Skip to main content
. 2018 Oct 5;2018:bay101. doi: 10.1093/database/bay101

Table 1.

Performance Summary of Ontology Learning Techniques

Techniques Domain Performance References
Paper Tools
Linguistic Techniques
Preprocessing Berkley Parser Tourism, Sport Precision=95.7% (28) Text2Onto(75, 120, 121, 122) (http://neon-toolkit.org/wiki/1.x/Text2Onto.html), CRCTOL (28), https://nlp.stanford.edu/software/lex-parser.shtml, http://nlp.cs.berkeley.edu/
Stanford Parser Precision=90.3%
Syntactic Analysis for headword modifier Chinese Text Accuracy=83.3% (29) https://github.com/kimduho/nlp/wiki/Head-modifier-principle-(or-relation)
Relation Extraction Lexico-syntactic Parsing News Accuracy=75.5% (40) Text2Onto (75, 120, 121, 122) (http://neon-toolkit.org/wiki/1.x/Text2Onto.html), CRCTOL (28), ASIUM (117, 118, 119) (http://www-ai.ijs.si/∼ilpnet2/systems/asium.html), TextStorm/Clouds (27, 123)
Dependency Analysis Bioinformatics Accuracy=83.3% (38)
Statistical Techniques
Term Extraction C/NC Value Medical Precision=89.7% (26) OntoGain (72), https://github.com/Neuw84/CValue-TermExtraction
Computer Science Precision=86.67%
Contrastive Analysis Chinese Text Precision=70% (56) OntoLearn (49, 124, 55, 125), CRCTOL (28), OntoGain (72)
Co-occurrence Analysis Biomedical (Cancer) Precision=67.3% (62) Text2Onto (75, 120, 121, 122) (http://neon-toolkit.org/wiki/1.x/Text2Onto.html), https://github.com/gsi-upm/sematch
Clustering Tourism Accuracy=68.52% (66) ASIUM (117, 118, 119) (http://www-ai.ijs.si/∼ilpnet2/systems/asium.html), Text2Onto (75, 120, 121, 122) (http://neon-toolkit.org/wiki/1.x/Text2Onto.html), https://pythonprogramminglanguage.com/kmeans-text-clustering/
Tourism Accuracy=53.2%
Relation Extraction Formal Concept Analysis Medical Precision=47% (72) OntoGain (72), https://github.com/xflr6/concepts
Computer Science Precision=44%
Hierarchical Clustering Medical Precision=71% (72) Text2Onto (75, 120, 121, 122) (http://neon-toolkit.org/wiki/1.x/Text2Onto.html), https://github.com/mstrosaker/hclust
Cooking Precision=92.1% (71)
Finance F1 Score=18.51% (75)
Tourism F1 Score=21.4% (75)
Association Rule Mining Medical Accuracy=72.5% (72) Text2Onto (75, 120, 121, 122) (http://neon-toolkit.org/wiki/1.x/Text2Onto.html)
Logical
Inductive Logical Programming English Accuracy=96% (83) TextStorm/Clouds (27, 123) , Syndikate (126, 11), http://pyke.sourceforge.net/