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ABSTRACT: Conformational flexibility is a major determi-
nant of the properties of macrocycles and other drugs in
beyond rule of 5 (bRo5) space. Prediction of conformations is
essential for design of drugs in this space, and we have
evaluated three tools for conformational sampling of a set of
10 bRo5 drugs and clinical candidates in polar and apolar
environments. The distance-geometry based OMEGA was
found to yield ensembles spanning larger structure and
property spaces than the ensembles obtained by MOE-
LowModeMD (MOE) and MacroModel (MC). Both MC and OMEGA but not MOE generated different ensembles for polar
and apolar environments. All three conformational search methods generated conformers similar to the crystal structure
conformers for 9 of the 10 compounds, with OMEGA performing somewhat better than MOE and MC. MOE and OMEGA
found all six conformers of roxithromycin that were identified by NMR in aqueous solutions, whereas only OMEGA sampled
the three conformers observed in chloroform. We suggest that characterization of conformers using molecular descriptors, e.g.,
the radius of gyration and polar surface area, is preferred to energy- or root-mean-square deviation-based methods for selection
of biologically relevant conformers in drug discovery in bRo5 space.

■ INTRODUCTION

Half of all protein targets thought to be involved in human
diseases have been classified as difficult to drug1,2 with small
molecules that comply with Lipinski’s rule of 5 (Ro5).3,4 Recent
investigations have highlighted that macrocycles (here defined
as having ≥12 atoms in the macrocycle ring)5,6 and other
compounds residing in beyond rule of 5 (bRo5) chemical
space,7−9 provide improved opportunities for modulation of
difficult-to-drug targets.5,6,10 Since macrocycles are more prone
to adopt disk- and spherelike conformations than non-
macrocycles, they appear to be particularly well-suited to bind
to targets that have large, flat, or groove-shaped binding sites,6,7

e.g., protein−protein interactions.11,12Macrocyclization has also
been suggested to contribute to improved cell permeability and
intestinal absorption for compounds in bRo5 space.5,10,13,14

These two suggestions are consistent with the observed
enrichment of macrocycles among oral drugs and clinical
candidates in bRo5 space.8 Compounds in bRo5 space are likely
to have more complex structures than those of Ro5 compliant

molecules, and their synthesis will consequently be more
challenging. This is a particular issue for macrocycles as the
macrocyclization step is often sensitive to small structural
variations and subject to low yields.15 It is therefore important to
be able to predict the conformational preferences of macrocycles
prior to synthesis to assess conformation-dependent properties,
such as aqueous solubility, cell-permeability, and binding to
targets and off-targets. Synthetic efforts can then focus on
compounds with favorable predicted properties.
Recent publications indicate that interest in conformational

sampling of macrocycles is increasing.16−25 Although a complete
review of the literature is beyond the scope of this paper, studies
of conformational sampling are characterized by the choice of
sampling algorithm, the dataset of investigated structures, and
the strategy used to evaluate the results. Algorithmic approaches
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to macrocycle conformational sampling include distance
geometry (DG),16,17 dihedral angle-based sampling,21 molec-
ular dynamics (MD),18,19 and inverse kinematics.20 A variety of
datasets have been used to validate these methods: 19
macrocycles from three chemical classes [cyclo(Gly)x peptides,
cyclodextrins, and cyclic peptide natural products],16 a diverse
set of 67 macrocycles,20 and a set of 37 polyketides.21

Conformational sampling with different algorithms is usually
evaluated by comparison of their ability to reproduce
conformations observed in the solid state.17,25 The ability of
different algorithms to reproduce the target-bound conforma-
tion of macrocycles has been discussed recently,22−24 and results
have also been evaluated with regard to the structural diversity of
conformational spaces sampled.25 Several studies have focused
on the conformation adopted by the macrocycle core only,19−21

thereby omitting the conformation of attached side chains,
which, however, are essential for target engagement as well as all
other properties of the macrocycle.
Despite recent advances, it remains unclear how conforma-

tional sampling should be used to find relevant conformers of
macrocycles. Hence, questions such as how the influence of the
environment should best be incorporated in sampling and how
relevant conformers can be identified among the theoretically
reasonable pool of conformers remain to be answered. For
further insights, we have evaluated the performance of
MacroModel (MC),19 MOE-LowModeMD (MOE),18 and a
novel method implemented most recently in OMEGA.26 We
chose MC and MOE as they are used frequently and may be
viewed as standard methods for sampling of macrocycles. MOE
is based on a specifically designed MD approach, whereas MC is
based on the perturbation of low frequency vibrational modes,
and their output ensembles may depend on the starting three-
dimensional (3D) conformation. Then, we selected OMEGA
because it samples conformational space in a completely
different manner than MC and MOE. OMEGA uses a DG
method that is expected to explore conformational space in a

more comprehensive manner, independent of the starting point.
For results to be relevant to drug discovery, we selected a set of
10 drugs and clinical candidates of high structural complexity,
including macrocycles and non-macrocyclic analogues. Impor-
tantly, the selected compounds reside in bRo5 chemical space
where conformational flexibility has been proposed to be
essential to allow them to adjust their properties to the
surrounding environment.27−30 For example, conformations
with intramolecular hydrogen bonds (IMHBs) present a less
polar surface in an apolar environment, such as a cell membrane,
whereas conformations lacking IMHBs expose a more polar
surface in an aqueous environment.
Evaluating the accuracy, here, the reproduction of solid-state

structures, by a new method in comparison to existing ones, is
mandatory but not sufficient for applications in drug discovery.
It is also essential to know (a) if and how conformational
sampling is influenced by the dielectric constant of the solvent,
(b) how molecular properties vary across the conformational
space sampled, and (c) if the minimum energy conformer
(MEC) is representative (or not) of the conformations
populated by the compound in crystal structures of different
origins, or in different solutions. To address these topics, we
performed conformational sampling in polar and apolar
environments. We evaluated conformational ensembles by
comparison to solid-state structures and by assessing the
variation across three molecular descriptors in both media.
The radius of gyration (Rgyr) is an index of molecular dimensions
and shape, the polar surface area (PSA) quantifies the polar
regions of a molecule, and the number of intramolecular
hydrogen bonds (IMHBs) heavily influences the whole
molecular property profile. Conventional, extensive molecular
dynamics (eMD) simulations were also performed for a subset
of the drugs and clinical candidates in our dataset. Finally, NMR
spectroscopy was used to determine how conformational
preferences are influenced by the solvent for the erythronolide
roxithromycin.

Figure 1. Structures of erythronolides and HCV NS3/4A protease inhibitors used in this study. Important structural differences amongst the
erythronolides are shown in pink. Peptide backbones are indicated in red for the protease inhibitors, nonpeptidic atoms forming part of the
macrocycles are in blue.
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■ RESULTS AND DISCUSSION

Dataset of Drugs and Clinical Candidates.We selected a
dataset of five macrocyclic erythronolide antibacterial drugs,
three macrocyclic Hepatitis C virus (HCV) NS3/4a protease
inhibitors, and two non-macrocyclic HCV NS3/4a protease
inhibitors (Figure 1). This set includes drugs and clinical
candidates of high complexity that originate from natural
products or from structure-based design. It allowed investigation
of conformational sampling for 14- to 20-membered macro-
cycles, with up to three complex side chains pendant to the
macrocyclic core.
At least one crystal structure is available for each of the 10

selected drugs and clinical candidates (Table 1), allowing
comparison to the conformational ensembles generated by the
three search methods. Multiple crystal structures in which the
compounds adopt different conformations have been reported
for all erythronolides and the two non-macrocyclic HCV
protease inhibitors, indicating that they may be conformation-
ally flexible also in solution. Molecular weights ranged from 680
Da for telaprevir to 837 Da for roxithromycin, in the range of
>600−700 Da where conformational flexibility has been
suggested to be essential for drugs to display both adequate
aqueous solubility and cell permeability.27,28,31 The macrocycles
had 7−13 rotatable bonds in their side chains, and the two non-
macrocyclic protease inhibitors had 18 and 19 rotatable bonds,
respectively. For those compounds with multiple crystal
structures showing two or more distinct conformations (here
defined as root-mean-square deviation (RMSD) >0.75 Å

between conformations), the maximum differences ranged
from 0.93 Å RMSD for azithromycin to 6.13 Å RMSD for
telithromycin.
Inspection of the conformations adopted by the erythrono-

lides in the crystalline state shows that the macrocycles of
erythromycin, the close analogue clarithromycin, and azithro-
mycin maintain similar conformations across multiple crystal
structures (Figure 2). The saccharide side chains of
erythromycin and clarithromycin show more variability.
Roxithromycin and telithromycin are different, with themultiple
crystal structures showing significant conformational differences
in the macrocyclic core and the attached side chains. The
RMSDs between the least similar experimental conformations of
these molecules are large (Table 1). The observed conforma-
tions also differ significantly in the number of IMHBs
(roxithromycin, 0−2) or Rgyr (telithromycin, 4.90−7.63 Å).
We expected that the strikingly different experimental
conformations observed for roxithromycin and telithromycin
would provide a challenging test system for conformational
sampling algorithms.
Only one crystal structure is available for each of the

macrocyclic HCV NS3/4A protease inhibitors (Figure S1,
Supporting Information), and they all originate from complexes
with the protease. For the non-macrocyclic asunaprevir and
telaprevir, the overlaid crystal structures show some variation
between the small-molecule and protease complex crystal
structures, most notably at the C-termini of these peptidomi-
metics. Consistent with known protease binding preferences,

Table 1. Crystal Structure Dataset for the Selected Erythronolides and HCV NS3/4A Protease Inhibitors

compound MW (Da) nRotBa no. of structures no. of conformationsb max. RMSDc IDd resolution (Å) R-factor (%)

erythromycin 733.9 7 10 6 1.94 1YI2 2.65
2J0D* 2.75
3FRQ 1.76
QIFKEX 2.92
NAVTAF 4.30
LAPDEN* 6.21

clarithromycin 748.0 8 14 3 3.13 CIWJIC* 3.36
NAVSUY01* 6.16
WANNUU 4.50

azithromycin 749.0 7 7 2 0.93 1YHQ* 2.40
GEGJAD* 7.70

roxithromycin 837.1 13 3 3 4.60 1JZZ* 3.8
FUXYOM 4.70
KAHWAT* 1.68

telithromycin 812.0 11 5 5 6.13 1YIJ* 2.60
1P9X* 3.40
4V7S 3.25
4V7Z 3.10
4WF9 3.43

danoprevir 729.8 11 3 1 3SU1 1.40
grazoprevir 768.9 10 4 1 3SUG 1.80
vaniprevir 755.9 9 5 1 3SU4 2.26
asunaprevir 748.3 18 4 2 3.02 4WH6* 1.99

MIYWOI* 11.38
telaprevir 679.9 19 5 3 1.40 3SV6* 1.40

3SV7 1.55
LERJID* 4.69

aNumber of rotatable bonds calculated using Canvas. bStructures were clustered into conformations for which representative structures differed in
RMSD by >0.75 Å. cRMSD between representative structures of the conformations displaying the largest structural variation for each compound.
dThe representative structures of the conformations displaying the largest variation for each compound have been indicated by an asterisk. RMSD
values were calculated on the basis of all heavy atoms in the compounds.
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the peptidic backbones of both the macrocyclic and non-
macrocyclic inhibitors adopt an extended β-strand conforma-
tion. In addition, the macrocycle linker provides an overall flat,
disk-shaped conformation to the three macrocyclic inhibitors
that matches the relatively flat binding site of the protease.
Conformational Sampling. The conformational spaces

accessible to the 10molecules in our set were explored withMC,
MOE, and OMEGA, starting from the simplified molecular-
input line-entry system (SMILES) codes of the compounds. The
ionization state at physiological conditions (pH = 7.0) was used
for all compounds. Sampling was performed both in apolar
(vacuum, ε = 1) and polar (aqueous, ε = 80) environments to
investigate how the polarity of the environment influenced the

output. Conformations obtained within an energy window of 25
kcal/mol were retained, i.e., within a window that should be
large enough to include all significant conformers and thus
provide a comprehensive picture of the structure and property
space exhibited by the different drugs. Conformations obtained
from sampling with the three methods were energy-minimized
using the molecular mechanics force field MMFF94s to ensure
that the results were not affected by the use of different force
fields for different methods.32

Comparison to Crystal Structures. As a DG-based
conformational sampling method was recently implemented in
OMEGA, we first evaluated OMEGA’s performance in
comparison to that of MC and MOE with regards to how

Figure 2. Overlays of the different conformations found in the crystalline state of each erythronolide. Overlays were generated by alignment of the
heavy atoms in the macrocyclic core only for each erythronolide. The color used for the protein data bank (PDB) and Cambridge Structural Database
(CSD) codes match those of the carbon atoms in the corresponding structures.

Figure 3.MC, MOE, and OMEGA compared in terms of how accurately crystal structures are reproduced. (A) Accuracy in reproducing the crystal
structure(s) of the 10 drugs and clinical candidates by the predicted minimum energy conformer (MEC) of each compound. (B) Accuracy in
reproducing the crystal structure(s) by the conformer most similar to the crystal structure (the minimum RMSD conformer, MRC) for the 10
compounds. Both accuracies are given with RMSD cutoff of <2 and <4 Å for each of the three methods in apolar and polar environments, respectively.
They were calculated from the data in Tables S1 and S2 in the Supporting Information.
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accurately crystal structures were reproduced. Comparison of
the calculated minimum energy conformation of a compound to
the experimentally determined crystal structure(s) using RMSD
cutoffs of 2 and 4 Å, respectively, was used as the first criterion of
accuracy (Figure 3A). The similarity between the sampled
conformation most similar to the crystal structure (the
minimum RMSD conformer, MRC) and that crystal structure
was used as a second accuracy criterion (Figure 3B).
The MECs predicted by the three methods reproduced the

crystal structures with, at best, modest accuracy, on the basis of
an RMSD cutoff of <2.0 Å (Figure 3A). Under the conditions
used in this study,MC performed significantly better thanMOE,
which in turn performed better than OMEGA, in both
environments. All methods predicted the crystal structures
better in a polar environment than in vacuum. Nine of the 19
crystal structures of the five erythronolides were reproduced
with an RMSD < 2.0 Å, with MC succeeding with all nine of
these examples (Table S1, Supporting Information). With the
exception of danoprevir, none of the methods were able to
reproduce any of the eight crystal structures of the HCV NS3/
4A protease inhibitors with <2.0 Å accuracy (Table S1,
Supporting Information). However, when the RMSD cutoff
was increased to the much more lenient <4.0 Å, all methods
showed 70−95% accuracy in both environments, with OMEGA
performing better than MC and MOE. Closer inspection of the
overlays of the MECs calculated in water for the three
macrocyclic protease inhibitors and the crystal structures
revealed that the major structural differences were found in
the orientation of the side chains, whereas the conformation of
the macrocyclic core was reproduced with reasonable accuracy
(often <1.0 Å RMSD, Table S3, Supporting Information). This
was also the case for the macrocyclic cores of erythromycin,
clarithromycin, and azithromycin, which all display limited
variation across their different crystal structures. The cores of
roxithromycin and telithromycin, which both show greater
conformational difference across multiple structures, were
reproduced less well by the three methods (Figure 2 and
Table S3, Supporting Information). Just as for the overall
structures, MC performed better than MOE and OMEGA in
predicting the conformations of the macrocyclic cores.
The MRCs show how well each of the methods performs in

generating a conformer similar to the experimental structure

within a relatively tolerant energy window (here, chosen as <25
kcal/mol above the MEC). In an apolar environment, MRCs
predicted by OMEGA reproduced the crystal structures
significantly better than those predicted by MOE and MC
when using the more demanding RMSD cutoff at <2 Å (Figure
3B). However, in a polar environment, all methods reproduced
the crystal structures within 2.0 Å (accuracy >80%), with
OMEGA performing marginally better thanMC andMOE. The
energies of the MRCs were in general significantly higher (>15
kcal/mol) than those of the MECs of the compound (Table S2,
Supporting Information).
In summary, the MECs generated by the three methods

reproduce the crystal structures of the 10 drugs and clinical
candidates at best with modest accuracy, as judged by a <2 Å
RMSD criteria. However, the cores in the eight macrocycles
were usually reproduced with much better accuracy by the
MECs, revealing the side chains as a significant source of
uncertainty in conformational sampling. All methods found
conformers (MRCs) close to the crystal structures, but they
usually had significantly higher energies than those in the MEC.
As judged by both accuracy criteria for reproduction of crystal
structures, sampling carried out in a polar environment
performed slightly better than in an apolar one. We conclude
that OMEGA is complementary to MC andMOE as it performs
better in finding a conformation close to that of crystal structures
but worse as judged by the accuracy by which MECs reproduce
crystal structures. OMEGA should therefore be considered as a
viable method for conformational sampling of macrocycles and
possibly also for other compounds with complex structures.

Comparison of Molecular Descriptors. We envisaged
that property-based analysis of conformational ensembles could
provide different information than comparisons based on
RMSD values. Therefore, we first investigated a possible
correlation between RMSD-based differences between con-
formations and variations in two 3D descriptors, Rgyr and PSA.
This was done for the five drugs and clinical candidates in our
dataset for which three or more distinct conformations are
available in crystal structures (Table 1). Interestingly, only a
weak correlation was observed between conformational differ-
ences (ΔRMSD) and differences in Rgyr, whereas no correlation
was found between ΔRMSD and differences in PSA (Figure 4).

Figure 4.Differences in (A) radius of gyration (Rgyr) and (B) polar surface area (PSA) plotted vs differences in RMSD for drugs and clinical candidates
in the dataset that have three or more conformations. The crystal structure in which each of the five compounds adopts a conformation having the
minimumRgyr or 3D PSA, respectively, was chosen as reference. The reference value was then subtracted from the Rgyr and 3D PSA values, respectively,
of the other conformations, and the differences were plotted vs the differences in RMSD.
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To obtain additional information to that provided by RMSD
values for the ensembles generated byMC,MOE, and OMEGA,
we proceeded to calculate Rgyr, PSA, and the number of IMHBs
for all conformers of the 10 compounds in our dataset. The
calculated ranges and means for the three properties were then
compared between conformational sampling methods and
environments and also to the corresponding properties
calculated from the crystal structure(s) of each compound.
Radius of Gyration (Rgyr). The Rgyr of a compound in a

specific conformation provides a numerical description of its size
and shape and is calculated as the root-mean-square distance

(RMSD) between the compound’s atoms and its center of mass.
On the basis of studies of passive permeability, this 3D
descriptor has been suggested to be a better surrogate for
molecular size than MW, the 2D descriptor most typically used
in this context.33

The calculated Rgyr ranges for the sampled conformations are
small (<1 Å) for the first three erythronolides, somewhat larger
for roxithromycin, and much larger for telithromycin (<2 Å), in
particular, in a polar environment (Figures 5 and S2). This
agrees well with the limited conformational flexibility inferred
from the crystalline states of the first three and the greater

Figure 5. Radius of gyration (Rgyr) calculated for the erythronolides and HCV NS3/4A protease inhibitors. For each compound, Rgyr has been
calculated for the conformation(s) adopted in the crystal structures and for the conformational ensembles generated byMC (green),MOE (pink), and
OMEGA (yellow) in apolar and polar environments. Rgyr was calculated using the MOE software.34 Box plots show minimum and maximum values as
whiskers; the boxes span the 25th−75th percentile range, and the MECs are indicated as black circles. Figure S2 shows these data plotted with a fixed
scale for Rgyr for all 10 compounds.
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flexibility observed for the latter two (Figure 2). Predicted Rgyr

ranges are in general larger for the HCV protease inhibitors than
for the erythronolides, ranging from approximately 0.7 Å for
grazoprevir and vaniprevir (calculated with MC) up to >1.5 Å
for danoprevir, vaniprevir, and asunaprevir (calculated with
OMEGA). However, nomajor difference in the range of Rgyr was

observed between the macrocyclic and non-macrocyclic
protease inhibitors, tentatively indicating that they have similar
flexibility. This finding is in line with a recent analysis of crystal
structures from a wider set of bRo5 drugs and clinical
candidates.7 OMEGA generally provides greater coverage of
Rgyr space than MC, in particular for the erythronolides.

Figure 6. Polar surface area (PSA) calculated for the erythronolides and HCV NS3/4A protease inhibitors. For each compound, PSA has been
calculated for the conformation(s) adopted in the crystal structures and for the conformational ensembles generated byMC (green),MOE (pink), and
OMEGA (yellow) in apolar and polar environments. PSA was calculated on the basis of the surface area of the molecule that arises from oxygen and
nitrogen atoms, plus their attached hydrogen atoms, using the Schrödinger software.37,38 Box plots show minimum and maximum values as whiskers;
the boxes span the 25th−75th percentile range, and the MECs are indicated as black circles. Figure S3 shows these data plotted with a fixed scale for
PSA for all 10 compounds.
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Interestingly, all compounds in our dataset except for
telithromycin had Rgyr ranges <7 Å, the value suggested as an
upper cutoff for cell permeable small-molecule drugs; larger
compounds often have poorer permeabilities.33 Thus, our
results are largely consistent with the Rgyr cutoff of 7 Å for cell
permeability and oral absorption.
Rgyr ranges are often smaller in apolar than in polar

environments for ensembles from the three methods. Such an
environmental influence is also pronounced for the median Rgyr
values from OMEGA for all but azithromycin among the
erythronolides but only for vaniprevir among the HCV protease
inhibitors. MC and MOE show this dependence of median Rgyr
on the environment for the majority of the protease inhibitors
but not for the erythronolides. In contrast, the Rgyr values of the
MECs for each compound do not show a consistent dependence
on the environment.
TheRgyr ranges calculated from the ensembles obtained by the

three methods in general include those of the crystal structures,
both for the erythronolides and HCV protease inhibitors.
Depending on the method used for sampling as well as on the
specific drug investigated, the predicted and crystallographic
median valuesmay ormay not be close in numerical value for the
two classes of drugs. For example, all median Rgyr values for
azithromycin and danoprevir are similar, whereas those for
clarithromycin and telaprevir show significant variation.
However, the Rgyr of the MEC shows even larger variation and
is extremely dependent both on the drug and the method
applied for sampling. Thus, in spite of their variation, the Rgyr
values of the median conformations in the ensembles are closer
to those of the crystal structures than those of the MECs.

Polar Surface Area. Polarity is a molecular property of great
importance in drug discovery.35,36 It is thought to play a pivotal
role in permeability and solubility and other absorption,
distribution, metabolism, and excretion-related properties.
Polar Surface Area (PSA) is a widely used descriptor of polarity
and is commonly defined as the surface area of a molecule that
arises from oxygen and nitrogen atoms, plus hydrogens attached
to these atoms.
The predicted PSA ranges of the sampled conformations of

the investigated compounds varied from approximately 30 to 60
Å2 between compounds and with the sampling method used to
generate the ensembles (Figures 6 and S3). Interestingly,
compounds such as erythromycin, clarithromycin, and azithro-
mycin that displayed limitedRgyr ranges showedmajor variations
in PSA between conformations (Figure S3). This observation
further highlights the lack of correlation between variations in
3D structure and PSA discussed above (Figure 4). Ranges
calculated from ensembles generated by OMEGA were
generally larger than those obtained with MC and MOE,
whereas only very minor differences between values calculated
in apolar and polar environments were observed. Median and
MEC PSA values were lower in apolar than polar environments
for the ensembles from MC and OMEGA but not for MOE.
Thus, the median and MEC conformations derived from MC
and OMEGA are consistent with the idea that flexible
compounds conformationally adapt to reduce their PSA in an
apolar environment as compared to that in a polar one.
For the erythronolides, predicted PSA ranges included those

of the crystal structures, with the exception of telithromycin for
which all predicted ranges apart from the one obtained in an

Figure 7. Number of IMHBs in the crystal structures and in the conformational ensembles generated by MC (green), MOE (pink), and OMEGA
(yellow) in apolar and polar environments for the erythronolides. IMHBs were calculated using the Schrödinger software.37,38 Box plots show
minimum and maximum values as whiskers; the boxes span the 25th−75th percentile range, and the MECs are indicated as black circles.
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apolar environment by OMEGA were smaller than those of the
crystal structures. With only two exceptions, the predicted PSA
for the HCV protease inhibitors included the values of the
crystal structures.
For both classes of drugs, the PSA of the MEC varies

dramatically with the sampling method and the nature of the
environment. Sometimes it is found within the 25th−75th
percentiles (c.f. roxithromycin and telaprevir), but often it is
located in the 0th−25th percentile. For the erythronolides, the
median PSA values obtained from the conformational
ensembles provide a better approximation of the median PSA
of the crystal structures of each compound than the PSA of the
MEC. However, such a correlation was not observed for the
HCV protease inhibitors, possibly because there is only one
crystal structure for each of the three macrocycles.
Intramolecular Hydrogen Bonding. Among the five

erythronolides, all but telithromycin displayed up to two
IMHBs in their crystal structures (Figure 7). The ensembles
obtained by conformational sampling with OMEGA covered a
larger conformational space, with both ranges andmedian values
of IMHBs being higher than those for MC and MOE. As judged
by comparison of the 25th−75th percentiles or the MECs, for
each compound, all three methods generated ensembles having
more IMHBs in an apolar than a polar environment but to
various extents. OMEGA was more consistent in predicting this
dependence on the environment, which is in line with how a
conformationally flexible compound would be expected to adapt
to its environment.27−30 The IMHB ranges predicted by all three
methods, both in apolar and polar media, included the number
of IMHBs observed in the crystal structures. Usually, the MECs
of the different ensembles contained a larger number of IMHBs,
than that observed in the crystal structures, in particular, MECs
predicted by MC and OMEGA in vacuum.
Neither the macrocyclic nor the non-macrocyclic HCV NS3/

4A protease inhibitors displayed IMHBs in their crystal
structures, most of which are complexed with the protease
(Figure S4, Supporting Information). This behavior is
consistent with the expected binding mode for peptidelike
active site protease inhibitors where hydrogen bonds are instead
formed between the inhibitor and the protease. However, the
ensembles from conformational sampling of each inhibitor
included conformations with up to a range of two to four
IMHBs. As for the erythronolides, OMEGA sampled a
conformational space with more IMHBs than MC and MOE
and also had a higher degree of IMHB formation in an apolar
than a polar environment.
Extensive MD (eMD) Simulations. Extensive molecular

dynamics (eMD) simulations are often used to evaluate the
molecular property space described by the “natural” fluctuations
of a molecule, starting from a single conformation.39 We applied
a standard eMD method,40 with CPU demands consistent with
those in routine application in the context of a medicinal
chemistry project, to a subset of the 10 compounds in our
dataset. Our aim was to investigate whether methods for
conformational sampling, such as MC, MOE, and OMEGA,
explore a different molecular property space than that explored
by eMD and to study whether molecular property ranges
obtained from eMD varied when explicit solvents of different
polarities were used in the simulations.
We selected six compounds that are structurally diverse but

still representative of the full set of 10 drugs and clinical
candidates (c.f. structures in Figure 1). For the erythronolides,
we choose the parent compound erythromycin, the ring-

expanded azithromycin, and roxithromycin, which has a flexible
side chain attached to the macrocycle. The macrocyclic HCV
NS3/4A protease inhibitors belong to two different structural
classes, and one from each class was selected, i.e., danoprevir and
grazoprevir. Asunaprevir, which constitutes a non-macrocyclic
analogue of danoprevir, was also included. Starting from their
SMILES structures, these six compounds were submitted to
eMD simulations in explicit water and chloroform, the latter
used as a model of an apolar environment. The stability of the
systems was confirmed by the modest fluctuations of their
potential energies (Figure S5A,B, Supporting Information). The
trajectories of the six selected compounds were then used to
evaluate the molecular property space populated by each
compound and compared to that populated by the ensembles
from OMEGA (Figure S6, Supporting Information), which
samples the largest molecular property space of the three
methods for conformational sampling evaluated herein (cf.
above).
Rgyr and PSA space from the ensembles obtained by eMD

were in general smaller than those for the ensemble from
OMEGA, both in an apolar and polar environment (Figure S6,
Supporting Information). In addition, the Rgyr and PSA ranges
from eMD and OMEGA showed limited overlap for several
compounds, revealing that eMD often samples a different
property space than that by OMEGA. Both for Rgyr and PSA, the
ranges from eMD often included the respective values for the
crystal structures but major discrepancies were found for either
or both properties for half of the selected compounds. Some
influence of the polarity of the solvent on Rgyr and PSA was
observed in the eMD simulations (Figure S6, Supporting
Information). Thus, the Rgyr ranges and PSA medians were both
smaller in chloroform than in water for the six compounds, with
erythromycin and azithromycin PSA medians showing the
largest differences.

Conformations of Roxythromycin in Chloroform and
Water. To gain experimental insight into the conformational
flexibility of macrocycles and the variation of their conforma-
tional landscape between apolar and polar environments, we
studied the conformations of roxithromycin in chloroform and
water by NMR spectroscopy. The solution ensembles were used
as an independent set of data for comparison to the ensembles
generated by MC, MOE, and OMEGA. Roxithromycin was
selected as three X-ray crystal structures differing in RMSD by
up to 4.6 Å have been reported (Table 1), indicating a significant
molecular flexibility that should be challenging for conforma-
tional sampling. Previous NMR studies of roxithromycin
concluded that its predominant solution conformation in
chloroform resembles its geometry in one of its crystal structures
(KAHWAT)41 and emphasized the importance of intra-
molecular hydrogen bonding in the stabilization of the
macrolide conformation.42 NMR studies have also been
performed in methanolic solution, suggesting that the
conformation identified for chloroform remains dominant.
The aqueous solution conformation of roxithromycin has so
far not been studied nor the influence of the polarity of the
environment on its overall molecular conformation.
As roxithromycin can be expected to exist as a dynamic

ensemble of interconverting conformations in solution, we
analyzed it in water and chloroform solutions using theNAMFIS
algorithm43 that has previously been successfully applied for the
description of the solution ensemble of various flexible
macrocycles.44−51 Experimental population-averaged distances
were determined by the acquisition of nuclear Overhauser
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enhancement (NOE) buildups at 900 MHz and by conversion
of the initial buildup rates into interproton distances (Tables S6
and S7, Supporting Information). A theoretical ensemble
covering the entire available conformational space was
generated using an unrestrained Monte Carlo conformational
search using water and chloroform solvation models. Monte
Carlo simulations were used so that the solution ensembles
obtained by NMR would be independent of the ensembles
generated by MC, MOE, and OMEGA, thereby allowing
validation of the output from these three methods by the results

from NMR. Following redundant conformation elimination,
conformations from all individual searches were combined and
used as theoretical input for the NAMFIS analyses. Solution
ensembles were determined by varying the probability of each
conformation and fitting the back-calculated distances for each
computationally predicted conformation to the experimentally
determined population-averaged distances derived from the
NMR studies in chloroform and water (Table S9, Supporting
Information), respectively.

Figure 8. Solution ensemble of roxithromycin in CDCl3, as determined by NAMFIS analysis, and comparison to one of the crystal structures of
roxithromycin. (A) An overlay of the three conformations found in CDCl3 with the most populated one indicated in green (number 3). The
conformation also found in D2O is indicated in blue (number 2). (B) Overlay of the most populated conformation (number 3, green) and the most
similar crystal structure (CSD KAHWAT, orange); RMSD = 1.82 Å. Hydrogen bonds to the oxime side chain of roxithromycin are indicated by black
dotted lines, whereas nonpolar hydrogen atoms have been omitted for clarity.

Figure 9. Solution ensemble of roxithromycin in D2O, as determined by NAMFIS analysis and comparisons to two of the crystal structures of
roxithromycin. (A, B) Overlays of the six conformations found in D2O, with the most populated one in green (number 4). For clarity, conformation 4
has been compared to four of the conformations in (A) and to one of the most different ones in (B). (C) Overlay of the most populated conformation
(number 4, green) and the most similar crystal structure (CSD FUXYOM, orange); RMSD= 2.93 Å. (D)Overlay of solution conformation 2, with the
crystal structure (PDB 1JZZ, orange) that is most similar to any of the six solution conformations; RMSD = 2.02 Å. Hydrogen bonds to the oxime side
chain of roxithromycin are indicated by black dotted lines in (C) and (D), and nonpolar hydrogen atoms have been omitted for clarity in (A)−(D).
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The best fit, providing the lowest RMSD of the experimental
and probability-averaged theoretical data, was obtained for
ensembles possessing three conformations in chloroform
(Figure 8) and six conformations in water (Figure 9). The
lower number and less diverse conformational families in
chloroform as compared to those in water reveal a higher
molecular flexibility in the more polar environment. In
chloroform, the methoxy group of the oxime side chain forms
a hydrogen bond to OH-11 of the macrocycle in all three
conformations (Figure 8A). It should also be noted that the
highest populated conformation in chloroform (71%) resembles
the conformation observed in one of the crystal structures of
roxithromycin (KAHWAT), with the polar functionalities being
buried from solvent by intramolecular hydrogen bonds and the
oxime chain oriented over the macrocycle (Figure 8B). This
observation is in good agreement with those of previous
investigations.42,52,53 In aqueous solution, the oxime chain
shows higher flexibility and is solvent-exposed in a majority of
the conformations, representing 82% of the solution ensemble
(Figure 9A,B). Only two of the minor conformations in water
display intramolecular hydrogen bonds to the oxime side chain,
one of them (conformation 2) being found also in chloroform.
The most populated conformation in water (59%) has some
resemblance to the conformation observed in one of the crystal
structures of roxithromycin (FUXYOM), with the major
differences originating from the orientation of the two
monosaccharides (Figure 9C). Interestingly, the target-bound
structure of roxithromycin (1JZZ) is similar to one of the minor
conformations (14%) observed in water (Figure 9D). The latter
observation is consistent with the expectation54−56 that the
protein-bound conformation of a flexible ligand should be
measurably populated when free in aqueous solution. However,
in contrast to earlier reports,57 the dominant conformation in
chloroform shows lower similarity to the bioactive conformation
of roxithromycin. Importantly, our observations demonstrate a
major influence of solvent polarity on the conformation of
roxithromycin, with a more rigid and closed ensemble being
adopted in chloroform and a more flexible and solvent-exposed
one being observed in water.
The MECs predicted by MC, MOE, and OMEGA for apolar

and polar environments were unable to accurately reproduce the
different conformations observed for roxithromycin in chloro-
form or water (Table S4, Supporting Information). However,

conformational sampling did explore similar (RMSD < 2 Å)
conformations within the energy window used in our study (<25
kcal/mol; Figure 10). OMEGA stood out by reproducing the
three solution conformations found in chloroform, whereas
MOE was able to reproduce one of the two minor
conformations. In water, MOE reproduced all six solution
conformations with higher frequencies than those of OMEGA
whereas MC reproduced the major conformation (number 4)
with high accuracy, as well as two of the minor conformations.
As expected, roxithromycin populates a larger property space

in water than in chloroform (Figure 11, PSA and IMHB panels).
Comparison of Rgyr, PSA, and IMHBs for the major
conformation identified by NMR spectroscopy to the predicted
median values revealed that OMEGA had the best correlation
for Rgyr, both for polar and apolar solutions. PSA was well
predicted both by the medians of MC and OMEGA, whereas
MC showed the best correlation for IMHBs in an apolar
environment and OMEGA did so for polar environments.
Median values from MOE differed more from those of the
conformations populated in solution than those from MC and
OMEGA, which agrees well with that MOE is influenced by the
environment to a lesser extent than MC and OMEGA (cf.
above). These observations indicate that conformational
sampling by MC or OMEGA, followed by ranking of
conformations by Rgyr and PSA and selection of the median
conformations may constitute an approach to prediction of the
properties of macrocycles in apolar and polar environments.
However, median Rgyr and PSA conformations do not
necessarily constitute an approximation of the 3D structure of
the experimental conformations.

■ CONCLUSIONS
Conformational flexibility is required for bRo5 drugs to possess
adequate aqueous solubility, cell permeability, and oral
absorption, as well as potent target binding.27−30 To facilitate
drug discovery, the prediction of biologically relevant con-
formers for drug candidates in bRo5 space is therefore of major
interest.
To gain understanding of the influence of the polarity of the

environment on the ensembles, we have applied three different
computational methods for conformational sampling to a set of
eight macrocyclic and two non-macrocyclic bRo5 drugs and
clinical candidates, providing the following key findings. First,

Figure 10. Ability of conformations in the ensembles generated by MC, MOE, and OMEGA to reproduce the solution ensembles of roxithromycin in
chloroform and water, as determined by NMR spectroscopy. Reproducibilities have been determined as the frequency of conformations found within
an RMSD cutoff of <2 Å of each of the solution conformations. The population (in %) of each solution conformation, as determined by NMR
spectroscopy, is stated below the number of the conformation.
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consistent with earlier studies,17,25 the experimentally deter-
mined conformations for the 10 compounds were usually not
accurately reproduced by the MEC generated by the three
computational methods. Instead, the experimental structures
were often found at higher energies within the ensembles.
OMEGA performed somewhat better than MC and MOE in
sampling conformations structurally similar to those of the
crystal structures. Second, as expected, different methods for
conformational sampling generated different results from the
same input. OMEGA in general provided ensembles of
conformers describing a larger structure and property space
than those described by ensembles of conformers provided by
MC andMOE, whichmost likely explains its better performance
in sampling conformations similar to crystal structures. MECs
often differ significantly between these methods. Third, the
impact of the polarity of the environment in governing the

conformational behavior in bRo5 space cannot be neglected, as
revealed by the NMR studies of roxithromycin. Both MC and
OMEGA generated different ensembles for apolar and polar
environments, whereas the output from MOE was less
dependent on the environment. However, only OMEGA
sampled conformational space that included the solution
ensembles of roxithromycin in apolar and polar solutions, as
determined by NMR spectroscopy.
The difference in performance shown by OMEGA, as

compared to that shown by MC and MOE, in the current
investigation most likely originates in the different algorithms
implemented by the three methods. MOE is based on a
specifically designed MD approach and MC is based on the
perturbation of low frequency vibrational modes, whereas
OMEGA decomposes molecules into its constituent atoms and
generates different arrangements under distance constraints.
The reconstruction of the molecules permits OMEGA to
explore a larger conformational space than that covered by MC
and MOE. In addition, OMEGA samples conformational space
independent of the starting conformation, whereas ensembles
generated by MC and MOE may depend on the starting
conformation.
Our findings provide some guidance for the identification of

conformers of bRo5 molecules for use in the prediction of
properties that contribute to solubility and cell permeability. To
maximize the likelihood of identifying biologically relevant
conformers, simulations should be carried out in both polar and
apolar media but the MECs are not good representatives of the
biologically relevant conformations. Instead, molecular descrip-
tors such as Rgyr and PSA appear to provide advantages
compared with criteria based on energies and geometry (e.g.,
RMSD) for the selection or clustering of conformers. In fact,
median conformations from ensembles ranked by Rgyr or PSA
provided better estimates of the properties of conformations
adopted in the solid state or in solution, in particular, for
ensembles generated by MC and OMEGA.

■ EXPERIMENTAL SECTION

X-ray Crystal Structures. A dataset of crystal structures for
10 drugs and clinical candidates was assembled (Figure 1). It is
composed of five macrocyclic erythronolides (erythromycin,
clarithromycin, azithromycin, roxithromycin, and telithromy-
cin) and five HCV NS3 protease inhibitors, three of which are
macrocyclic (danoprevir, vaniprevir, and grazoprevir) and two
are non-macrocyclic drugs (asunaprevir and telaprevir). All
crystal structures of these 10 compounds were retrieved from the
PDB (www.rcsb.org/pdb)58 and CSD (www.ccdc.cam.ac.uk)59

using searches by common name, synonyms, and chemical
structure.
From the PDB, only crystal structures with a resolution <3 Å

were included in the dataset, except for one structure for each of
roxithromycin (1JZZ: 3.8 Å) and telithromycin (1P9X: 3.4 Å) in
which the structures showed interesting conformations (see
Results and Discussion). All structures found in the CSD for the
10 compounds were included in the dataset. The structures were
imported and analyzed with the Maestro tool from the
Schrödinger Suite.37 Hydrogen atoms were added according
to the ionization state at pH 7.4 using the Epik tool.60 No further
structural refinements were carried out.

Figure 11. Radius of gyration (Rgyr), polar surface area (PSA), and
intramolecular hydrogen bonding (IMHB) for roxithromycin. The
descriptors have been calculated for the conformations observed in the
three crystal structures of roxithromycin, for the conformations
adopted in apolar (CDCl3) and polar (D2O) solutions, as determined
by NMR spectroscopy, and for the median conformations in the
ensembles obtained by conformational sampling (CS) using MC
(green), MOE (pink), and OMEGA (yellow) in apolar and polar
environments. The population (in %) of each solution conformation, as
determined by NMR spectroscopy, is stated adjacent to the
corresponding descriptor values. The most populated conformations
are indicated in red.
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■ CONFORMATIONAL SAMPLING

The simplified molecular-input line-entry system (SMILES)
codes of the 10 compounds were obtained from the PubChem
database.61 Stereochemistry in the SMILES was carefully cross-
checked with both the DrugBank database62 and the U.S. Food
and Drug Administration label. Initial conformations were
generated by importing the SMILES codes into the Maestro
module of the Schrödinger Suite.37 Chirality and protonation
states were verified and corrected with Epik tool.60 The resulting
conformations were used as input for conformational sampling
with MOE-LowModeMD18 and MC (MacroModel−Large
Scale Low Mode sampling),19 whereas the SMILES codes
where used directly as input for OMEGA.26 Generation of
starting conformations from SMILES codes in this manner is
rapid and provides consistent input across structures and search
methods.
For sampling of macrocyclic molecules, OMEGA uses a

method for conformational sampling that relies on distance
geometry with constraints.26 Initially, a molecule is decomposed
into its constituent atoms and the heavy atoms and chiral
hydrogen atoms are placed at random coordinates in a Cartesian
space. This arrangement is minimized under distance con-
straints using eq 1. In eq 1, di,j represents interatomic distances
and ci,j represents lower or upper distance constraints from a
force field (OMEGA uses MMFF94s)32,63 whereas Vk

represents tetrahedral constraints arising from planarity or
atom or bond chirality.

∑ ∑ ν= − +f d c( )
i j

ij ij
k

k
,

2

(1)

If all constraints are met, a rough candidate conformation for the
molecule is formed, which is then refined against MMFF94. The
product of the refinement is a candidate conformation for the
molecule at a local minimum in the MMFF94 potential energy
surface. Candidate conformations are retained if they are unique
in their geometry. At the conclusion of the calculation (when a
preset number of DG attempts have been completed), the
resulting ensemble of conformations is ranked by energy. High-
energy conformations and duplicates, the latter based on heavy
atom RMSD, are removed. More extensive details on the
OMEGA algorithm are to be published soon.26

For each of the three methods, two different environments,
vacuum (ε = 1) and aqueous (ε = 80.0) environment, were used.
Either the Born solvation model64,65 (MOE and MC) or the
Sheffield solvation model66 (OMEGA) were used to mimic an
aqueous environment. The following settings were used
throughout the study: energy window (ewindow, 25 kcal/
mol), elimination of duplicate conformer threshold (RMSD,
0.75 Å), the total number of iterations (10 000 steps), and force
field (MMFF94s). In MOE, the rejection limit was increased
from the default 100−500; the search is deemed complete when
this number of consecutive search iterations fails to identify a
new conformation. For all search methods, the MM iteration
limit, the maximum number of energy minimization steps
performed during the minimization of each conformer, was set
to 10 000 steps. Conformations obtained from sampling with all
threemethods were energy-minimized using the samemolecular
mechanics force field, i.e., MMFF94s.32

■ EXTENSIVE MOLECULAR DYNAMICS (EMD)
SIMULATIONS

The same initial conformers were used for conformational
sampling (cf. above) for the six compounds selected for eMD
simulations, as described in detail elsewhere.40 TIP3P water
molecules (∼1500 water molecules) were added with a 10 Å
buffering distance between the edges of the truncated
octahedron box. For chloroform (ε = 4.8, frcmod.chcl3), a 30
Å buffering distance was used (approximately 1200−2000
solvent molecules in the box). MD production was run for 20 ns
using a time step of 2 fs, and coordinates were saved every 10 ps
(in total 2000 snapshots). Initial geometry optimization and
MD simulations were performed using Gaussian 0967 and
Amber 14 software,68 respectively.

■ COMPARISON OF CONFORMERS
To compare the conformations generated from different
programs to the experimentally observed conformations from
X-ray crystal structures and the ensembles determined by NMR
spectroscopy, the RMSDmetric was used as implemented in the
OpenEye Toolkit (rmsd.py; root-mean-square deviation of all
nonhydrogen atom positions).69

Structural properties such as the number of intramolecular
hydrogen bonds (IMHBs) and polar surface area (PSA) were
calculated using the Schrödinger software.37,38 Conformation-
dependent radius of gyration (Rgyr) for all conformations was
calculated using the MOE software.34

■ NMR SPECTROSCOPY
NMR spectra were recorded on a 900MHz BRUKERAvance III
HDNMR spectrometer equipped with a TCI cryogenic probe at
25 °C for D2O andCDCl3 solutions. Assignments were based on
NOESY/TOCSY walks, whereas NOESY buildups were
acquired with seven mixing times varying between 100 and
700 ms. Spectra were acquired with 16 scans, 4096 points in the
direct whereas 512 points in the indirect dimension, with d1 as
2.5 s and without solvent suppression. Interproton distances
were calculated according to the initial rate approximation from
the linear part of the buildups (r2 > 0.98) using the germinal
methylene protons as an internal distance reference (1.78 Å).
The nuclear Overhauser effect (NOE) peak intensities were
calculated using normalization of both cross peaks and diagonal
peaks according to ([cross peak1 × cross peak2]/[diagonal
peak1 × diagonal peak2])0.5. Initial NOE buildup rates were
converted into distances using the equation rij = rref(σref/σij)

(1/6),
where rij is the distance between protons i and j in angstrom and
σij is the normalized intensity obtained from NOESY experi-
ments. Further information is provided in the Supporting
Information.

■ NAMFIS ANALYSIS
Unrestrained conformational searches were performed using the
Monte Carlo algorithm with intermediate torsion sampling, 50
000 Monte Carlo steps, and RMSD cutoff set to 2.0 Å, followed
by molecular mechanics energy minimization with the software
Macromodel (v.9.1), as implemented in the Schrödinger
package. For energy minimization, the Polak−Ribiere type
conjugate gradient algorithm was used with 5000 maximum
iteration steps. All conformations within 42 kJ/mol from the
global minimum were saved. Conformational searches were
done using the OPLS-2005 and the Amber* force field, with
water and chloroform solvationmodels. The ensembles from the
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conformational searches using the different force fields were
combined. Redundant conformations were eliminated by
comparison of heavy atom coordinates applying an RMSD
cutoff of 1−1.5 Å, giving input ensembles encompassing 62
versus 38 conformations, in water and chloroform, respectively,
that were used in NAMFIS.
Solution ensembles were determined using the NAMFIS

algorithm43,70 by fitting the experimentally measured distances
and coupling constants to those back-calculated for the
computationally predicted conformations. Distances involving
methylene protons were treated as d = (((d1

−6) + (d2
−6))/2)−1/6

and those involving methyl protons according to d = (((d1
−6) +

(d2
−6) + (d3

−6))/3)−1/6. The validity of the output ensembles
was confirmed using standard methods, that is, through
evaluation of the reliability of the conformational restraints by
the addition of 10% random noise to the experimental data, by
the random removal of individual restraints, and by comparison
of the experimentally observed and back-calculated distances.
Since the orientations of oxime side chain and the sugars of
roxithromycin are not equally well described by the
experimental data as the macrocyclic core, and are less well
predicted by the theoretical conformational search, only the
NMRdata of themacrocycle was included in the initial NAMFIS
analyses (for details, see the Supporting Information). The
goodness of the fit of the experimental to theoretical data was
expressed as the sum of the square differences (SSDs) between
the measured and modeled variables (a lower SSD reflects a
better fit), as previously described by Snyder et al.70 Subsequent
qualitative analysis of the NOEs observed between the protons
of the macrocycle and those of the oxime chain as well as of the
saccharides corroborated the conclusions that were drawn from
the NAMFIS analyses. Further information about the NAMFIS
analysis is provided in the Supporting Information.
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