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Abstract

Open modification searching (OMS) is a powerful search strategy that identifies peptides carrying 

any type of modification by allowing a modified spectrum to match against its unmodified variant 

by using a very wide precursor mass window. A drawback of this strategy, however, is that it leads 

to a large increase in search time. Although performing an open search can be done using existing 

spectral library search engines by simply setting a wide precursor mass window, none of these 

tools have been optimized for OMS, leading to excessive runtimes and suboptimal identification 

results.

Here we present the ANN-SoLo tool for fast and accurate open spectral library searching. ANN-

SoLo uses approximate nearest neighbor indexing to speed up OMS by selecting only a limited 

number of the most relevant library spectra to compare to an unknown query spectrum. This 

approach is combined with a cascade search strategy to maximize the number of identified 

unmodified and modified spectra while strictly controlling the false discovery rate, as well as a 

shifted dot product score to sensitively match modified spectra to their unmodified counterparts.

ANN-SoLo achieves state-of-the-art performance in terms of speed and the number of 

identifications. On a previously published human cell line data set, ANN-SoLo confidently 

identifies more spectra than SpectraST or MSFragger and achieves a speedup of an order of 

magnitude compared to SpectraST.

ANN-SoLo is implemented in Python and C++. It is freely available under the Apache 2.0 license 

at https://github.com/bittremieux/ANN-SoLo.
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1 Introduction

Although mass spectrometry (MS) is a very powerful technique to characterize proteins in 

complex biological samples, a significant portion of the thousands of spectra that are 

typically generated during a shotgun proteomics experiment cannot be confidently 

identified. In many cases a spectrum cannot be identified because it was generated by a 

peptide that contains one or more post-translational modifications (PTMs) [15]. If a 

particular modification has not been specified in the search settings, then spectra 

corresponding to peptides harboring this modification will be assigned an incorrect amino 

acid sequence. Because such false hits tend to receive higher scores than other false positive 

matches, these missed modifications have a detrimental effect on the identification 

performance [8].

On the one hand, protein modifications can be an artifact of the MS process because 

sometimes they are introduced during sample preparation [7]. A common example is 

alkylation by using iodoacetamide, which leads to the attachment of a carbamidomethyl 

group to cysteine residues, preventing the denatured proteins from reforming disulfide 

bridges. On the other hand, naturally occurring PTMs can be very interesting from a 

biological perspective as they often play important roles in many cellular processes [65].

Unfortunately, although MS techniques have become quite mature, comprehensive 

identification of modified proteins in complex samples remains challenging [1, 39]. In the 

traditional sequence database searching paradigm, all modifications of interest have to be 

explicitly specified in the search settings to correctly identify the spectra that include one or 

more of these modifications. This requirement leads to a significant search space increase 

because, for each peptide, both its unmodified version and all possible modified variants 

need to be considered, which results in an increased computational load and reduced 

sensitivity. Consequently, only a limited selection of the most prevalent modifications are 

commonly considered.

Alternatively, open modification searching (OMS) is a powerful strategy to identify modified 

spectra. Whereas traditionally only candidates that fall within a limited mass window around 

the query spectrum’s precursor mass are considered as a potential match, during OMS a very 

wide precursor mass window exceeding the delta mass induced by a PTM is used. This 

approach makes it possible to compare a modified query spectrum to its unmodified variant 

[2, 48]. As such, during an open search all possible protein modifications for which the mass 

difference falls within the precursor mass window, which is typically on the order of several 

hundreds of Dalton, are implicitly considered, including PTMs, amino acid substitutions, 

cleavage variants, etc. Afterwards, the presence and type of each modification can be derived 

from the difference between the observed precursor mass and the mass of the unmodified 

peptide.

Although OMS makes it possible to identify a wide range of spectra containing diverse 

modifications, the use of a very wide precursor mass window leads to a drastically increased 

search space. Consequently, compared to a standard search, the computational cost for an 

open search is orders of magnitude higher. A popular historical approach to keep OMS 
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computationally feasible has been to use spectral libraries [3, 11, 34, 43, 67]. Because 

spectral libraries only contain previously observed peptides, the search space was often 

substantially restricted in comparison to sequence database searching strategies that consider 

all theoretically possible peptides [31]. On the other hand, with the increasing availability of 

high quality data sets in public data repositories nowadays [53], spectral libraries have 

grown substantially (figure 1). Indeed, for some well-studied organisms the spectral library 

size can rival the size of the sequence database. Consequently, scalable solutions for open 

spectral library searching are necessary to fully exploit the current wealth of information 

contained in large spectral libraries.

Here we present the Approximate Nearest Neighbor Spectral Library (ANN-SoLo) search 

tool, which has been optimized for fast and accurate open modification spectral library 

searching. Using a cascade search strategy [38] ANN-SoLo first identifies any unmodified 

peptides, followed by an open search to identify the modified peptides. During this open 

search ANN-SoLo uses an approximate nearest neighbor (ANN) index to efficiently find a 

limited set of the most similar library spectra for each query spectrum. During the open 

search the shifted dot product is used to accurately match modified query spectra to their 

unmodified library counterpart by taking into account peak shifts caused by a modification 

[11, 34].

Although some approaches have previously been proposed to speed up spectral library 

searching, including parallelizing spectral matching using graphics processing units (GPUs) 

[6] and candidate filtering based on a shared peak count [64], these approaches did not deal 

with the specific challenges posed by OMS. In contrast, the Liberator and MzMod software 

tools are based on the Apache Spark framework for distributed data processing to massively 

parallelize open spectral library searching [34]. Although these big data tools make it 

possible to process large amounts of spectral data, they require a specialized cluster or cloud 

infrastructure.

Additionally, several software tools have recently been developed to speed up OMS when 

using a sequence database instead of a spectral library. MSFragger uses an index of 

theoretical fragments to quickly compute the number of shared fragment ions between a 

query spectrum and theoretical spectra [40]. SpecOMS uses an FP-tree-like data structure 

[9], called SpecTrees, to encode the number of shared masses between all spectra [17]. 

Sequence tags are a popular approach to restrict the search space as well. PIPI uses sequence 

tags of length 3 to perform a fuzzy tag-based filtering [68]. TagGraph uses an FM-index to 

filter candidates based on substrings of de novo derived sequences [20]. Finally, Open-pFind 

combines tag-based filtering to speed up open searches with a subsequent standard search 

including highly abundant variable modifications in a two-pass strategy [14].

Generally MS/MS spectrum identification can be considered a nearest neighbor task: for a 

given query spectrum the most similar database spectrum, i.e. its nearest neighbor, be it a 

real spectrum during spectral library searching or a theoretical spectrum during sequence 

database searching, has to be retrieved. Consequently these nearest neighbor queries can be 

sped up by making use of index structures. For example, a multiple vantage point tree [54] 
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and locality-sensitive hashing (LSH) [22] have previously been proposed to speed up 

sequence database searching.

These various tools that have recently been developed for efficient OMS on the one hand 

and the application of multidimensional indexing techniques to speed up spectral 

identification on the other hand have so far exclusively focused on sequence database 

searching. Here, we show how ANN indexing can be used to speed up open spectral library 

searching. Our ANN-SoLo tool is able to efficiently search very large spectral libraries and 

sensitively identify spectra containing any modification, outperforming other spectral library 

search engines in both speed and the number of identified spectra.

ANN-SoLo is implemented in Python and C++. It is freely available as open source under 

the permissive Apache 2.0 license at https://github.com/bittremieux/ANN-SoLo.

2 Methods

2.1 Cascade spectral library searching

Spectral library searching works by comparing experimental, unknown query spectra to 

previously observed, known spectra in the spectral library. To identify a query spectrum, its 

best matching library spectrum is found and is assigned the corresponding peptide sequence 

[31, 57]. Finding the closest matching library spectrum for a given query spectrum can be 

divided into two steps: (i) a candidate selection step during which a subset of spectra in the 

spectral library are selected as candidate matches, and (ii) a candidate ranking step during 

which, for each candidate spectrum, a spectrum–spectrum match (SSM) score is calculated 

to quantify the similarity between the two spectra. Subsequently the candidate match with 

the highest score is used as the identification for the query spectrum.

To perform an open search ANN-SoLo employs a cascade search strategy consisting of two 

levels, which allows it to maximize the number of identified spectra while strictly 

controlling the false discovery rate (FDR) [38]. In the first level of the cascade search a 

small precursor mass window is used to identify any unmodified spectra. The resulting 

SSMs are filtered on FDR, and the confident SSMs below the FDR threshold are retained. 

Next, the SSMs exceeding the FDR threshold are passed on to the second level of the 

cascade search, in which a wide precursor mass window is used to identify modified spectra. 

The resulting SSMs are filtered on FDR as well and combined with the accepted SSMs from 

the first level to form the final set of spectrum identifications.

Below, we describe how ANN-SoLo addresses the candidate selection and candidate ranking 

steps during both levels of the cascade open search, and describe how it achieves both speed 

and accuracy.

2.1.1 Spectrum preprocessing—Prior to spectral library searching both the query 

spectra and library spectra are similarly preprocessed to represent the spectra in a uniform 

way and discard low-quality spectra [55]. Peaks corresponding to the precursor ion and 

noise peaks with an intensity below 1 % of the intensity of the most intense peak are 

removed and, if applicable, the spectrum is further restricted to its 50 most intense peaks 
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[42]. After peak removal, any spectrum that contains fewer than 10 peaks remaining or with 

a mass range less than 250 Da is discarded. Finally, peak intensities are rank transformed to 

de-emphasize overly dominant peaks [43].

2.1.2 Candidate selection—Typically, the candidate selection step consists of a 

precursor mass filter, i.e. only the library spectra whose precursor mass falls within a narrow 

window around the query spectrum’s precursor mass are considered as candidates. 

Especially for modern high-resolution instruments, which can report masses with a 

(sub-)ppm accuracy, the number of considered candidate spectra can be very small. 

However, when a wider precursor mass window is used, as in the case of open searches, the 

number of candidates that are selected can increase by several orders of magnitude. In this 

case the precursor mass window will not be an effective filter, and the search time will 

increase accordingly.

During the first level of its cascade search ANN-SoLo uses a small precursor mass window, 

and the search proceeds in the standard fashion. In contrast, during the second level of its 

cascade search ANN-SoLo uses an ANN index consisting of an ensemble of random 

projection trees [5] to efficiently filter the library spectra based on their similarity to the 

query spectra.

To construct the ANN index each library spectrum is vectorized to represent it as a point in a 

multidimensional space. A spectrum is converted into a sparse vector by dividing it into 

mass bins of 1 Da and assigning its peak intensities to their corresponding mass bins, after 

which the vector is normalized to have unit length. In case multiple peaks in the mass 

spectrum are assigned to the same mass bin their intensities are summed. For low mass 

accuracy spectra, this procedure will occasionally incorrectly assign peaks to neighboring 

bins. However, the binning procedure is only applied during candidate selection, which is 

robust to mismatched bin assignments because a sufficiently high number of candidates are 

retrieved from the ANN index. Next, the vectors for all library spectra are used to build a 

binary index tree (figure 2). This is done by recursively partitioning the data space into two 

subspaces using random split hyperplanes. Concretely, two points are randomly sampled to 

construct a split hyperplane equidistant from both points. This hyperplane divides the data 

points into two subspaces based on their position relative to it (figure 2a). Next, for each of 

these two subspaces the same procedure can be repeated: by randomly drawing a new split 

hyperplane into the data subspace it can be further partitioned into two smaller subspaces. 

This process is recursively repeated to construct a binary index tree (figures 2b and 2c).

This binary index tree can be used to efficiently find the nearest neighbor for a given query 

point. Instead of having to compare the query point to all data points the index tree can be 

traversed to find the data subspace to which the query point would belong and which will 

likely contain its nearest neighbor (figures 2d and 2e). In this fashion a nearest neighbor 

query can be performed in logarithmic time in terms of the number of data points, whereas it 

would require linear time in terms of the number of data points to compare the query point 

against all data points in a brute-force fashion.
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Unfortunately, the nearest neighbor for the query point might not be located in the data 

subspace that has been selected, but instead it might be present in an adjacent data subspace. 

In this case it is not possible to directly identify the actual nearest neighbor and only an 

approximate result will be achieved. To reduce the risk of missing the actual nearest 

neighbor multiple complementary index trees are used. Because random split hyperplanes 

are used to divide the data space while constructing the initial tree, an alternative index tree 

can be created by making use of different split hyperplanes. The new random split 

hyperplanes cause the data space to be subdivided differently, leading to a different binary 

index tree. As a result, the risk of missing an actual nearest neighbor is minimized by using 

both index trees simultaneously to answer a query. During querying the data subspaces to 

which a query point belongs are identified for each tree individually, after which the data 

points in both of these subspaces are combined to find the actual nearest neighbor. Finally, 

additional index trees can be constructed in a similar fashion to form an ensemble of index 

trees, with each tree providing a complementary view on the data. Through the combination 

of this ensemble of index trees the risk of missing the actual nearest neighbor is further 

decreased (figure 2f). As such the number of trees in the ensemble is a hyperparameter that 

can be used to configure a trade-off between accuracy and speed, as using more trees 

reduces the risk of missing the actual nearest neighbor at the expense of some increased 

computational requirements.

2.1.3 Candidate ranking—During the candidate ranking step the similarities between 

the query spectrum and all library spectra that have been selected in the previous step are 

evaluated to determine the highest-scoring SSM. Even though the ANN index already 

retrieves the most likely candidate spectra based on their similarity, a subsequent ranking 

step remains necessary. This is because the vectors employed for ANN indexing only 

represent the spectra at a coarse, 1 Da bin granularity. In contrast, for high-resolution mass 

spectra a more accurate score can be computed using a low fragment mass tolerance to 

obtain the optimal match. Additionally, during the open search the shifted dot product is 

used as scoring method to take PTMs into account and accurately match modified spectra to 

their unmodified variant, as described next.

The dot product is a well-established scoring method to rank SSMs. An important advantage 

of the dot product is that, despite its simplicity, it is able to accurately capture the similarity 

between two mass spectra [60]. Additionally, it can be computed very efficiently as it has a 

time complexity of O (n), where n is the total number of peaks in the two spectra being 

compared. Based on these advantageous properties the dot product has been used by several 

spectral library search engines [25, 42]. Similarly, ANN-SoLo uses the dot product to 

identify unmodified spectra during the first level of its cascade search.

However, because the dot product only considers directly matching peaks with identical 

masses (while taking the fragment mass tolerance into account) it is less suitable to identify 

modified spectra. Instead, during the second level of its cascade search ANN-SoLo uses a 

variation on the dot product, called the shifted dot product [11, 34]. This shifted dot product 

also considers peaks that are shifted according to the precursor mass difference between the 

two spectra that are being matched to accurately identify modified spectra (figure 3). We 
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here briefly describe an algorithm to compute the shifted dot product in O (n log n) time 

complexity [34].

First, the precursor mass difference between the two spectra is calculated and normalized 

according to the precursor charge. Next, all potential peak pairs, with and without a mass 

shift (taking into account different charges), can be determined in a linear pass through both 

spectra. Each peak pair is scored by multiplying the intensities of both peaks, as in the 

standard dot product. Unshifted peak matches and shifted peak matches that include an 

annotated peak are scored fully while shifted peak matches without an annotation are 

slightly penalized to minimize the influence of potential spurious matches. Next, to calculate 

the ˙nal shifted dot product score the peak matches are sorted on their intensity product, after 

which they are summed in a greedy fashion while avoiding to match a single peak in either 

of the two spectra more than once. Because peak matches are selected individually, this 

heuristic approach to calculate the shifted dot product does not explicitly try to ensure that a 

consecutive range of fragment peaks along the peptide sequence are consistently shifted. 

This approach allows us to efficiently select all peak matches using only a single 

simultaneous pass through both spectra, whereas a full spectrum alignment would require O 
(n 2) time complexity in the number of peaks.

2.2 FDR calculation

False discovery rates are calculated in two phases after both levels of the cascade search 

using the target–decoy strategy [23]. Specifically, FDRs are estimated based on a 

concatenated spectral library containing both target and decoy spectra (see section 2.3) using 

the number of decoys divided by the number of target SSMs.

During the first level of the cascade search the SSMs are directly filtered on the FDR. In 

contrast, because the score distributions of peptides with different modifications can exhibit 

distinct properties, during the second level of the cascade search the SSMs are filtered using 

the subgroup FDR strategy [26, 27]. To combine SSMs with identical modifications they are 

grouped based on their charge-normalized precursor mass difference between the query 

spectra and library spectra. The SSMs are split into subgroups by iteratively selecting the 

SSM with the highest match score alongside all other remaining SSMs whose precursor 

mass difference falls within a 0.1 Da range. Because FDR estimates become progressively 

less reliable if only a limited number of observations are considered FDR filtering is only 

done for subgroups that contain at least 20 SSMs. Subgroups that contain fewer SSMs are 

combined into a residual group instead whose FDR is jointly calculated in the end.

2.3 Data sets

The first data set we used was generated in the context of the 2012 study by the Proteome 

Informatics Research Group of the Association of Biomolecular Resource Facilities. The 

goal of this study was to assess the community’s ability to analyze modified peptides [12]. 

Towards this end, various participating researchers were asked to identify an unknown data 

set, after which their proficiency in handling modified peptides was evaluated. The provided 

data set consisted of a mixture of synthetic peptides with biologically occurring 

modifications combined with a yeast whole cell lysate as background, and the spectra were 
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measured using a TripleTOF instrument. For full details on the sample preparation and 

acquisition see the original publication by Chalkley et al. [12]. This high quality data set has 

been recommended as a reference data set for the evaluation of identification algorithms 

[28]. All data was downloaded from the MassIVE data repository (accession 

MSV000078492).

To search the iPRG2012 data set the human HCD spectral library compiled by NIST 

(version 2016/09/12) and a TripleTOF yeast spectral library from Selevsek et al. [56] were 

used. First, matches to decoy proteins were removed from the yeast spectral library, after 

which both spectral libraries were concatenated using SpectraST [42] while removing 

duplicates by retaining only the best replicate spectrum for each individual peptide ion. 

Next, decoy spectra were added in a 1:1 ratio using the shuffle-and-reposition method [41], 

resulting in a single large spectral library file containing 1 188 168 spectra.

The second data set consists of spectra measured from the HEK293 human cell line [15]. As 

per Chick et al. [15], the HEK293 cells were first lysed, trypsinized, and separated into 24 

fractions, after which high-resolution and high-mass accuracy MS/MS spectra were obtained 

on an LTQ Orbitrap Elite mass spectrometer. For full details on the sample preparation and 

acquisition see the original publication by Chick et al. [15]. Raw files were downloaded 

from PRIDE [63] (project PXD001468) and converted to MGF files using msconvert [13].

To search the HEK293 data set the MassIVE-KB peptide spectral library (version 

2017/11/27) was used. This is a repository-wide human higher-energy collisional 

dissociation spectral library derived from over 30 TB of human MS/MS proteomics data. 

The original spectral library contained 2 148 752 MS/MS spectra, from which duplicates 

were removed using SpectraST [42] by retaining only the best replicate spectrum for each 

individual peptide ion, resulting in a spectral library containing 1 504 951 spectra. Next, 

decoy spectra were added in a 1:1 ratio using the shuffle-and-reposition method [41], 

resulting in final spectral library containing 3 009 902 spectra. To the best of our knowledge 

this is the largest spectral library reported in the literature to date.

All MS/MS data, spectral libraries, and identification results have been deposited to the 

ProteomeXchange Consortium [19] via the PRIDE partner repository [63] with the data set 

identifier PXD009861.

2.4 Search settings

2.4.1 ANN-SoLo—The spectrum preprocessing settings are as described in section 2.1.1. 

For the iPRG2012 data set a precursor mass window of 20 ppm was used for the standard 

search and 20 ppm followed by 300 Da for the cascade open searches. Additionally, a 

fragment mass tolerance of 0.02 Da was used in all cases. For the HEK293 data set a 

precursor mass window of 5 ppm was used for the standard searches and a precursor mass 

window of 5 ppm followed by 500 Da was used for the cascade open searches. For all 

HEK293 searches a fragment mass tolerance of 0.02 Da was used.

Two major hyperparameters influence the performance of the ANN index: the number of 

trees in the index and the number of nodes to inspect per query. We discuss the effect of 
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these hyperparameters in detail in section 3.2. For the iPRG2012 data set we used ANN 

indices consisting of 100 to 1000 trees, while the number of nodes inspected during 

querying was varied between 20 000 and 400 000. To analyze the HEK293 data set an ANN 

index consisting of 1000 trees was used and 200 000 nodes were inspected during searching.

2.4.2 SpectraST—We compared the performance of ANN-SoLo against the popular 

spectral library search engine SpectraST [42].

We used SpectraST version 5.0 as part of the Trans-Proteomic Pipeline version 5.1.0 [18]. 

We tried to specify the SpectraST search settings for processing the HEK293 data set as 

closely as possible to the ANN-SoLo settings to ensure a fair comparison. Spectra were 

preprocessed to have a minimum mass range of 250 Da and only the 50 most intense peaks 

were retained. Peak-to-peak matching and rank-based scoring was used to evaluate SSMs. 

Library caching was enabled, which is an essential requirement in order to be able to 

complete the open searches. Similar to the ANN-SoLo settings a precursor mass window of 

500 Da was used for the open searches. In contrast, for the standard searches a precursor 

mass window of 0.02 Da was used as SpectraST does not support specification of tolerances 

in ppm units. A fragment mass tolerance of 0.02 Da was used in all cases. FDRs were 

estimated in a post-processing step using the subgroup FDR strategy described in section 

2.2.

2.4.3 MSFragger—We also compared the performance of ANN-SoLo against the recent 

state-of-the-art OMS sequence database search engine MSFragger [40].

We used MSFragger version 2017/11/06. Because MSFragger is a sequence database search 

engine, whereas ANN-SoLo and SpectraST are both spectral library search engines, settings 

for MSFragger necessarily slightly deviate. To search the HEK293 data set we used the 

neXtProt database of human protein sequences [29] (version 2018/01/17) complemented 

with common contaminants from the cRAP database (version 2012/01/01). Next, a 

concatenated target–decoy database was generated by appending an equal number of 

shuffled decoy sequences using Crux [45]. MSFragger was configured to consider tryptic 

peptides with up to 2 missed cleavages, and cysteine carbamidomethylation was specified as 

a static modification. A precursor mass window of 5 ppm was used for the standard 

searches, and a precursor mass window of 500 Da was used for the open searches. In both 

cases a fragment mass tolerance of 0.02 Da was used. FDRs were estimated in a post-

processing step using the subgroup FDR strategy described in section 2.2.

2.5 Code availability

The ANN-SoLo software is written in Python, making use of various open-source libraries 

such as NumPy [62], SciPy, and pandas [46] for scientific computing and Matplotlib [35], 

Seaborn [66], and Jupyter notebooks [52] for visualization purposes. Pyteomics [30] is used 

to support some mass spectrometry-specific functionality, such as reading input files and for 

FDR calculation.

ANN indexing during the candidate selection step is based on the open-source Approximate 

Nearest Neighbors Oh Yeah (Annoy) library [59], which was originally developed at Spotify 
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to support large-scale music recommendations. Dot product and shifted dot product 

calculation is implemented as an external C++ module to optimize the candidate ranking 

step for speed.

All code is released as open source under the permissive Apache 2.0 license and is available 

at https://github.com/bittremieux/ANN-SoLo. This web resource also includes detailed 

instructions on how to install and run ANN-SoLo, along with code notebooks to reproduce 

all analyses discussed next.

3 Results

3.1 Cascade open search maximally identifies unmodified and modified peptides

The advantage of an open search compared to a standard search is that modified peptides can 

be identified without having to specify the expected modifications. However, using a wide 

precursor mass window might lead to a loss in identifications of spectra that would have 

previously been identified during a standard search. Whereas a specific query spectrum 

might be identified differently with a slightly higher score when using a wide precursor mass 

window than when using a small precursor mass window, as the search space is significantly 

larger in the former case these scores cannot be directly compared. Instead, through its 

cascade search strategy ANN-SoLo maximally identifies both unmodified and modified 

peptides. Based on the iPRG2012 data set ANN-SoLo achieves a 25 % increase in 

identifications when performing an open search compared to a standard search (table 1), 

with the additional identifications corresponding to modified peptides.

Moreover, a further 21 % increase in identifications is achieved by using the shifted dot 

product instead of the standard dot product to score the spectral similarity of modified 

spectra (table 1). Because the shifted dot product explicitly accounts for modification-

induced shifts in the fragment ion peaks it more accurately identifies modified spectra. As a 

result, by employing a cascade open search strategy and using an optimized scoring function 

modified spectra can be accurately matched to the spectral library, resulting in a total 

increase in identifications of 45 % when comparing a standard search against an open search 

on the iPRG2012 data set.

These identifications can be compared to the consensus identifications compiled from the 

submissions to the iPRG2012 study [12], which can be considered as the “ground truth” 

(figure 4). ANN-SoLo agrees with the iPRG2012 identifications for 70 % of its spectrum 

assignments (4193 SSMs). Of the other ANN-SoLo identifications (1826 SSMs) that do not 

match the iPRG2012 consensus results 735 confidently identified SSMs conflict with the 

iPRG2012 consensus results and 1091 SSMs are uniquely contributed by ANN-SoLo. 

Although the conflicting SSMs are likely misidentified by ANN-SoLo, a third of those 

SSMs (275 SSMs) show a very high sequence similarity between the peptide assigned by 

ANN-SoLo and the iPRG2012 consensus identification (edit distance at most 3 amino acids; 

supplementary figure S1). Therefore, although these identifications do not directly match the 

iPRG2012 consensus results they can still be considered to be correct in the context of an 

open search as they correspond to peptide sequences that differ only by prefix or postfix 

amino acids, caused by missed cleavages, or single amino acid substitutions. Indeed, 450 
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peptides from the consensus identifications corresponding to 648 conflicting SSMs do not 

appear in the spectral library, preventing these spectra from being correctly identified by 

ANN-SoLo. Instead, ANN-SoLo provides a partially correct peptide assignment, which 

demonstrates the power of open modification searching to circumvent the inherently limited 

coverage of spectral libraries.

Additionally, the advantage of the cascade search strategy over a direct open search can be 

demonstrated based on the iPRG2012 consensus ground truth. During the first stage of the 

cascade search only unmodified peptides are identified. Because we expect those peptides to 

occur more often than their modified variants, additional statistical power is gained by using 

a small precursor mass window in the first search iteration [49]. In contrast, when a wide 

precursor mass window is used directly some of the SSMs that are otherwise accepted 

during the first cascade stage might obtain a higher-scoring match against another library 

spectrum that was originally not considered, indicating potential false positive identifications 

(supplementary figure S2). ANN-SoLo easily allows the user to perform a direct open search 

as well by setting a wide precursor mass window for the first cascade stage and disabling the 

second cascade stage. On the iPRG2012 data set 690 SSMs receive a conflicting 

identification between the cascade search and the direct open search. As before, many of 

these conflicting identifications correspond to peptides that only differ by a small number of 

amino acids (supplementary figure S3). We can verify whether the cascade search or the 

direct open search provided the correct identification by comparing their conflicting SSMs 

to the iPRG2012 consensus ground truth. For 121 SSMs of the 690 conflicting SSMs no 

identification was available in the consensus results, while neither of the two strategies 

identified the completely correct peptide for another 88 spectra. For the remaining 481 

spectra the cascade strategy identified the fully correct peptide sequences 89 % of the time 

(429 SSMs) compared to 11 % (52 SSMs) for the direct open search. For the non-

overlapping identifications between the cascade search and the direct open search, the 

cascade search correctly identifies more SSMs as well. While only 10 out of the 150 unique 

SSMs from the direct open search match the consensus results, for the cascade search 604 

out of 777 unique SSMs match the consensus results. These results clearly demonstrate the 

advantage of the cascade search strategy, which allows ANN-SoLo to maximally identify 

both unmodified and modified peptides.

3.2 Approximate nearest neighbor indexing speeds up open search

By using an ANN index only a limited number of the most relevant library spectra are 

retrieved during the candidate selection step, which speeds up the subsequent candidate 

ranking step because far fewer SSM scores have to be computed. Two major 

hyperparameters influence the performance of the ANN index: the number of trees in the 

index ensemble, which controls the index construction during an initialization phase, and the 

number of tree nodes to inspect when evaluating a query, which controls the performance 

during searching.

Using more trees has a positive effect on the accuracy of the ANN index by providing 

multiple complementary views on the data subspaces, as detailed previously. However, this 

improvement comes at the expense of an increased memory consumption as the size of the 
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ANN index scales linearly with the number of index trees. The number of tree nodes to 

inspect when evaluating a query can be used to configure the accuracy of the ANN index. 

Instead of only inspecting the subspace that exactly contains the query point the neighboring 

subspaces that are closest to the query point across all index trees can be inspected as well. 

This approach helps to avoid missing the nearest neighbors for the query point. Because the 

number of nodes to inspect is specified across all trees in the ANN index, this 

hyperparameter is to some extent related to the number of trees used.

These two hyperparameters constitute a trade-off between speed and accuracy, both when 

constructing the ANN index and at runtime. During querying, in general, using more trees 

and inspecting more nodes will lead to a more faithful approximation of the set of nearest 

neighbors retrieved from the ANN index, at the expense of an increase in computational 

requirements. Based on the iPRG2012 data set there is a clear difference in runtime between 

a standard search and the traditional brute-force approach of performing an open search on 

the one hand, and the advantage of using an ANN index for the open search on the other 

hand (figure 5 and supplementary table S1). As shown previously, the open search allows us 

to identify a significantly higher number of spectra, with the newly identified spectra 

corresponding to modified peptides. Unfortunately, this comes at the expense of a large 

increase in runtime, rendering OMS infeasible in practice. In contrast, by making use of an 

ANN index ANN-SoLo significantly decreases the time required to perform an open search, 

making OMS a viable strategy.

The ANN-SoLo speedup results from a reduction in the number of candidates that have to 

be evaluated during the candidate ranking step (supplementary figure S4). A standard search 

only takes a very short amount of time, with I/O costs for reading the experimental and 

library spectra forming the major bottleneck. In contrast, the massive increase in runtime of 

a brute-force open search is caused by the fact that when a very wide precursor mass 

window is used each query spectrum must be compared against a very large number of 

library spectra. Using an ANN index instead puts the focus on the candidate selection step to 

only retrieve the most relevant candidates. As a result, the relative proportion of work during 

the candidate ranking step significantly decreases. The ANN index also makes it possible to 

use complex scoring functions without incurring an overly excessive slowdown. Although 

the shifted dot product is computationally more expensive than the standard dot product, 

negative effects on the total runtime are limited due to the optimized candidate selection 

step.

The previous timing results do not include the time required to construct the ANN index 

during an initial preprocessing phase. Especially when a large number of index trees are 

used in combination with a large spectral library, building the ANN index may take a non-

negligible amount of time (supplementary table S1). However, this step only needs to 

happen once, after which the ANN index can be reused for many subsequent searches. 

Additionally, the space requirement of the ANN index is proportional to the size of the 

spectral library for which it is constructed and to the number of trees in the ANN ensemble. 

Although the ANN index will typically be larger than other commonly used indexing 

methods to assist MS/MS spectrum identification, such as a peptide index [21, 50] or a 

fragment ion index [40], because the ANN index contains a low-resolution vector 
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representation for each spectrum in the spectral library, in general the memory requirements 

remain feasible for modern workstations. For efficient memory management ANN-SoLo 

splits the ANN index into individual files for different charge states and only processes a 

single file at a time, while using memory mapping to efficiently read the index files.

3.3 ANN-SoLo achieves state-of-the-art performance in terms of speed and number of 
identifications

We compared ANN-SoLo to SpectraST, a commonly used spectral library search engine, 

and MSFragger, a recent sequence database search engine optimized for OMS, in terms of 

speed and the number of identifications on the HEK293 data set (table 2). When comparing 

both spectral library search engines, for a standard search SpectraST is clearly faster. This 

can be attributed to simple implementation differences, of which a notable factor is that 

ANN-SoLo is mainly implemented in the Python programming language while SpectraST is 

implemented in C++. As Python is an interpreted programming language it can be up to a 

hundred times slower than a compiled programming language such as C++, as benchmarks 

have shown for several general tasks. In contrast, for the open search ANN-SoLo is an order 

of magnitude faster than SpectraST, reducing the search time from almost a day on average 

to under two hours, despite the inherent programming language disadvantage. This result 

clearly shows the massive advantage of ANN indexing to speed up OMS. In contrast, 

MSFragger is clearly faster than ANN-SoLo for both the standard search and the open 

search, showing its high performance in terms of search speed in general and the efficiency 

of its fragment ion indexing to speed up OMS.

In terms of peptide identifications, all three search engines show a high degree of agreement 

as well as complementarity (figure 6). For the standard search, each search engine provides a 

unique set of identifications, confirming the complementarity of different search strategies 

[58]. However, because ANN-SoLo and SpectraST use the same spectral library and the dot 

product to score SSMs, their peptide identifications from the standard search overlap to a 

significant extent. Meanwhile MSFragger benefits from a more comprehensive search space: 

because it uses a sequence database containing the entire human proteome instead of the 

spectral library, MSFragger is able to provide additional peptide identifications. The 

difference in identified peptides is more pronounced for the open search. Again, we observe 

considerable agreement among all three search engines. Additionally, ANN-SoLo and 

SpectraST show their agreement by sharing a significant number of peptide identifications 

not found by MSFragger. Furthermore, both ANN-SoLo and MSFragger provide a similar 

number of unique peptide identifications. In contrast, because SpectraST is not optimized for 

identifying modified peptides its contribu tion in terms of unique peptide identifications is 

minimal. These results indicate the beneficial performance of ANN-SoLo against the current 

state of the art in spectral library searching as well as open modification searching.

Next, we have investigated which modifications frequently occur in this HEK293 human cell 

line data set based on the precursor mass differences for the identified SSMs (supplementary 

figure S5). By referencing the observed precursor mass differences against the Unimod 

public database of protein modifications [16] we can derive the chemical events that likely 

explain the observed mass differences (table 3). We can see that common modifications, 
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such as oxidation, frequently occur. Additionally, mass shifts corresponding to various 

amino acid substitutions can be frequently observed. These can potentially indicate single 

amino acid variants, but can likely also be explained by the incomplete coverage of the 

human proteome by our spectral library. Consequently, OMS can to some extent alleviate a 

longstanding criticism of spectral library searching in that it is only able to re-identify 

spectra that have been previously observed. Finally, the precise mapping of these mass 

differences to a known modification further substantiates the validity of these identifications 

and confirms that OMS can be used to accurately identify modified peptides.

4 Conclusions

Here we have introduced the ANN-SoLo spectral library search engine. ANN-SoLo uses 

ANN indexing to efficiently select the most likely candidate matches from a spectral library 

based on their spectral similarity with the query spectrum. As candidate retrieval using the 

ANN index only depends on spectral similarity without taking precursor mass information 

into account this strategy naturally lends itself to OMS. By using the ANN index the number 

of candidates that need to be evaluated for each query spectrum can be reduced by orders of 

magnitude, decreasing the time required to perform an open search accordingly. 

Furthermore, because the number of potential matches that needs to be evaluated is small 

this opens up the possibility to use more computationally expensive similarity measures to 

score SSMs without incurring an overly large performance hit. This is exemplified by our 

use of the shifted dot product, which allows us to accurately match a modified spectrum to 

its unmodified counterpart.

Thanks to these advances open spectral library searching has become a feasible strategy for 

the sensitive identification of modified peptides. We have demonstrated how an extremely 

large spectral library can be used to detect peptide modifications at a large scale, which can 

give important insights into their biological activity. Notably, we have used a repository-

wide spectral library which has been derived from a massive amount of publicly available 

spectral data. Using a spectral library of such size for open searching with a traditional 

search engine would drastically suffer from excessive runtimes. In contrast, ANN-SoLo 

makes it possible to perform such searches in a reasonable time frame.

The application of ANN indexing need not be restricted to open spectral library searching. 

Other identification tasks which exhibit a large search space, such as metaproteomics [47, 

51], or activities which consist of large-scale spectral processing tasks, such as spectral 

clustering [24, 31, 32, 61], can similarly benefit from ANN indexing to achieve substantial 

speedups.

Furthermore, although here we have used an ANN index consisting of an ensemble of 

random projection trees several alternative methods for ANN indexing exist. Some examples 

of ANN indexing techniques which have exhibited excellent empirical performance [5] 

include hierarchical navigable small world graphs [44], LSH [4], product quantization [37], 

etc. Additionally, non-metric space indexing can potentially be used to retrieve candidates 

based on the shifted dot product similarity directly [10]. An investigation into whether these 

techniques are suitable to speed up spectral library searching remains as future work. 
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Another promising approach to achieve further speedups is by making use of specialized 

hardware such as GPUs, both for candidate selection using an ANN index [36] as well as to 

evaluate SSMs [6].

Finally, the FDR procedure plays an important role in evaluating the identification results of 

an open search. As using a very wide precursor mass window leads to a large increase in 

search space the probability of having a high-scoring spurious match is considerably higher 

for an open search compared to a standard search, and such high-scoring decoy matches can 

have a large influence on the number of accepted identifications when using a global FDR 

strategy. In contrast, the subgroup FDR procedure calculates the FDR separately for spectra 

that have distinct modifications [27]. In practice we have observed that subgroups that 

unambiguously correspond to known modifications often contain very few decoy matches. 

In contrast, many decoy matches do not belong to a common subgroup as their precursor 

mass difference is randomly distributed across the range of the precursor mass window. 

Instead these decoy SSMs are combined in the residual group for FDR calculation, 

minimizing their negative influence on the accepted identifications. Caution has to be 

observed though as the actual FDR might be underestimated when too small groups are used 

[27]. It is a standing research question whether alternative approaches are needed for the 

accurate FDR estimation of open searches [20, 40].

The ANN-SoLo spectral library searching engine is freely available as open source. The 

source code and detailed instructions can be found at https://github.com/bittremieux/ANN-

SoLo.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The size of spectral libraries has increased as more high-quality data sets have become 

available in public data repositories. Whereas traditionally spectral libraries were explicitly 

curated and compiled, e.g. by the National Institute of Standards and Technology (NIST), a 

recent alternative has been to automatically generate large spectral libraries on a repository-

wide scale, e.g. based on all data sets in the PRoteomics Identifications (PRIDE) and 

MassIVE databases [32, 33].
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Figure 2: 
Approximate nearest neighbor indexing and searching using an ensemble of random split 

hyperplane index trees.
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Figure 3: 
The shifted dot product enables more accurate matching between an unmodified library 

spectrum (bottom) and a modified query spectrum (top) than the standard dot product. As 

can be derived from the precursor mass difference the peptide GLFIIDDKGILR has 

undergone acetylation (mass 42.010 565 Da) on the lysine at position 8. The standard dot 

product only takes directly matching peaks into account, while the shifted dot product can 

consider shifted peaks according to the precursor mass difference and charge, correctly 

assigning a high score to this match.
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Figure 4: 
Agreement in SSMs between ANN-SoLo and the iPRG2012 consensus results.
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Figure 5: 
Runtime versus number of identifications for various searches of the iPRG2012 data set. 

Timing results in this figure and in table 2 were obtained on a single-core Intel Xeon E5–

2680 v2 processor. An open search identifies a significantly higher number of spectra than a 

standard search at the expense of a large increase in runtime. The ANN-SoLo results show 

that the ANN index significantly reduces the time required for open searches. The multiple 

ANN-SoLo results correspond to different con˙gurations of the ANN index 

hyperparameters, with the settings that lie on the Pareto frontier shown. Even when 

maximizing accuracy to achieve the same number of identifications as the brute-force 

approach ANN-SoLo considerably speeds up the search. Specific values for the ANN 

hyperparameters and the corresponding identification performance are available in 

supplementary table S1.
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Figure 6: 
Comparison of identified peptides between ANN-SoLo, SpectraST, and MSFragger on the 

HEK293 data set. (A) Standard search. (B) Open search.
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Table 1:

The number of accepted SSMs at a 1 % FDR threshold for various searches of the iPRG2012 data set. The 

open search identifies all unmodified spectra previously identified in the standard search as well as additional 

modified spectra. A further increase in identifications is achieved by using the shifted dot product to score 

modified SSMs.

Search mode Similarity measure # SSMs

Standard search dot product 4141

Open search dot product 5160

Open search shifted dot product 6019
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Table 2:

Runtime and identification rates for ANN-SoLo, SpectraST, and MSFragger on the HEK293 data set. The 

runtime is reported in minutes and represents the average runtime over all 24 raw files. The identification rate 

is reported in terms of the number of accepted SSMs at 1 % FDR and the number of corresponding unique 

peptides and is reported for the entire 24-run data set.

Search engine Time (min) # SSMs # Peptides

Standard search

MSFragger 0.7 344 998 104 672

SpectraST 5.2 369 079 102 077

ANN-SoLo 24.0 352 938 105 870

Open search

MSFragger 34.7 526 027 126 364

SpectraST 1276.7 473 729 112 375

ANN-SoLo 108.5 647 469 153 605
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Table 3:

The most frequent precursor mass differences for the HEK293 data set and likely modifications sourced from 

Unimod corresponding to these precursor mass differences. The delta-mass column contains the median 

precursor mass difference of that SSM subgroup.

# SSMs Δm (Da) Potential modification

369 341 0.003

46 659 1.005 First isotopic peak

31473 15.998 Oxidation or hydroxylation / Ala → Ser substitution / Phe → Tyr substitution

14 088 2.006 Second isotopic peak

6 418 −0.991 Amidation

5 777 −17.023 Pyro-glu from Q / loss of ammonia

5 433 17.002 Replacement of proton with ammonium ion

4815 183.039 Aminoethylbenzenesulfonylation

4 777 27.998 Formylation / Ser → Asp substitution / Thr → Glu substitution

3 266 301.991 Unidentified modification [15, 40]
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