-linear
facilitation of responses, such that paired stimulation indeed
elicited bursts with high reliability (Fig. 3C). To quantify these
observations, we computed the expected P(Bu) for paired stimuli
under the assumption that responses to each pathway alone are
independent. This quantity, termed P(Bu)P,exp, was computed by
multiplying failure rates of TC and L1 stimuli (which yielded the
expected failure rate of paired stimuli) and subtracting this
expected failure rate from unity. For the example in Fig. 3C, inde-
pendence of responses would have resulted in P(Bu)P,exp �0.5–0.6
(Fig. 3D, right), but the actual probability, P(Bu)P, was unity, sug-
gesting strong facilitation. Across the whole data set, with a few
exceptions, P(Bu)P was consistently higher than P(Bu)P,exp [Fig. 3E;
AUROC¼0.66 (0.58, 0.75); Wilcoxon’s signed rank test, P¼0.005,
computed from n¼42 pairs from the 16 slices with paired stimu-
lation P(Bu)P,exp<1]. Thus, pairing TC and L1 stimuli predomi-
nantly facilitated burst responses.

Effects of isoflurane on evoked and spontaneous activity
in the auditory cortex

Isoflurane had multiple depressant effects on both early
responses and network bursts that were readily visible in the
MUA data traces (Fig. 4A). We fit generalized linear mixed
models (see the Methods section) and tested model fit and
coefficients. In experiments in which stimulation strength was
held constant throughout control and all drug applications,
early responses elicited by TC stimuli declined moderately with
isoflurane concentration; their magnitude was on average about
70% of the control value at 0.2 mM isoflurane [the aqueous
concentration corresponding to �0.8%, the loss of righting reflex
for mice;24 25 Fig. 4B; eb(mM iso)¼0.18 with 95% CI: (0.097, 0.34)].

In contrast to its modest suppressive effect on early spiking
responses, isoflurane profoundly suppressed burst responses. For
TC stimuli, network bursts were more sensitive to isoflurane than
early responses [Fig. 4C, left; eb(mM iso)¼0.0055 with 95% CI: (0.0023,
0.013); likelihood ratio test: v2(1)¼6.48, P¼0.011]. The effect on mag-
nitude of network bursts did not differ significantly between TC
and L1 bursts (Fig. 4C; likelihood of model without interaction
term for burst type was greater than full model). The probability of
occurrence of network bursts decreased steeply with isoflurane
concentration, and the effect differed for TC vs L1 bursts [Fig. 4D;
TC bursts, odds ratio 0.0083 (0.0022, 0.0313) per 0.1 mM isoflurane;
L1 bursts, odds ratio 0.0642 (0.0375, 0.1097)]. L1 bursts were less
sensitive to a unit increase in isoflurane [likelihood ratio test:
v2(1)¼4495.1, P<0.00001], but were more fragile [odds ratio 0.0048
(0.0003, 0.0822)], resulting in a decrease in L1 burst probability at
low isoflurane concentrations. These observations are consistent
with a model in which L1 bursts arise from a near-threshold level

of activation, as we expect if L1 bursts propagate from outside the
array, while TC bursts arise from more widespread activation
within the array (Supplementary Fig. S1). Isoflurane delayed burst
onset [Fig. 4E; slopes of fitted lines are 18.6 (5.95, 31.3) and 35.0
(19.6, 50.5) ms per 0.1mM isoflurane, respectively] but the effect
was not significantly different on TC vs L1 bursts [v2(1)¼2.97,
P¼0.085]. A complementary finding was that stimuli of higher
intensity were required to elicit bursts in the presence of isoflur-
ane [Fig. 4F shows normalized stimulation intensities required for
P(Bu)�0.75; see Supplementary Methods]. Thus, thresholds for
induction of bursts were raised by 1.5–2-fold at surgical doses
[i.e. 1 median alveolar concentration (MAC); 0.3 mM] of isoflurane,
but were not significantly different between TC and L1 bursts,
v2(1)¼3.28, P¼0.070. Finally, isoflurane also greatly diminished the
rate of spontaneous bursts (Fig. 4G) and depressed their magni-
tude (Fig. 4H; see panel A for a raw data example).

In addition to the suppressive effects on burst initiation illus-
trated in Fig. 4, both speed and spatial extent of horizontal propa-
gation were profoundly altered by isoflurane (Figs 4A and 5).
Propagation speed was slowed, with apparently little dependence
on isoflurane concentration (Fig. 5A; median reduction¼54%
across all concentrations; because of the sparsity of bursts in the
presence of isoflurane, we pooled TC, L1 and S bursts). (The
absence of concentration dependence for the effect of isoflurane
on propagation speed likely arose because of a necessary selec-
tion bias: to compute propagation speed, we require bursts to
occur over a wide extent of the electrode array, and thus at high
concentrations of isoflurane we may be analysing only the stron-
gest induced bursts.) Moreover, isoflurane limited the spatial
range of L1 bursts, which often faded beyond the first few record-
ing sites closest to the stimulation electrode [Fig. 5B–D; note that
here we are only considering recording sites for which P(Bu)>0.75
in control conditions, unlike the similar panel in Fig. 1E]. By
contrast, TC bursts did not show a comparable pattern of fading,
consistent with the notion of a wide burst initiation zone.

Next, we investigated how isoflurane affected P bursts. As in
control conditions (Fig. 3), paired stimulation in moderate
concentrations of isoflurane elicited network bursts with high
reliability for stimuli that were by themselves less effective
(Fig. 6). In the example shown in Fig. 6A, TC and L1 stimuli were
barely able to induce bursts on their own (note that in isoflurane
stimulation strength had to be increased substantially to induce
burst responses). However, paired stimulation reliably generated
bursts (with altered dynamics) across the recording array in both
isoflurane conditions. Thus, the non-linear facilitation observed
under control conditions with paired stimulation of TC and L1
afferents was still evident at moderate concentrations of isoflur-
ane. Once stimulation intensities had been adjusted to account
for threshold shifts, burst responses could be ‘rescued’ by pairing
TC and L1 stimulation. At higher isoflurane concentrations
(>1 MAC), it was virtually impossible to induce bursting
responses even with strong paired stimulation (Fig. 6B–E).

Discussion
Spiking responses to TC and layer 1 afferent stimulation

Stimulation of TC afferents evoked short latency spikes on
multiple electrodes in the recording array, consistent with the
activation of synaptic terminals across a wide swath of auditory
cortex.21 Based on observed latencies and comparison with our
previous work,19 we conclude that the vast majority of this
activity is monosynaptically driven. We cannot exclude a small
contribution from antidromically activated cells, estimated
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previously at around 3% of detected early spikes,19 and from pol-
ysynaptic activity. However, we note that the magnitude of spik-
ing activity detected at these short latencies was vastly smaller
than that detected during network bursts, as described.19 26–28

Layer 1 CC afferents are classically described as modulatory,
rather than ‘driving’ inputs,29 30 consistent with the paucity of
early spiking observed here. However, spiking activity driven by
CC afferents in superficial layers has been observed.31 32 Indeed,
L1 stimuli could induce propagating bursts largely indistin-
guishable from TC-induced activity (Fig. 2D and E). This suggests
that L1 stimuli were effective at monosynaptically driving spik-
ing activity, but at sites close to the stimulating electrode and

not sampled by the recording electrode array. Thus, the most
parsimonious explanation of both the sparsity and spatial gra-
dient of early L1 responses is the decay of cortical monosynaptic
connection probability with distance.33–35

TC and L1 afferents triggered network bursts with low thresh-
old and high probability. The dual time course of responses in
our slice experiments [i.e. a short latency, well-timed direct
response to afferent input followed by long latency, variable and
labile components reflecting intracortical activity (bursts)] is par-
alleled by the multiphasic sensory responses observed in vivo.
For example, auditory evoked responses observed in clinical set-
tings are composed of early and late components, the latter
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exhibiting a state dependence with useful diagnostic implica-
tions.36 The bursts we observed here are similar to brief UP states
or network events observed in vivo under non-rapid eye move-
ment sleep and anaesthesia,37 38 and are thought to represent
fragments of the desynchronized state associated with active
engagement with the environment.14 39 The observation that
this type of bistable network activity exists under waking condi-
tions as well38 40–42 lends further motivation to study this activity
in slices. These bursts reflect entry into an activated state by the
cortical network, and might enhance signal propagation through
the cortical hierarchy.15 19 23 Wave-like horizontal spread of
induced network activity has been reported previously,22 28 38 43

likely contributing to information sharing between cortical net-
works and modulating cortical sensory responses coinciding
with the arrival of propagating activity.43–45 Anaesthetic suppres-
sion of network bursts is of interest for understanding their
role in sensory processing and the mechanisms of general
anaesthesia.

Early responses are modestly suppressed by isoflurane

Isoflurane reduced the magnitude of short latency TC
responses, by 41% at 0.24 mM isoflurane. Although there is evi-
dence that anaesthetics suppress spontaneous cortical spiking
activity,46–49 few studies compared evoked spiking responses in
the absence or presence of anaesthetic.48 50 In these studies,
barbiturate anaesthesia at surgical doses reduced responses to
acoustic stimuli by �50–80%, a larger effect than observed here
with isoflurane. Accumulated effects along the ascending sen-
sory pathway might account for these differences. For example,
isoflurane directly suppresses thalamic relay cells,51 an effect
bypassed here with direct TC fibre stimulation. By contrast, the
isoflurane effect on short latency TC spike responses was sub-
stantially larger than the 16% block of TC synaptic responses at
0.24 mM isoflurane.13 The difference between synaptic vs spik-
ing response sensitivity likely reflects the non-linear sensitivity
of spiking to small changes in sub-threshold membrane poten-
tial signals.52 Although the effects of isoflurane on short latency
spiking responses were modest, we note that there is an ampli-
fication of the effect at the TC synapse, contributing to the
reduced activation of cortical networks by synaptically driven
spiking activity.

Suppression of network activity by isoflurane

We found more dramatic suppression by isoflurane of spiking
within induced network bursts. At doses comparable with surgi-
cal anaesthesia in vivo (>0.3 mM), network bursts were almost
entirely eliminated even at the highest stimulus intensities.
Thus, isoflurane effectively decouples the cortical network from
inputs that typically drive an activated state. These observa-
tions are consistent with current models of LOC under anaes-
thesia in which suppression of intracortical connections plays a
prominent role.4 53 The difference in sensitivity of L1 and TC
burst probability (Fig. 4D) likely reflects differential effects on
burst propagation compared with burst initiation.

Previous studies have shown that general anaesthetics synchron-
ize network activity at moderate concentrations and disrupt this
activity at higher concentrations.54–56 Consistent with these findings,
we observed complete suppression of induced network bursts at the
highest concentrations of isoflurane tested. At concentrations corre-
sponding to sub-hypnotic and just-hypnotic doses in vivo, the effects
of isoflurane on network burst probability and magnitude were vari-
able. Indeed, the distribution of P(Bu) across slices in response to TC
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Fig 5 Isoflurane disrupts burst propagation. (A) Normalized burst propaga-

tion speed vs isoflurane concentration under constant stimulation

strength. As a result of the strong depression of bursts by isoflurane, prop-

agation speed could be computed for only a subset of the data

(Supplementary Methods); hence, TC, L1 and S bursts were pooled. (B)

Spatial profiles of P(Bu) for TC and L1 bursts in isoflurane. Each grey line is

one experiment at an isoflurane concentration and stimulation strength

resulting in an across recording sites average 0<P(Bu)<1.0 and a maximal

between-electrodes coefficient of variation (CV) of P(Bu) (Supplementary

Methods). Thick coloured traces are means; means of P(Bu) at control are

plotted for comparison (dotted lines). Note that for this analysis, only sites

with P(Bu)>0.75 in control were included. The isoflurane concentrations at

maximal CV were [median and (inter-quartile range)] 0.24 (0.10, 0.29) mM

for TC bursts and 0.14 (0.10, 0.19) for L1 bursts. (C) AUROC values and 95%

CI (error bars) for the comparison of P(Bu) in control and isoflurane.

Horizontal line indicates the ‘null effect’ value of 0.5. (D) AUROC values

and 95% CI for the comparison of P(Bu) values for TC and L1 bursts as

shown in B. TC, thalamo-cortical; L1, layer 1; S, spontaneous; P(Bu), proba-

bility of network burst; AUROC, area under the receiver-operating curve.
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stimulation in the presence of isoflurane was bimodal, with some sli-
ces exhibiting little effect and some exhibiting near-complete sup-
pression. We have yet to identify the source of this variability, but it
could relate to small differences in network structure57 or comple-
ment of isoflurane-sensitive loci in the network that are amplified
during the non-linear coupling between afferent stimulation and
network activation. This variability might relate to increased trial-by-
trial variability observed for population responses at intermediate
doses of anaesthetic in vivo,58 and which we have postulated disrupts
sensory processing even at sub-hypnotic doses.59

Isoflurane suppressed spontaneous network activity and
increased the latency and reduced the spatial spread and propa-
gation speed of stimulus-induced network activity. Our recapitu-
lation in the absence of brainstem sleep/wake nuclei and the
hypothalamus of previously reported effects on network activity
in vivo suggests a prominent role for cortical actions of anaes-
thetics. Indeed, all of these effects are consistent with increased
network activation thresholds. Mechanistically, the increased
threshold for inducing network bursts and their slowed propaga-
tion are likely secondary to multiple effects at the molecular and
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cellular level that combine to dampen network excitability,60–63

including increased spike thresholds in cortical and thalamic
cells,51 64 65 decreased glutamate release66–68 and enhanced
phasic and tonic gamma-aminobutyric acid type A (cABAA)
receptor-mediated inhibition.46 69–71 Although isoflurane can
increase excitability of single cells via blockade of the hyperpola-
rization-activated current Ih,72 and cause suppression of inhibi-
tion in vivo and paradoxical excitation in cortical networks,73–75 it
is clear that net effects on excitability observed here were
suppressive and accumulated across multiple synapses.

Non-linear, network-level interactions between TC and L1
afferents could contribute to feedback (i.e. CC) modulation of
sensory afferent responses. Integration of these information
streams is proposed to underlie predictive coding,76 with CC
afferents altering responses in sensory cortex at the single-
cell77–80 and circuit levels.23 81 82 Luczak and colleagues14 pro-
posed that top-down control of auditory cortical responses
occurs via changes in the probability of network events
(‘packets’) corresponding to brief UP states. Consistent with our
observations that TC and L1 bursts are similar in duration and
magnitude, afferent input to a cortical column can trigger net-
work activity, irrespective of its origin, and sub-threshold inputs
from a variety of sources can sum to generate network bursts,
analogous to synaptic inputs to a single cell summing non-line-
arly to trigger a spike.15

Disruption of these network-level interactions likely contrib-
utes to LOC under anaesthesia.4 53 The effect of isoflurane on
these interactions appeared to be largely determined by the
increased activation threshold observed for each afferent path-
way alone. Increasing stimulation intensity was able to
compensate for increased thresholds and restore facilitative
interactions, failing only at high isoflurane concentrations.
Thus, it appears that isoflurane does not interfere with these
interactions per se, it just makes the network harder to activate.
This raises the possibility that the effect of isoflurane is domi-
nated by the suppression of glutamate release at CC synapses,68

rather than the effects on the integrative process at the single-
cell level. In this scenario, increasing stimulation strength under
isoflurane compensates for reduced synaptic release, and the
postsynaptic cell is still capable of integrating these inputs to
generate spiking activity and contribute to burst activity. Future
experiments aimed at understanding the synaptic and cellular
mechanisms of the effects of isoflurane on network bursts and
network-level interactions between afferent pathways in sen-
sory processing will shed additional light on mechanisms of
anaesthesia and the neural basis of sensory awareness.
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