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Abstract

GABAergic interneurons, which are highly diverse, have long been thought to contribute to the 

timing of neural activity and the generation and shaping of brain rhythms. GABAergic activity is 

critical not only for entrainment of oscillatory activity across a neural population, but also for 

precise regulation of the timing of action potentials and suppression of slow timescale correlations. 

The diversity of inhibition provides the potential for flexible regulation of patterned activity, but 

also poses a challenge to identifying the elements of excitatory-inhibitory interactions underlying 

network engagement. This review highlights the key roles of inhibitory interneurons in spike 

correlations and brain rhythms, describes several scales on which GABAergic inhibition regulates 

timing in neural networks, and identifies potential consequences of inhibitory dysfunction.

Keywords

Interneuron; oscillation; parvalbumin; somatostatin; VIP; synchrony

Inhibitory effects on multiple timescales

Inhibitory regulation of neural activity occurs on several distinct but interacting timescales. 

GABAergic influences on local circuits are constrained by the intrinsic properties of 

interneurons, which vary across diverse populations. The postsynaptic impact of inhibitory 

transmission is further sculpted by short- and long-term synaptic dynamics. In particular, 

synaptic depression and facilitation can rapidly modulate both the excitatory synaptic 

recruitment of interneurons and their postsynaptic efficacy in regulating spiking in their 

targets on a millisecond timescale. In turn, the actions of synaptic inhibition in a neural 

network can have opposing impacts on correlations at fast (>30Hz) and slow (<1Hz) 

timescales. Although inhibition promotes fast spike synchrony between excitatory neurons, 

it suppresses slower noise correlations between the firing rates of those neurons, an effect 

that scales with network size and firing rates. On much slower timescales, integration of 
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interneurons into local circuits is required for proper progression of circuit development. In 

developmentally immature circuits, interneurons organize large correlated population events. 

The subsequent shift from depolarizing to hyperpolarizing GABAergic inhibition is 

associated with a robust change in the overall timing of population activity, with large 

population events giving way to more decorrelated activity.

Dysregulation of inhibition can lead to loss of temporal organization, exhibited as either too 

much or too little correlated activity. Substantial disruption of GABAergic inhibition, 

whether from loss of interneurons or decreased synaptic impact, is associated with 

hypercorrelation and seizure. Dysfunction of inhibition associated with neurodevelopmental 

disorders can lead to disruption of oscillations and loss of fine spike synchrony. Despite 

substantial recent advances, key aspects of inhibitory function remain unclear, including the 

respective roles of the diverse GABAergic populations in temporal control at each timescale.

The role of synaptic inhibition in regulating network activity has largely been studied in 

rodents, due to the availability of genetic tools. However, both the diversity of GABAergic 

interneurons and their participation in temporal patterns of neural activity are also observed 

in other species, including cats, ferrets, and non-human primates. In this review, I focus on 

general principles of interneuron connectivity and the circuit-level impact of inhibitory 

interneurons on spike timing at the single-neuron and population levels in the neocortex and 

hippocampus. I further examine evidence for the roles of interneurons in brain rhythms, 

including theta and gamma oscillations, and highlight the consequences of developmental 

and disease-related dysregulation of interneuron function.

Diverse sources of GABAergic inhibition

One major challenge to identifying the function of GABAergic inhibition is the diversity of 

inhibitory interneurons, which can be subdivided into distinct classes with different 

physiology, synaptic targets, and molecular markers [1, 2]. Recent work has focused on three 

major classes: 1) fast-spiking basket cells that target the cell bodies of excitatory neurons 

and coexpress the calcium-binding protein parvalbumin (PV), 2) low-threshold spiking cells 

that target the distal dendrites of excitatory neurons and co-express the peptide somatostatin 

(SST), and 3) sparse dendrite-targeting cells that synapse on SST interneurons and the 

dendrites of pyramidal neurons and co-express vasoactive intestinal peptide (VIP). VIP 

interneurons are a subset of the larger 5HT3aR-expressing interneuron class [3].

PV cells are the most abundant type of interneuron. They are rapidly activated by afferent 

inputs [4–8],[9] and are thought to regulate the output of excitatory neurons with 

millisecond-level precision via strong shunting inhibition at the cell body [10]. In contrast, 

SST cells require repetitive, facilitating afferent input to be activated and may regulate the 

dendritic integration of synaptic inputs over a longer time scale (Fig. 1). [11–15] Moreover, 

synaptic inhibition mediated by PV and SST interneurons exhibits distinct short-term 

plasticity. Inhibitory post-synaptic potentials (IPSPs) from PV synapses depress rapidly at 

high rates of activity [16, 17] suggesting that PV inhibition may only be effective within a 

short window. This brief window of PV efficacy may serve to tightly constrain the temporal 

precision of the first spike evoked in cortical neurons by sensory input [8, 18, 19], which 
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encodes substantial information [20, 21]. In contrast, SST IPSPs depress only slightly with 

repeated activation and regulate voltage-dependent calcium signals [22, 23] [24], and may 

therefore exert a sustained inhibitory influence over dendritic inputs [25, 26]. PV and SST 

cells are thus expected to exhibit distinct temporal patterns of activity and postsynaptic 

impact. Indeed, computational modeling of interactions in a circuit with multiple inhibitory 

cell types suggests a key role for cell type-specific synaptic dynamics in PV and SST 

regulation of excitatory neuron activity [27]. Although synapses onto VIP interneurons and 

from VIP cells to their targets are less well studied, a recent report found that VIP synapses 

onto SST cells showed frequency-dependent facilitation [28], suggesting a potential 

enhancement of disinhibitory interactions in the local circuit following periods of repeated 

VIP interneuron activation, such as observed in sensory cortex during bouts of locomotion 

[29–31].

Although considerable research has focused on inhibitory innervation of excitatory neurons, 

recent work has highlighted inhibitory-to-inhibitory connectivity as a repeated motif in 

neocortical circuits (Fig. 2). SST interneurons robustly inhibit PV interneurons, potentially 

providing a tradeoff between somatic and dendritic inhibition [32–34]. In turn, PV 

interneurons provide reciprocal innervation of SST interneurons [28, 33]. VIP interneurons 

strongly inhibit SST interneurons [30, 33, 34], potentially disinhibiting both excitatory 

pyramidal neurons and PV interneurons, and receive reciprocal innervation from the SST 

interneurons. VIP interneurons also innervate PV interneurons and receive reciprocal 

inhibition from them [34, 35]. Together, these connections comprise a network of reciprocal 

inhibitory connections between all three populations. However, interactions between 

interneuron populations are not always equally weighted in each direction (Fig. 2), and the 

influence of these interactions on circuit activity remains poorly understood. Furthermore, it 

remains unclear how the extensive regulation of GABAergic interneuron activity by 

neuromodulators like acetylcholine, norepinephrine, and serotonin affects the efficacy of 

these interactions or their contributions to ongoing rhythmic activity.

E-I interactions and spike timing

Locally recurrent networks in the hippocampus and neocortex show a typical pattern of 

synaptic recruitment, with feed-forward excitatory input (E) preceding locally recruited 

inhibition (I). This temporal pattern of E-I interactions allows for a ‘window of opportunity’ 

in which spikes may be evoked by excitation before further responses are quenched by the 

following inhibition [8]. The influence of synaptic inhibition recruited by feed-forward 

inputs into a network temporally restricts sensory-evoked spiking [19], and both the delay 

between E and I and the relative strength of excitation may shape tuning for sensory inputs 

[36–38]. The short delay between E and I also promotes the temporal fidelity of spiking, 

increasing spike timing precision and reliability [19, 36] and enhancing the temporal 

sensitivity of neurons to convergent inputs [5, 45–48] [18]. Previous work in vitro and in 

anesthetized animals focused on the role of somatargeted inhibition, arising largely from PV 

interneurons, in regulating spike timing. However, more recent work in awake behaving 

animals suggests that soma- and dendrite-targeting interneurons are recruited by sensory 

inputs at different latencies. Initial spike timing evoked by sensory inputs to excitatory 
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neurons may thus be regulated by PV inhibition, but spiking later in the response period may 

be more strongly influenced by SST inhibition [39, 40] or delayed VIP inhibition [41].

Intriguingly, individual cell types may have distinct temporal windows of postsynaptic 

impact on different targets. In one example, recent work found that a population of 5HT3aR-

expressing interneurons caused fast GABAAR inhibitory postsynaptic potentials (IPSPs) on 

target PV interneurons but slower GABAAR/GABABR IPSPs on excitatory neurons, 

suggesting differential temporal regulation of spiking in downstream excitatory and 

inhibitory populations [42]. However, it remains unknown how prevalent such differential 

targeting is across the different GABAergic populations. Although fast PV inhibition has 

been well characterized, much less is generally known about the role of non-PV interneurons 

in regulating spike timing. Furthermore, although the patterns and strengths of connections 

between interneuron populations are well established for some brain areas [33, 34], very 

little is known about how inhibition regulates spike timing in interneurons in vivo. In 

addition, because single synapses are difficult to assay in vivo, the impact of short-term 

synaptic dynamics at inhibitory synapses in active circuits remains largely unknown.

Inhibitory control of brain rhythms

Inhibition plays key roles in the generation of oscillations in the neocortex and 

hippocampus, as well as other brain areas. Gamma-band activity (30–80Hz) relies on fast 

inhibitory synaptic transmission by GABAergic interneurons [43]. Optogenetic activation of 

fast-spiking basket interneurons [44, 45] or pyramidal neurons [46] in sensory cortex evokes 

robust gamma oscillations that depend on both GABAergic and glutamatergic synaptic 

transmission. Spontaneous gamma oscillations in vivo are eliminated by optogenetic 

suppression of interneurons [45] and both spontaneous and optogenetically evoked cortical 

oscillations are abolished by application of AMPAR and NMDAR blockers [44]. Together, 

these data strongly suggest that temporally coordinated activity of excitatory and inhibitory 

neurons (E-I) is necessary for expression of neocortical gamma rhythms. In the 

hippocampus, both E-I and I-I mechanisms may underlie gamma activity [47, 48].

GABAergic interneurons in the neocortex and hippocampus are highly diverse, but 

converging evidence points to fast-spiking, PV-expressing basket cells as an important 

source of synaptic inhibition for generating gamma oscillations. PV interneurons are heavily 

connected to each other via chemical and electrical synapses [17, 49–54] and exhibit 

extensive reciprocal synaptic connectivity with nearby excitatory neurons, allowing them to 

synchronize and respond to excitatory spiking [16, 55]. Basket cells fire at high rates, have 

intrinsic resonance in the gamma range, and are robustly entrained to endogenous gamma 

oscillations [56, 57]. Furthermore, the time course of GABAA receptor-mediated IPSPs is 

optimal for generating a 40Hz oscillation cycle [58, 59], enhancing the entrainment of 

excitatory neurons. Theoretical and computational work suggests that these specialized 

synaptic and firing properties promote gamma oscillations [49, 50, 58, 60–62].

The interaction between synaptic inhibition and temporal patterns of neural activity can be 

spatiotemporally complex. In the dentate gyrus, inhibitory interactions among distant 

interneurons show a distance-dependent variation in synaptic strength and duration of 
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inhibitory events. These interactions promote the emergence of complex temporal patterns, 

generating focal bursts of gamma-range activity correlated with exploratory behavior and 

action selection [63] [64]. In addition to dynamic regulation of gamma rhythms, inhibition 

plays a key role in the hippocampal theta rhythm [65]. In the hippocampus, optogenetic 

activation of PV interneurons specifically amplifies theta frequency resonance in pyramidal 

neurons, whereas activation of pyramidal neurons increases power in a broad frequency 

range [66]. Suppression of PV cell activity alters the phase relationship between pyramidal 

neuron spiking and the theta rhythm [67].

Although soma-targeting inhibition from PV interneurons has been relatively well 

characterized, less is known about the roles of non-basket interneuron populations in directly 

generating oscillations. In the neocortex, PV cells receive innervation from other interneuron 

populations, including SST and VIP interneurons, and their firing is strongly regulated by 

these inputs [32–34]. Gamma activity could thus also be strongly modulated by synaptic 

inhibition of PV cells from multiple sources. Computational modeling of the emergence of 

gamma oscillations from neural networks suggests that synaptic inhibition of PV basket cells 

may promote the flexible expression of gamma oscillations with varying frequencies [61].

Recent work identified SST interneurons as a regulator of beta/low gamma (20–30Hz) 

oscillations in the neocortex. Suppression of SST cells in primary visual cortex reduced 

beta/low gamma activity evoked by large stimuli, and optogenetic stimulation of these cells 

augmented activity in this frequency range, whereas PV cell manipulation had little to no 

impact [68]. Further work suggests that SST activity may preferentially promote cortical 

low-frequency oscillations (5–30Hz), whereas PV activity selectively promotes fast 

frequencies (>30Hz) in behaving animals, with cooperative activation of both populations 

giving rise to beta (20–30Hz) oscillations [69] [70, 71]. Together, these findings suggest 

multiple streams of temporal control by inhibition in cortical networks (Fig. 3). The 

activation of SST interneurons may further entrain local and distant ensembles of neurons, 

enhancing long-range coherence in the beta/low gamma range [72]. Because SST cells 

robustly inhibit PV cells [32, 33], interactions between these channels of inhibitory influence 

are likely to be dynamic according to their recruitment by bottom-up and top-down inputs or 

in a stimulus-dependent manner.

Interactions among inhibitory interneurons may be enhanced by extensive electrical synaptic 

connectivity. Both PV and SST interneurons are connected, mainly to other interneurons of 

the same class, by networks of gap junctional coupling [17, 52, 70, 73, 74]. Electrical 

connectivity via gap junctions may enhance synchrony between interneurons of the same 

type and facilitate phase coupling to ongoing oscillations [70, 75]. Loss of electrical 

synapses through deletion of the gene for the gap junction protein Connexin 36 selectively 

impairs gamma oscillations in the hippocampus, as well as theta-gamma phase coupling [76, 

77]. However, recent work in vitro found that loss of Connexin 36 does not affect the 

synchrony of gamma-frequency inhibition in the neocortex [78, 79], suggesting potentially 

differential contributions to circuit activity in hippocampus and neocortex. The precise role 

of interneuron electrical connectivity in patterned network activity is thus not fully 

understood
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Computational models of networks based on multiple cell types highlight the potential 

impact of interactions between interneurons in regulating the temporal pattern of neural 

activity. Inclusion of both SST and PV interneurons may widen the oscillatory behavior of 

the cortical network and replicates the impact of SST inhibition on PV cells, supporting the 

possibility of multiple rhythmic influences within the local cortical circuit [68]. Models of 

the hippocampal network likewise identify varying interneuron-interneuron interactions as a 

key element of theta oscillation generation in different activity regimes [80]. In a recently 

developed full-scale hippocampal network model, theta rhythms were observed only under 

conditions of interneuron diversity [81]. Computational modeling of cortical networks 

further suggests that behavioral or neuromodulatory context may dynamically adjust the 

functional connectivity among interneurons [82], providing more flexible control of 

temporal interactions within the local circuit.

Inhibitory influences that regulate oscillatory patterns are not limited to local circuit 

interactions. Long-range inhibitory projections, such as the population of PV-expressing 

GABAergic neurons in the basal forebrain that project to the frontal cortex, can also entrain 

cortical activity and robustly promote gamma oscillations [83]. In the hippocampus, both a 

subset of SST cells that project to the medial septum and retrohippocampal areas and a 

population of non-SST GABAergic neurons in the stratum radiatum that project to 

subiculum and cortex show strong rhythmic activity in the theta band that is reflected at 

target sites [84, 85] [65]. Locally recorded oscillations may thus represent a mixture of local 

and long-range inhibitory influences on circuitbased rhythms.

Inhibitory regulation of correlated spiking

In addition to regulating spike timing, synaptic inhibition promotes synchrony of spiking 

among interneurons and between groups of excitatory neurons. Synchrony among PV 

interneurons is enhanced by extensive synaptic interconnectivity [86] and gap junctions [52]. 

Spike synchrony among interneurons can be observed in extracellular recordings of 

neocortical fast-spiking putative PV interneurons in vivo [29] and appears to promote 

millisecond timescale synchrony in the hippocampus both between local pairs of 

interneurons [87] and between more distant interneurons in CA1 and CA3 [88]. Individual 

GABAergic interneurons may further synchronize the activity of multiple local pyramidal 

neurons [89]. During oscillations, the entrainment of excitatory spiking by rhythmic 

inhibition promotes synchrony among pyramidal neurons. Although individual neurons do 

not participate in every cycle, pairwise synchrony is enhanced by restricting spiking to a 

narrow range of phases within the oscillation cycle [90]. Rhythmic activation of inhibitory 

interneurons increases spike timing precision and narrows the window for spiking to 

promote synchronous sensory-evoked spikes [44]. Increased excitatory drive to inhibitory 

interneurons thus enhances excitatory synchrony [91].

Although synaptic inhibition can increase pairwise synchrony between neurons on a short 

timescale, previous work has also highlighted a role for inhibition in reducing slow-

timescale relationships among large populations of neurons, sometimes called ‘noise 

correlations’. By being temporally coupled to excitation, inhibitory feedback may suppress 

pairwise correlations that promote shared population fluctuations in firing rate [92–94]. 
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Synaptic activity with both excitatory and inhibitory components modulates the relative 

amount of fast and slow timescale correlations in a rate-dependent manner [95], with low 

input rates promoting slow timescale correlations and high rates promoting fast spike 

synchrony. The impact of inhibition on fast and slow correlations may vary dynamically 

with overall synaptic input rates and changes in the relative balance of excitation and 

inhibition [96]. However, modulation of noise correlation strength is not always coupled to 

changes in fast correlations in the neocortex [97, 98].

Inclusion of recurrent inhibition in network models reduces noise correlations [99], thereby 

enhancing the fidelity of stimulus encoding [100–102]. Physiologically, blockade of 

inhibitory synaptic transmission enhances noise correlations [103]. Recent work further 

suggests that topdown modulation of inhibition reduces endogenous slow-timescale 

correlated activity in cortical networks [104]. However, the actions of inhibition at fast and 

slow timescales are not mutually exclusive. In the olfactory bulb, inhibition simultaneously 

enhances fast-timescale correlations, such as synchronous spikes, while decreasing slow 

timescale pairwise firing rate correlations [105]. Both increased synchrony and decreased 

noise correlations are thought to enhance encoding of information, suggesting that inhibition 

may promote network function in multiple ways. Of note, the contributions of non-PV 

interneurons to regulating correlations at either fast or slow scales remain unclear.

Developmental role of inhibition in timing of circuit activity

The overall temporal profile of neural activity is shaped by early developmental events. In 

rodents, GABA is depolarizing during the first postnatal week of life, and synaptic 

connectivity has not yet matured, giving rise to large bouts of activity coordinated by 

inhibitory interneurons [106]. After the developmental shift to hyperpolarizing GABA, 

mediated by a change in expression of the Cl− extruder KCC2, synaptic inhibition begins to 

shape network activity in a more temporally constrained manner [107]. Although the last 

interneurons migrate into the cortex and hippocampus by the end of the first postnatal week 

in mice [108], very little is known about the role of different interneuron populations in 

regulating the timing of neural activity in the early postnatal period.

The intrinsic properties of GABAergic interneurons mature during the juvenile and 

adolescent periods. In the neocortex, both PV cells and principal neurons are innervated by 

thalamocortical terminals by mouse postnatal day 6–7 and PV interneurons begin to exhibit 

fast-spiking properties by postnatal day 18, setting up the core components of the recurrent 

local circuit and allowing somatic inhibition to begin to regulate spike timing [109–111]. 

During the adolescent period, PV inhibition is required for normal refinement of synaptic 

connectivity and critical period plasticity [112]. In contrast, much less is known about the 

development of synaptic dynamics of other interneuron populations in the immature brain. 

However, the activity of non-PV interneurons appears to be critical for the proper 

development of circuit architecture. Loss of VIP interneuron activity early in postnatal life 

results in loss of temporal organization of excitatory spiking [29]. Early activity of SST 

interneurons is critical for the development of thalamocortical connections to PV 

interneurons, and loss of SST inhibition disrupts normal feedback inhibitory circuit 
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formation [113]. These findings highlight the importance of inhibitory-inhibitory 

interactions in the development and function of temporal structure of local circuit activity.

Disruption of inhibition and abnormal timing

Dysregulation of inhibition is linked to altered timing of neural activity on several 

timescales. Profound disruption of GABAergic synaptic transmission or loss of major 

interneuron populations has long been thought to contribute to the emergence of 

hypercorrelated activity and seizures [114–116]. However, the specific contributions of 

different interneuron populations to seizure initiation and resulting pathophysiology remain 

unclear. Developmental loss of interneuron activity reduces seizure thresholds [117, 118], 

whereas overall reductions in interneuron numbers results in epilepsy [119]. Optogenetic 

suppression of PV interneuron activity causes cortical networks to produce highly correlated 

population spikes [68], and developmental impairment of synaptic transmission from PV 

interneurons results in spike-wave seizures [120]. Loss of SST interneurons in early 

postnatal life is likewise associated with development of epileptiform activity [121].

Developmental impairment of inhibitory interneuron activity or synaptic inhibition has been 

identified as a potential mechanism underlying cognitive and psychiatric disorders, including 

autism and schizophrenia. Patients with schizophrenia exhibit reduced numbers of 

PVexpressing cells in cortical tissue and impaired gamma band synchronization [122–124]. 

Mouse genetic models of neurodevelopmental disorders have likewise highlighted disruption 

of inhibition as a key element of underlying pathophysiology. Mutation of the interneuron-

specific gene ErbB4 in PV cells leads to altered PV firing patterns, changes in gamma 

oscillations, and disrupted temporal coherence between hippocampal and frontal brain 

regions [125]. Similarly, mice with a mutation in Disc1, a gene associated with several 

human psychiatric diseases, exhibit deficits in PV interneuron activity along with reduced 

hippocampal theta and gamma oscillations [126]. Mutations in the autism-associated genes 

CNTNAP2 and Fmr1 lead to reduced synaptic inhibition and altered synchrony [127, 128]. 

In particular, Fmr1-KO mice exhibit hypersynchrony in the theta and gamma ranges [129], 

along with abnormal patterns of hippocampal theta-gamma phase coupling [130] and 

elevated pairwise spike synchrony in the neocortex [128].

Although PV interneuron deficits have received particular attention for their potential role in 

altered neural activity patterns in disease, dysregulation of other interneuron populations 

may also impair the timing of neural activity. Early postnatal disruption of VIP interneuron 

activity in sensory cortex leads to a near-complete loss of pairwise spike synchrony between 

excitatory neurons and loss of phase coupling of spiking to both low and high frequency 

rhythms [29], suggesting these sparse interneurons may represent a point of developmental 

vulnerability for neocortical circuits.

Concluding remarks and future perspectives

Inhibition plays varied roles in regulating neural timing on several scales. Inhibitory cell 

types vary in their intrinsic and synaptic properties, and inhibitory interneuron properties, 

even within the same cell type, can differ depending on developmental stage, 
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neuromodulation and brain region. Excitatory synaptic recruitment of GABAergic 

interneuron activity is modulated by cell type-specific short term synaptic plasticity, as is the 

impact of synaptic inhibition onto excitatory neurons. In turn, rhythmic synaptic inhibition 

robustly entrains the firing of excitatory neurons and promotes the generation of oscillations 

and pairwise spiking synchrony between excitatory neurons. Inhibition also suppresses 

pairwise correlations on slower timescales, potentially mediating a two-pronged 

enhancement of neural encoding. Inhibitory interneurons and synaptic inhibition also 

modulate network activity on a much slower timescale during development, with 

interneurons serving as organizers of correlated population activity. Loss or dysregulation of 

interneurons during development gives rise to long-term dysfunction of oscillations and 

spike timing in local and long-range circuits, reducing synchrony and enhancing slow 

correlations.

Much of our current knowledge about the inhibitory regulation of timing in the brain comes 

from work examining fast-spiking, parvalbumin-expressing interneurons or studies on 

somatic inhibition. Findings from recent work suggest that in addition to somatic inhibition, 

dendritetargeting inhibition has potential for a rich and dynamic contribution to both 

generating patterned activity [68, 69] and regulating the development of proper circuit 

architecture [29]. In addition, available data on synaptic dynamics at synapses onto 

inhibitory interneurons, and from interneurons to their targets, point to a complex temporal 

series of local circuit interactions. These intriguing findings point to many unanswered 

questions about the developmental and mature roles for the diversity of GABAergic 

interneurons in regulating neural timing (see Outstanding Questions). In particular, the 

roles of non-PV GABAergic cell types in temporal control at the timescales of synaptic 

dynamics, synchrony, slow correlations, and developmental coordination remain to be 

explored.
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Outstanding Questions

Parvalbumin-expressing, fast-spiking interneurons play a well-characterized role in 

restricting the timing of excitatory spiking. What are the roles of non-PV interneurons, 

such as SST and VIP cells, in regulating spike timing of excitatory neurons?

How does synaptic inhibition onto interneurons regulate their spike timing?

PV interneurons promote gamma oscillations, whereas SST interneurons promote 

beta/low gamma oscillations. Notably, SST interneurons powerfully inhibit PV cells. 

How do interactions among these different interneuron types regulate the expression of 

beta/gamma rhythms in the brain? How are those interactions regulated by 

neuromodulatory influences?

Do 5HT3aR-expressing and/or VIP interneurons promote specific rhythmic activity in 

local brain circuits?

What are the characteristics of short-term plasticity at synapses between interneuron 

populations (VIP-SST, SST-PV, etc)?

Inhibition regulates both fast spike synchrony and slow timescale noise correlations, 

typically enhancing the former and suppressing the later. The GABAergic interneurons 

that provide this synaptic inhibition are highly diverse. Do all sources of synaptic 

inhibition promote fast timescale synchrony and suppress noise correlations?

What is the developmental profile of short-term plasticity at inhibitory synapses onto 

dendrites?

What are the roles of dendrite-targeting interneurons in the postnatal development of 

appropriate E-I temporal interactions?
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Highlights

• Intrinsic and synaptic properties of GABAergic interneurons shape their 

impact on temporal patterns in the local circuit.

• Synaptic inhibition enhances short timescale correlations in spiking, such as 

spike synchrony, but suppresses long timescale correlations, such as noise 

correlations.

• Different inhibitory interneuron populations, including PV and SST cells, 

may engage distinct rhythms in the cortex.

• The emergence of circuit timing characteristics is shaped on the 

developmental timescale by multiple interneuron populations.
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Figure 1. Diversity in the temporal synaptic properties of GABAergic interneurons.
Inhibitory interneurons exhibit distinct temporal dynamics of both their synaptic inputs and 

outputs. A. Excitatory synaptic inputs to PV interneurons recruit these cells quickly but 

rapidly show synaptic depression. In turn, the inhibitory synapses from PV interneurons to 

excitatory pyramidal neurons (PN) likewise show synaptic depression. B. In contrast, 

excitatory inputs to SST interneurons require repeated activation and exhibit synaptic 

facilitation, resulting in delayed recruitment of spiking activity. However, SST synapses onto 

PNs show little synaptic depression. C. The short-term plasticity of excitatory synapses onto 

VIP interneurons and from VIP interneurons to PNs remain largely unexplored.
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Figure 2. Reciprocal connectivity between interneuron populations.
Three major subtypes of neocortical inhibitory interneurons are interconnected in a repeated 

motif of reciprocal inhibition. Relative strength of interactions is shown by the sizes of the 

circles denoting synaptic connectivity, largely based on current knowledge from in vitro 
electrophysiology in superficial layers of primary sensory cortex. These reciprocal 

interactions likely play a key role in the regulation of neural timing by inhibition. PV 

interneurons are unique in having both strong reciprocal synaptic connectivity with other 

interneurons and also robustly inhibiting other PV interneurons via chemical and electrical 

synapses. Strong PV-PV and PV-PN interactions promote fast oscillations and precise spike 

timing.
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Figure 3. Distinct interneuron populations promote different cortical rhythms.
Recent work has highlighted the respective roles of PV and SST interneurons in shaping 

oscillations in cortical networks. A. Reciprocal interactions between PV interneurons and 

PNs generate ~40Hz gamma oscillations as a result of fast firing by the PV cells and strong 

reciprocal connections. B. SST interneurons likewise exhibit reciprocal connectivity with 

PNs, and their activity may underlie the generation of rhythmic activity at slower 

frequencies. They may generate activity at 5–30Hz and are necessary for sensory-evoked 

cortical beta/low gamma oscillations in the visual cortex. C. One intriguing possibility is 

that the simultaneous interactions of these two circuit motifs allows for the flexible selection 

of neural timing in low or high frequency bands as demand changes. Such interactions may 

be mediated by the relative occurrence of bottom-up or top-down inputs that recruit PV and 

SST interneuron spiking in the active circuit in vivo.
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