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Abstract

To escape immune recognition in previously infected hosts, viruses evolve genetically in

immunologically important regions. The host’s immune system responds by generating new

memory cells recognizing the mutated viral strains. Despite recent advances in data collec-

tion and analysis, it remains conceptually unclear how epidemiology, immune response,

and evolutionary factors interact to produce the observed speed of evolution and the inci-

dence of infection. Here we establish a general and simple relationship between long-term

cross-immunity, genetic diversity, speed of evolution, and incidence. We develop an analytic

method fusing the standard epidemiological susceptible-infected-recovered approach and

the modern virus evolution theory. The model includes the factors of strain selection due to

immune memory cells, random genetic drift, and clonal interference effects. We predict that

the distribution of recovered individuals in memory serotypes creates a moving fitness land-

scape for the circulating strains which drives antigenic escape. The fitness slope (effective

selection coefficient) is proportional to the reproductive number in the absence of immunity

R0 and inversely proportional to the cross-immunity distance a, defined as the genetic dis-

tance of a virus strain from a previously infecting strain conferring 50% decrease in infection

probability. Analysis predicts that the evolution rate increases linearly with the fitness slope

and logarithmically with the genomic mutation rate and the host population size. Fitting

our analytic model to data obtained for influenza A H3N2 and H1N1, we predict the annual

infection incidence within a previously estimated range, (4-7)%, and the antigenic mutation

rate of Ub = (5 − 8) � 10−4 per transmission event per genome. Our prediction of the cross-

immunity distance of a = (14 − 15) aminoacid substitutions agrees with independent data for

equine influenza.

Author summary

Spread of many RNA viruses in a population represents a competition between

host immune responses and viral evolution. RNA viruses accumulate mutations in
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immunologically important regions to escape immune recognition in hosts previously

exposed to infection, while the immune system responds by producing new memory

cells. Despite recent advances in data collection and their analysis, it remains conceptu-

ally unclear how epidemiology, immune response, and evolutionary factors interact to

produce the observed speed of evolution and its incidence. By combining the standard

epidemiological approach with the modern theory of viral evolution, we predict a gen-

eral relationship between long-term cross-immunity, antigenic diversity of virus, its

evolution speed, infection incidence, and the time to the most recent common ancestor.

We apply these theoretical findings to available data on influenza virus to determine

two important parameters of its evolution and confirm the model. Current strategies of

vaccination against influenza should take into account stochastic fluctuations in fitness

effect of mutations predicted by the theory.

Introduction

Spread of many RNA viruses occurs as a race between host immune responses and rapid viral

evolution. The development of treatment and effective preventive measures such as vaccines

and therapeutic interference particles [1–3] requires understanding of the mechanics of viral

evolution at the scale of a population. To evade immune recognition by hosts previously

exposed to infection, in a never-ending chase, viruses accumulate mutations in immunologi-

cally relevant regions of the genome [4]. Despite advances in the collection and analysis of epi-

demiological and genomic data, it remains conceptually unclear how epidemiology, immune

response, and evolutionary factors interact to produce the observed evolution speed and the

incidence of infection.

Influenza virus infects 5-15% of the world population. The global spread and reinfection of

the same individuals is caused by rapid evolution of antibody-binding regions [4]. A large

amount of information has been obtained, including world-wide circulation [5–7], genetic

maps of virus variants and antibodies, molecular mechanisms, and fitness effect of specific

mutations [4, 8–10]. Vigorous data analysis and computer simulation helped to understand

many features of influenza virus evolution [7, 11–15]. In particular, recent work [15] offers an

inference model to predict short-term evolution of influenza, which is helpful for optimization

of vaccination strategy. However, the more general connection between the population-scale

viral parameters and its evolutionary behavior is still lacking.

The aim of this work is to establish general and simple relationships for the speed of virus

evolution, genetic diversity, and annual incidence in terms of population parameters, and to

train them on the available data for influenza virus. We propose a general analytic approach

combining a susceptible-infected-recovered (SIR) framework [11, 16] with the stochastic evo-

lution theory [17–25]. Using the experimental observation that phylogenetic trees of influenza

virus have a vine-like structure with short branches [4], we focus on virus evolution along the

one-dimensional trunk. Analysis demonstrates that the evolution under immune memory

occurs in the form of a traveling wave in antigenic space, with fitness landscape moving

together with the wave. The fitness slope (effective selection coefficient) can be expressed in

terms of the cross-immunity distance.

We provide analytic predictions for the speed, incidence, and the average time to most

recent common ancestor in terms of population parameters, including reproduction number,

population size, and cross-immunity distance. Then we discuss how the punctuated nature of

Antigenic evolution
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influenza evolution alternating small-effect and large mutations [4, 14] may be interpreted

from the stochasticity of evolution.

Model and methods

Strain-structured epidemiological model

We start by describing briefly our model and approach. The details are given in S1 Appendix.

Standard models of evolution focus on the dynamics of virus strains (variants), while standard

epidemiological models study the transmission of a virus in a host population. For viruses that

evolve to evade immune memory of previously infected hosts, evolutionary and epidemiologi-

cal dynamics are tightly coupled [26]. Here we adopt a strain-based formulation of epidemio-

logical models, in which all individuals are infected or recovered. Recovered individuals are

classified according to their current ability to respond to various viral strains which represent

genetic variants of an antibody-binding region of the virus (e.g., hemaglutinin gene for influ-

enza virus). Each infected individual is assumed to be infected with a single strain denoted by

x. We measure the “antigenic coordinate” x as genetic distance in terms of non-synonymous

nucleotide substitutions. Infection by a viral strain is cleared in several days or weeks leaving

in the recovered individual immunological memory that provides full protection against the

same strain and partial protection against infection by genetically close strains. We assume

one-dimensional space, x, that represents the trunk of the phylogenetic tree. For each recov-

ered individual, we keep track only of the memory of the most recent infection [11, 12]. In S1

Appendix, Section 1.3.3, we show that this approximation has a modest effect on the final

results.

Let i(x, t) denote the density of individuals currently infected with strain x, and r(x, t) be

the density of individuals whose last infection was with strain x and who then recovered. The

model is represented by a system of differential equations that describe the dynamics of the

distributions i(x, t) and r(x, t):

drðx; tÞ
dt

¼ � rðx; tÞR0

Z1

x

Kðx � yÞiðy; tÞd yþ iðx; tÞ;

diðx; tÞ
dt

¼ iðx; tÞ R0

Zx

� 1

Kðy � xÞrðy; tÞd y � 1

2

4

3

5

þðmutation termÞ

ð1Þ

We assume that each individual is either infected or recovered, as given by the normaliza-

tion condition

Z þ1

� 1

½rðx; tÞ þ iðx; tÞ�d x ¼ 1:

The treatment of mutations, which are assumed to be rare, will be described below in sub-

section Mutation.

Eq 1 describe the following epidemiological processes. Firstly, recovered individuals from

strain x can be infected with strain y and their susceptibility is proportional to the cross-immu-

nity function K(x − y), which depends on the genetic distance between strains x and y, so that

K(x − y)> 0, y> x; K(x − y)� 0, y< x; K(−1) = 1.

Here we assume that individuals recovered from strain x can be infected only by strains y
ahead of x in time, y> x, so that K(u) is zero when its argument u is zero or positive (Fig 1,

Antigenic evolution
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Fig 1. One-dimensional epidemiological model predicts a steady traveling wave along fitness axis. A) Frequencies of

recovered individuals (black curve) and the infected individuals (red histogram) in population in the reference frame

moving with the wave. Here X axis plots the antigenic coordinate in that reference frame, u = x − ct. Black solid line

shows analytic prediction for r(u) (Eq 3). Histograms show the result of a full stochastic simulation of the

epidemiological model, Eq 1. Blue line is cross-immunity function K(u) (Table 1). Parameters (example): R0 = 2, a = 9,

Ub = 5.8 × 10−6, N = 108. Units of the values on the axes are given in Table 1 and Eq 1. A wave in the rest frame of

reference is shown in S2B Fig.

https://doi.org/10.1371/journal.ppat.1007291.g001
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blue curve). In fact, there is a narrow region at the leading edge, where the backward infection

could be possible. However, since the edge region is very narrow in the parameter range of

interest, this process has a minor effect on the results (see the details in S1 Appendix, Section

1.3.2).

Secondly, infected individuals with the density i(x, t) recover. Thirdly, individuals infected

with a strain x may produce a mutant strain x0 with a small probability, as explained below

(Mutation). We measure time in the units of infectious period, trec, so that recovery rate is 1,

and transmission rate equals the basic reproduction number, R0, defined as the reproduction

number in a population of previously uninfected individuals.

Mutation

So far we have considered only dynamics of strains x which already exist. What drives the anti-

genic evolution is the emergence of new viral strains. Each strain x occasionally and acciden-

tally undergoes a mutation event which changes its ability to be recognized by antibodies

(phenotype). We describe this as a variable change in its antigenic coordinate Δx> 0. The new

influenza strain with a new antigenic coordinate, x + Δx, is either cleared from the individual

or (with small probability) transmitted to another person. The model parameters describing

random mutations are the average rate Ub per genome per infectious period (Table 1) and the

distribution of Δx. The actual distribution may be quite complex [27]; here, we consider a class

of exponential distributions [23]. Specifically, we assume that with each mutation, the value of

Δx is drawn randomly with the following probability density

rðDxÞ ¼
e� ðDxÞb

Gð1þ 1=bÞ
; ð2Þ

where β is a fixed parameter.

Genetic drift

Below in Results, we introduce the critically important factor of random genetic drift [28, 29]

by allowing the number of new infections to vary randomly among the sources of transmis-

sion. The model parameters and their estimates used in the analysis are summarized in

Table 1.

Results

The model described in the previous section establishes a general analytic relationship between

immunological, epidemiological, and evolutionary properties of a virus causing non-chronic

infection. Using the analytic approach described in the previous section, below we predict the

evolution speed, the incidence of influenza in a population, and the time to the most recent

common ancestor. Then, we test analytic results with stochastic simulation and compare them

to available data on influenza strain A H3N2.

Recovered individuals and the traveling wave

Below we analyze epidemiological dynamics in two steps. First, we assume that, in the realistic

parameter range, a� 1, the frequency of infected individuals, i(x, t) represents a solitary peak,

much more narrow in genetic distance x than the frequency of recovered individuals, r(x, t).
Using this fact, we find analytically the form of r(x, t). Second, we apply the well-developed

theory of asexual evolution [18–21, 23] to obtain parameters of the distribution of infected

Antigenic evolution
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individuals i(x, t). Details are given in S1 Appendix; here we present the main steps of the

derivation.

We start our analytic derivation by noting that, in the limit of small mutation rates, the

main role of mutation is to form new strains with antigenic coordinate x larger than for already

existing strains. For already existing strains, mutation is negligible. This assumption is intui-

tively clear and is verified in the relevant parameter range, using estimates of mutation rate Ub

(Table 1).

Neglecting the mutation term in Eq 1, we seek for a traveling wave solution of the form

r(x, t) = r(x − ct) and i(x, t) = i(x − ct) where x − ct� u is the relative antigenic coordinate of a

strain and c = d hxi/d t is the wave speed defined as the average number of non-synonymous

nucleotide substitutions per year. Without loss of generality, we choose the peak of the infected

wave i(u) to be at u = 0, [di(u)/du]u = 0 = 0. The traveling wave solution of Eq 1 for infected

and recovered individuals then reads

iðuÞ ¼ Acf ðuÞ;

rðuÞ �
A exp � AR0

R0

u
KðvÞd v

� �

; u < 0;

0; u > 0;

8
><

>:

ð3Þ

where A is a constant found from the normalization condition
R þ1
� 1
½rðuÞ þ iðuÞ�d u ¼ 1, and

f(u) is a narrow peak with unit area and a width much less than the width of the recovered dis-

tribution, r(u). The wave speed c and the shape of the infected density f(u) are to be determined

later on.

At large R0, K(v) in Eq 3 can be expanded linearly near zero, so that density of the recovered

becomes a half of a Gaussian

rðuÞ �
2R0

pa
e
�

R0u
a
ffiffi
p
p

� �2

; u < 0; 0; u > 0 ð4Þ

Table 1. Model parameters: Input (upper rows) and output (lower rows).

Notation Name Unit H3N2 H1N1

R0 Basic reproduction number 1b 1.8a 1.46a

trec Recovery time day 5a 5a

Ub Mutation rate per genome 1/trec|yr 5 10−4|0.036c 8 10−4|0.058c

a Crossimmunity distance AA 15c 14c

K(u) Crossimmunity function 1 |u|/(a + |u|) |u|/(a + |u|)

N Population size 1 108 108

β Mutation distrib. parameter 1 2 2

σ Average selection coefficient 1 0.048d 0.028d

365Ni
trecN

Annual incidence 1/yr 0.07d 0.04d

c Substitution rate 1/trec|yr 0.036|2.6a 0.031|2.26a

TMRCA2 Pairwise coalescent time Year 3.03a 4.59a

a Known from published data for influenza A strains H3N2 and H1N1 [7, 13, 30, 31]
b Unit “1” stands for “dimensionless”.
c Input parameter of the model which was adjusted to fit published data.
d A value predicted for the best-fit parameter set

https://doi.org/10.1371/journal.ppat.1007291.t001
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and A = 2R0/(πa). The fraction of infected individuals in population

Ninf

N
¼

Z 1

� 1

iðuÞdu ¼ Ac ¼
2R0c
pa

ð5Þ

is assumed to be much smaller than 1. Then the annual incidence of infection is expressed in

terms of cross-immunity distance, evolution speed, and basic reproduction number as

Annual incidence ¼
2R0c
pa

365

trec
; ð6Þ

which is a directly testable prediction.

Analytic solution, Eqs 3 and 4, is based on the assumption that the infected wave i(u) is

much more narrow than the recovered wave r(u). To verify the validity of this approxima-

tion, we compare the Eq 3 with Monte-Carlo simulation based on Eq 1. The simulation con-

firms the existence of a steady traveling wave with two linked components moving to the

right in antigenic coordinate (Fig 1). Infected wave i(u) is, indeed, a narrow peak. The time-

averaged solution for recovered individuals obtained from simulation agrees fairly well

with the analytic prediction (black line). Recovered wave r(u) displays a sharp increase near

the maximum of i(u) and a slowly decaying tail at u < 0. The sharp increase is due to contin-

uous recovery of infected individuals. The decaying tail is caused by reinfection of recovered

individuals once they become genetically remote from the moving front of wave r(u). This

derivation captures only the shape of the recovered peak leaving the narrow infected peak

undefined.

Moving fitness landscape

In order to determine the infected individual distribution, i(u), we use standard traveling wave

theory [18–23]. The interesting feature of the selection due to immune escape is that the fitness

landscape which controls the traveling wave travels with the wave. Moreover, it is the wave

itself which creates its own landscape, as follows: the recovered create a landscape for the

infected evolution, which moves the recovered distribution forward in x, and so on.

To derive the form of landscape on the human population level, we use the standard defini-

tion of viral fitness as the average number of secondary infections caused by an infected

individual [28, 32–34]. (The reproductive number must not to be confused with the basic

reproductive number R0, which is its maximum value, i.e. the value in a totally susceptible

population.) Here we choose to define fitness w(x, t) as the log of R0 − 1, i.e., the exponential

expansion rate of the density of infected individuals i(x, t) measured per infectious period:

wðx; tÞ ¼
@ ln iðx; tÞ

@ t
¼ R0

Zx

� 1

Kðy � xÞrðy; tÞd y � 1: ð7Þ

The form of w(u) obtained from Eqs 7 and 3 is shown in Fig 2 (red line).

The asymptotic cases of the fitness landscape w(u) are

wðuÞ �

R0 � 1; u� a;

su; juj � a;

� 1; u < 0; juj � a

:

8
>>><

>>>:

ð8Þ

Antigenic evolution

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007291 September 12, 2018 7 / 16

https://doi.org/10.1371/journal.ppat.1007291


where

s ¼ � R0

Z0

� 1

dK
du

rðuÞdu ð9Þ

has the meaning of the fitness landscape slope, or the average selection coefficient. According

to Eq 8, w(u) is positive for u> 0 and negative for u< 0, indicating that viruses are selected

for in front of the infected peak and selected against in the wake of the wave. For large positive

or negative u, |u|� a, we predict saturation of w(u). At u = 0, w(0) = 0, which is equivalent to

the fact that the actual reproduction number is exactly 1 at the peak of the wave. Within the

range |u|� a, where the narow peak of the infected individuals is located, fitness landscape

can be expanded linearly with slope σ> 0 which represents the average selection coefficient of

a mutation event. For sufficiently large R0, from Eqs 4 and 9, σ can be approximated by a series

in 1/R0

sða;R0Þ ¼
1

a
R0 � 2þ

3p
ffiffiffi
2
p

R0

þ O
1

R2
0

� �" #

; ð10Þ

Fig 2. Traveling fitness landscape and its linear approximation near the infected peak. Red curve: analytic result (Eq 7). Gray

circles: Monte-Carlo simulation based on Eq 1. Black line: linear approximation with the average selection coefficient σ = 0.066 (Eq

8). Parameters as in Fig 1: R0 = 2, a = 9, Ub = 5.8 × 10−6, N = 108. For the accuracy of linear approximation, see S1 Fig.

https://doi.org/10.1371/journal.ppat.1007291.g002
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where a� 1/|K0(0)|, and the second and third terms are small corrections to the first term.

Thus, the average selection coefficient σ of the traveling fitness landscape is inversely propor-

tional to the cross-immunity distance a. It also increases linearly with the basic reproduction

ratio R0 when R0 is large. The two correction terms in Eq 10 depend on the form of cross-

immunity function in Table 1. For an alternative form K(x) = 1 − exp(−x/a), they are smaller

by factors of 2 and 6, respectively. The overall agreement for the entire landscape w(u) between

the analytic prediction and simulation is quite good (Fig 3).

Antigenic diversity and the speed of evolution

We get further insight into the dynamics of the model by predicting the speed of viral evolu-

tion c. So far, we have left this value undetermined because it weakly affects the shape of the

density of recovered individuals r(x, t), Eq 3. In contrast, the density of infected individuals

Fig 3. Analytic results for the evolution speed are confirmed by stochastic simulation. Simulation is performed at fixed

parameters R0 = 2, a = 9; Ub and β as shown. Solid and dashed lines are analytic results for the wave speed, c (Eq 6, S14, S16-S18) at

two values of mutation rate Ub which define the broadest range of interest for RNA viruses, and two values of parameter β to test

sensitivity to the density of selection coefficient distribution. Symbols show results either performed by full stochastic simulation of

the SIR model (Eq 1) or by a reduced simulation with σ = 0.066 (S1 Appendix).

https://doi.org/10.1371/journal.ppat.1007291.g003
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i(u), which is much more narrow, needs to be determined simultaneously with c. Our result

for the average selection coefficient σ, Eq 10, reduces the problem of epidemiological evolution

to models of asexual populations with many diverse sites where the speed was derived previ-

ously in terms of population size, selection coefficient and mutation rate ([18–23]). We con-

sider a case with randomly distributed selection coefficient s = σΔx, where mutational distance

Δx is sampled from distribution in Eq 2 with large parameter β.

This section contains the central result of our analysis: Antigenic diversity Var[x] =< (Δx)2 >

and adaptation rate v defined as the average rate of fitness increase (“fitness flux”) depend on

crossimmunity range a and other parameters [23]

Var½x� ¼
2 log Ninfs

logðbs=UbÞ
ð11Þ

v ¼ s2Var½x� ð12Þ

Another measure of evolution rate is the average substitution rate c

c ¼ ðs2=s�ÞVar½x� ð13Þ

s� ¼ s
ffiffiffi
2
p

b
log

s

Ub

� � 1
b� 1

ð14Þ

where s� represents the most probable fitness gain of a mutation established in a population

[23]. Note that s� is larger than the average selection coefficient σ. The expressions for Var[x]

and s� are approximate, within the accuracy of logarithms inside the large logarithms. For

more accurate expressions, see S1 Appendix.

To apply these results to our case of antigenic evolution, we substitute average selection

coefficient σ from Eq 10 and infected population size Ninf from Eq 5. Then the metrics of evo-

lution speed c, v are expressed in terms of a and epidemiological parameters (Table 1). In the

limit of very large β, Eqs 11–14 match results of a model with constant selection coefficient σ
[18, 20].

We verified analytic results for wave speed c by Monte-Carlo simulation in a wide range of

N and Ub (Fig 3). We used two methods: full simulation of initial Eq 1 with randomly distrib-

uted mutational effects, and a reduced Moran algorithm with linearized fitness landscape

(symbols in Fig 3). We observe that our analytic prediction of a logarithmic increase of c with

N and Ub follows simulation quite well, except at smallest Ub and N explored in our study.

Logarithmic dependencies are characteristic for asexual evolution models ([18–23, 35, 36]).

Abbreviations IS, CI, MM near symbols indicate different regimes regarding the number of

genomic sites evolving within the same time frame: selection sweeps at isolated sites (IS), pair-

wise clonal interference (CI) [23, 35, 36], and multiple-mutation regime (MM) [18–21, 23].

The traveling wave models are designed for MM regime, which explains the discrepancy at

smallest Ub and N. We also observe that the steepness of the selection coefficient distribution,

β, weakly affects the predicted speed.

Our analysis predicts that substitution rate of antigenic mutations c, Eq 13, is inversely pro-

portional to the cross-immunity distance a and increases logarithmically with host population

size and mutation rate. The average selection coefficient at the population level, σ, is also

inversely proportional to a, Eq 10. An alternative measure of the evolution speed, the adapta-

tion rate v, Eq 12, is inversely proportional to a2. The annual incidence of infection, Eq 6 also

scales as 1/a2.

Antigenic evolution
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Time to the most recent common ancestor

Taking advantage of recent theoretical progress in asexual phylogeny [24, 25, 38], we also cal-

culated an important observable quantity, the time to the most recent common ancestor of

two co-existing viruses (S1 Appendix, Eqs S20-S21).

TMRCA2 ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðNsÞ

v

r

ð15Þ

Here numeric factor z depends on the distribution of mutational effect Δ[x] [24, 25]. The pre-

dicted values are z = 1.5 in the case of fixed mutational effect Δ[x], and z = 3 in the case of the

Gaussian distribution of Δ[x] (Eq 2 with β = 2). Because the Gaussian case is more realistic,

and because we are not aware of any results for TMRCA2 for other forms of distribution, below

we choose the value β = 2 for data fitting.

Comparison with influenza A data

To test the model, we compared its predictions with available data on influenza A H3N2 and

H1N1, as follows. The input parameters of the model and the output (predicted) parameters

are summarized in Table 1. The values of input parameters such as population size N, repro-

duction ratio in the absence of immune recognition R0 (during a major pandemic caused

by antigenic shift), and recovery time trec have been measured [7, 13, 30, 31]. In contrast,

parameters a and Ub result from biological interactions at multiple biological scales (cell, host,

population) and are hard to come by. On the other hand, data on two parameters predicted

by the model, TMRCA2 and substitution rate c, are available. Therefore, we opted to adjust the

unknown input parameters a and Ub to fit available data for the two predicted parameters (Fig

4A). We assumed a total susceptible population of N = 108 individuals, which corresponds to a

large country.

It is evident that strain H2N3 has a faster evolution rate and a shorter time TMRCA2 than

strain H1N1 due to a larger value of R0 causing, in turn, a larger average selection coefficient σ.

The values of Ub and a for the two strains are similar (Fig 4a).

The best-fit values for the cross-immunity distance, a = 14 − 15, agree very well with inde-

pendent data on equine influenza [37], which represents a direct confirmation of the model.

The predicted annual incidence in humans of (4 − 7)% also falls within the experimentally

observed range and previous modeling estimates [12, 13, 15]. Interestingly, the model explains

the inverse correlation between TMRCA2 and evolution rate c reported previously for H2N3,

H1N1 and two strains of influenza B [7]. Indeed, the predicted evolution rate c is linearly pro-

portional to the effective selection coefficient σ/ R0/a, while TMRCA2 is inversely proportional

to σ. The dependence of c and TMRCA2 on the other parameters, Ub and N, is logarithmically

slow.

To generalize our results for epidemics occurring on larger or smaller scales, we calculated

the dependence of c, TMRCA2, and the annual incidence on population size N (Fig 4B). The sen-

sitivity of our predictions to input parameters Ub, a, and R0 has also been tested (S1 Appendix,

S3 and S4 Figs). Thus, traveling wave theory with modest selection predicts logarithmic depen-

dence of the speed on population size (Fig 4B).

Results are robust to the existence of additional dimensions of antigenic

space

Epidemiological data demonstrate that, a priori, antigenic space is not one-dimensional but

has fractal nature and fractal dimensionality more than 1 [8, 31]. To demonstrate the weak
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sensitivity of our model to the existence of additional dimensions, we extended our model to

a discrete random tree of epitope variants and solved it numerically (S1 Appendix, S6 Fig).

Phylogeny demonstrates quasi-1D behavior comprising a long trunk of permanently fixed

mutations and short branches representing transient virus variants and resembling the actual

influenza H3N2 phylogeny [4, 12, 13, 15]. We also confirmed the formation of a 1D traveling

wave for two-dimensional genetic space (S5 Fig).

Discussion

We investigated stochastic evolutionary dynamics of a virus driven by the pressure to escape

immune recognition in previously infected individuals. We mapped this problem to an evolu-

tionary model with fitness landscape expressed in terms of the cross-immunity function K(x)

(Fig 2). Stochastic evolution occurs as a traveling wave with two population components struc-

tured in the antigenic variant space x, recovered individuals and the currently infected individ-

uals, with different widths and total counts (Fig 1). The recovered distribution is broad and

large. The infected distribution represents a narrow and small peak at the recovered distribu-

tion front. We expressed several observable parameters including the speed of viral evolution,

the annual incidence of infection, and the average time to the most recent ancestor in terms of

model parameters N, Ub, R0, K(x) (Table 1). The analytic predictions agree with simulation

Fig 4. For influenza A virus, the model predicts annual incidence and cross-immunity which agree with observations. Shown is

the best-fit to combined immunological, epidemiological, and evolutionary data available on influenza A strains H3N2 (red and blue

colors) and H1N1 (magenta and cyan colors). (A) X and Y-axis are the cross-immunity scale, a, and the mutation rate per genome

per transmission event, Ub, respectively. Analytic predictions for the evolution speed c (red and magenta curve, Eq 13) and TMRCA2

(blue and cyan, Eq 15 with z = 3) are shown as contours of constant heights taken from data [7] (Extended Data Table 1 and refs).

Population size is estimated N� 108 [31]. Dashed lines show the intersection points where both parameters fit experimental values.

(B) Solid curves: The same three quantities for H3N2 as a function of population number N at the best-fit values of a and Ub. Dashed

lines correspond to N = 108. (A and B) Input from data [7, 31]: R0 = 1.8, c = 2.6 AA/year, TMRCA2 = 3.0 years for H3N2 and R0 = 1.46,

c = 2.3 AA/year, TMRCA2 = 4.6 years for H1N1. Infection cycle time trec = 5 days. Predicted annual incidence of infection of (4 − 7)%

and the cross-immunity scale a = (14 − 15) AA are in good agreement with independent data [37].

https://doi.org/10.1371/journal.ppat.1007291.g004
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and are able to estimate correctly important parameters of viral evolution in host populations,

as we illustrated using genomic data on influenza.

One of the puzzling aspects of influenza virus evolution is is punctuated nature [4]. While

most mutations are almost neutral or have a modest phenotypic (fitness) effect, some represent

large jumps in antibody recognition [14]. Our results interpret these jumps as a natural conse-

quence of the stochastic nature of the traveling wave models. The extension of the leading edge

of a wave occurs due to adding rare, best available escape alleles. Asexual evolution theory with

variable fitness effect of mutations demonstrates that most fixed mutations have a fitness effect

in excess of average fitness effect [23]. Good et al show that the most likely selection coefficient

s� that drives the wave depends on model parameters σ, N, Ub, mapping the results either onto

the multiple-mutation (MM) model with fixed s [18–21] or the two-site clonal interference

(CI) model [35, 36]. Present work demonstrates that influenza virus evolves within MM

regime near the border with CI regime (Fig 3). In this region, the fitness effect of a fixed allele

is predicted to fluctuate strongly around the most likely value s�, which represents a possible

explanation of the punctuated effect.

An SIR model with immune memory and 1D antigenic space (Eq 1) has been previously

proposed by Lin et al [11]. Their analysis differs from ours in two critical aspects. Firstly, their

approach to viral evolution was completely deterministic, i.e. assumes infinite population size.

In fact, the effect of clonal interference acting in finite population diminishes antigenic return

on additional mutations. Secondly, their mutation term in Eq 1 had a diffusion form propor-

tional to the second derivative of the infected individual density, @2i(x, t)/@x2. This approxima-

tion would be correct if the front edge of the wave was smooth. As we discuss in S1 Appendix,

neither approximation holds at low mutation rates, Ub� 10−4. As a result, the approach of

Lin et al predicts evolution speeds far below simulation results. The traveling wave approach

employed here naturally accounts for both the stochastic effects and the steepness of the leading

edge. Future development of this model requires inclusion of finite mutation cost [39].

Our analytic results agree with the numeric results of a previous simulation by Bedford et al

[12]. Using a similar model, they predicted the same incidence range for influenza A, the same

range for the evolution speed, and interpreted the quasi-one-dimensional trajectory in the

genetic space we have also observed (S5 and S6 Figs). As starting parameters, they assumed

mutation rate Ub� 10−4 and set the cross-immunity distance to be a = 1/0.07 based on equine

flu data [37]. By comparison, here we determine Ub and a a posteriori from fitting human

H3N2 and H1N1 data on c and TMRCA from the cited work [7]. We test the model by compar-

ing our prediction with the experimental value of a [37].

Conclusion

Merging the standard epidemiological approach and the modern traveling wave theory, we

develop a general analytic approach that connects epidemiological and immunological param-

eters to the observed parameters of influenza evolution. We demonstrate that the distribution

of recovered individuals in the genetic space effectively creates a fitness landscape for the

infected individual distribution, and both distributions move together along quasi-one-dimen-

sional path. Our predictions demonstrate a good experimental agreement with data on influ-

enza A H3N2.
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