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Abstract

Parkinson’s disease (PD) is a common neurodegenerative disease characterized pathologically by 

the selective loss of dopaminergic neurons in the substantia nigra and the intracellular 

accumulation of α-synuclein in the Lewy bodies. While the pathogenic mechanisms of PD are 

poorly understood, many lines of evidence point to a role of altered autophagy and membrane 

trafficking in the development of the disease. Emerging studies show that connections between the 

deregulation of autophagy and synaptic vesicle (SV) trafficking may contribute to PD. Here we 

review the evidence that many PD related-genes have roles in both autophagy and SV trafficking 

and examine how deregulation of these pathways contributes to PD pathogenesis. This review also 

discusses recent studies aimed at uncovering the role of PD-linked genes in autophagy-lysosome 

function.
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Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease with more 

than 10 million people living with the disease worldwide. PD is characterized by the loss of 

dopaminergic neurons in the substantia nigra overtime, which leads to a variety of motor 

deficits including tremor and rigidity. While the majority of cases are sporadic, around 5% 

of cases result from a clear genetic cause [1], and recent advances in genome-wide analyses 

have uncovered a number of risk factors relevant for sporadic PD [2–7].
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A major pathological hallmark of PD is the accumulation of aggregated proteins, mainly α-

synuclein, in Lewy bodies. This neuropathological characteristic of PD has prompted great 

interest in understanding the relevance of protein homeostasis pathways in disease 

pathogenesis. Autophagy is a major degradation pathway for protein aggregates and plays a 

critical role in the maintenance of protein homeostasis. Important experimental evidence for 

a role of autophagy in PD and neurodegeneration came from observations in genetic animal 

models including autophagy-deficient animals. Multiple mouse models lacking a key 

autophagy gene (e.g., Atg5, Atg7, Ulk1/2) show neurodegeneration typically preceded by 

axonal dystrophy suggesting an essential role of autophagy in regulating axon homeostasis 

and preventing neurotoxicity [8–14]. Moreover, animals lacking the core autophagy gene, 

Atg7 in dopamine neurons display dystrophic neurites, progressive neuronal loss, locomotor 

deficits, and presynaptic accumulation of α-synuclein and LRRK2 [8]. Results from many 

genome-wide association studies have also linked autophagy and lysosomal function to PD 

pathogenesis and a recent meta-analysis has identified 17 additional risk loci, many of which 

are associated with the autophagy-lysosome pathway [2].

In addition to the autophagy-lysosomal pathway, insights from genetic studies of PD 

implicate dysfunction of synaptic vesicle (SV) cycling, another neuronal membrane 

trafficking pathway, as an underlying mechanism of disease development [15, 16]. While 

previously thought to be independent pathways, recent studies suggest autophagy and SV 

trafficking converge at presynaptic terminals [17–21]. Here, we review studies linking 

dysfunction in the autophagy-lysosomal pathway to PD and highlight how the intersection of 

SV trafficking and autophagy is emerging as an important mechanism of PD pathogenesis.

Disruption of SV endocytosis and macroautophagy by PD mutants

Recent studies suggest the importance of two neuronal membrane trafficking pathways, SV 

cycling and autophagy, in the development of PD [22–28]. Without proper maintenance of 

SV cycling, synapses may become dysfunctional over time, leading to a loss of neuronal 

communication and ultimately to neurodegeneration [29, 30]. A number of PD-linked 

proteins, including LRRK2, EndophilinA (EndoA), synaptojanin1 (synj1), dynamin, and 

auxilin, have well-defined roles in SV endocytosis (Figure 1) [31, 32] Intriguingly, more 

recent evidence suggests that many of these proteins have additional roles in autophagy. 

Together, these findings suggest that there is an extensive interaction between SV trafficking 

and autophagy at the presynapse. Alternatively, there may be neuronal synapse-specific 

autophagy machinery that is particularly compromised in PD. As the endocytic pathway also 

merges with autophagy [33], it remains unclear whether these proteins are modified in a way 

that dictates their function in one pathway or another or if these proteins directly control the 

intersection of SV cycling and autophagy. Here, we discuss these proteins and how their PD-

linked mutations lead to the deregulation of these two pathways.

LRRK2

Missense mutations of LRRK2 are linked to the most common inherited forms of PD [34, 

35]. LRRK2 protein is reportedly localized to synaptic compartments where it interacts with 

a variety of SV endocytic proteins and appears to regulate SV trafficking and distribution 
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[36–38]. Multiple studies have shown that the loss of LRRK2 or the expression of PD 

mutant G2019S slows the kinetics of SV endocytosis, but these same studies find differential 

effects of LRRK2 on SV exocytosis [36, 39–41]. Additionally, loss of function or 

hyperactivation of LRRK2 kinase function leads to deregulation of autophagy [42–46]. 

Multiple PD-linked pathogenic mutations of LRRK2 result in the hyperactivation of its 

kinase function, suggesting that chronic or improper phosphorylation of LRRK2 substrates 

may underlie PD development through alterations in SV cycling and autophagy [47].

Despite a variety of studies linking LRRK2 to autophagy, two questions remain unanswered. 

First, it remains unclear, whether LRRK2 positively or negatively regulates autophagy. 

Second, LRRK2 has been implicated in regulating multiple steps of autophagy, including 

initiation and termination, resulting in uncertainty as to the precise role of LRRK2 in 

autophagy. Major attempts to address the function of LRRK2 have utilized pharmacological 

inhibitors as well as manipulations that increase LRRK2 activity, namely the overexpression 

of LRRK2 G2019S, a PD-linked mutation that leads to hyperactivation of LRRK2 kinase 

activity. Adding to the complexity, alterations in the activity of LRRK2 in either direction 

result in similar outcomes. Specifically, both the silencing of LRRK2 through gene 

knockdown and the overexpression of LRRK2 hyperactive kinase mutant result in impaired 

macroautophagy-mediated degradation in cell lines [48, 49]. Identification of direct LRRK2 

targets that mediate autophagy regulation may provide insight into these unsolved issues.

EndophilinA

While associated with PD through its interaction LRRK2, EndoA (encoded by SH3GL2) 

was also recently identified as a novel risk factor for sporadic PD [2]. EndoA is a protein 

critical for clathrin-mediated endocytosis at nerve terminals [50, 51]. Studies performed in 

Drosophila have shown that EndoA phosphorylation is increased upon LRRK2 G2019S 

expression. Interestingly, both the LRRK2 kinase loss-of-function and gain-of-function 

impair synaptic endocytosis [36]. Subsequent studies have found that LRRK2-mediated 

phosphorylation of EndoA biases the membrane-deforming capabilities of this protein to 

form high curvature membranes that recruit ATG3 and thus initiate autophagosome 

formation. The loss of EndoA results in degeneration of the fly eye which, importantly, is 

not rescued by either non-phosphorylatable or phosphomimetic EndoA [20]. These results 

again suggest that a balance in EndoA phosphorylation state is necessary to maintain healthy 

cells. This balance would be altered by either the loss of LRRK2, resulting in non-

phosphorylated EndoA, or overactivation of LRRK2 kinase resulting in chronic 

phosphorylation of EndoA. This finding may help explain how alterations in the activity of 

LRRK2 in either direction disrupt dynamic phosphorylation, which may underlie defects in 

autophagy and other pathways. While these studies require future validation in mammalian 

systems, they strongly argue that a careful examination of the effect of chronic 

phosphorylation of verified LRRK2 substrates is necessary to understand the various roles of 

LRRK2 more completely.

Past studies of EndoA have shown that the triple knock-out of all three EndoA isoforms in 

mice results in neurodegeneration. RNA-SEQ analysis revealed changes in pathways 

including synaptic transmission and protein homeostasis. The most striking finding was an 
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increase in the ubiquitin-proteasome system (UPS) E3 ligase, FBXO32. Studies revealed a 

direct interaction of FBXO32 and EndoA on autophagosomes. EndoA triple knockout mice 

showed a reduction in LC3B, Atg5, and autophagosomes while the loss of FBXO32 in flies 

caused defective autophagosome formation, mimicking EndoA loss. The authors suggest 

that a disruption in either EndoA-autophagy or FBXO32-UPS overburdens the remaining 

pathway, disrupting protein homeostasis, and initiating neurodegeneration [19].

Synaptojanin1

Several studies have identified SYNJ1/PARK20 as an early onset Parkinsonian gene [52–

54]. As discussed above, synj1 is an EndoA binding partner that acts in SV endocytosis [55–

58]. One study examining changes in the proteome and phosphoproteome of brains from 

LRRK2 hyperactive kinase mutation R1441C expressing flies revealed major changes in SV 

proteins [59]. Further investigation into these alterations identified synj1 as a putative 

LRRK2 substrate [59]. Additional studies revealed a distinct phosphorylation site in synj1 

(T1205) in vitro using purified LRRK2 G2019S and showed this phosphosite is critical for 

the interaction of synj1 with EndoA [39]. Aside from its interaction with LRRK2, mutations 

in the SAC1 and 5′phosphatase domain of synj1 are also linked to hereditary early-onset PD 

[52–54, 60]. While synj1 is known for its role in SV endocytosis, recent studies have found 

an additional role of synj1 in autophagy. One PD linked mutation, R258Q, in the synj1 

SAC1 domain leads to an imbalance in lipid production that results in the accumulation of 

WIPI2/Atg18a, a PI(3)P/PI(3,5)P2 binding protein. This accumulation blocks 

autophagosome maturation at the Drosophila neuromuscular junction and in patient-derived 

neurons. Interestingly, SV endocytosis remains intact in synj1 RQ mutant flies [61]. 

However, other investigations in RQ knock-in mice have found a disruption in SV 

endocytosis, an accumulation of clathrin-coated intermediates, and dystrophic terminal 

changes [62]. Prior to this study, the role of the SAC1 domain in endocytosis was not well 

documented; though, it was known that the 5′phoshatase domain is necessary for SV 

endocytosis [56]. Whether there is a direct role of the SAC1 domain of synj1 in autophagy 

or if these deficiencies are due to an endocytic defect needs further study. Additionally, 

recent studies in zebrafish show that a 5′ phosphatase synj1 mutation, D732A, blocks 

autophagy in photoreceptor neurons [18]. Again, the contribution of disrupted endocytosis to 

the deregulation of autophagy remains uncertain in this system and requires further study to 

parse apart the exact role of synj1 in endocytosis versus autophagy. Nonetheless, these 

studies show synj1 PD-linked mutations disrupt autophagy and, together with the EndoA 

findings, raise an interesting potential of synapse-specific autophagy machinery that is 

disrupted in PD.

Dynamin

The dynamin family of GTPases is critical for membrane scission during endocytosis events 

including SV endocytosis [63]. Recent studies have shown genetic and biochemical 

interaction between dynamin isoforms and LRRK2. For example, LRRK2 has been shown 

to interact with dynamins 1–3 in HEK cells and, more specifically, with dynamin 1 in 

neuronal cultures [64]. Additionally, genetic variability within dynamin 3 was shown to 

modify the age of onset of PD in LRRK2 G2019S carriers [65]. While the role of the 

dynamin family in autophagy remains unclear, one recent study has shown dynamin 2 plays 
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a role in the activation of mTORC1 through the endocytosis of amino acids in HEK cells 

[66]. This again highlights the interconnectivity of endocytosis and autophagy and underpins 

the need for additional studies to understand the role of this important endocytic protein in 

neuronal autophagy and to determine the functional role of its interaction with LRRK2.

Rab GTPases

A recent landmark study has shown that multiple members of the Rab family of small 

GTPases are physiological substrates of LRRK2 [23]. As critical regulators of membrane 

trafficking, Rab GTPases are likely candidates to regulate neuronal autophagy and SV 

cycling [67–69]. Interestingly, mouse models harboring LRRK2 hyperactive kinase 

mutations display defects in synaptic and autophagic function, suggesting chronic 

phosphorylation of Rab GTPases may underlie these alterations [36, 42, 43]. Indeed, the Rab 

GTPases identified as LRRK2 substrates, Rab8, 10, and 12, all have putative roles in 

autophagy and endocytic recycling, particularly in the context of neurological disease 

conditions [22, 24–28, 67, 70–76]. Further, all three of these Rab proteins have been shown 

to associate with SVs through mass spectrometry analysis of the protein composition of 

purified SVs [69]. The exact role of these proteins in neurons and the effect of LRRK2-

mediated phosphorylation on their function remains a topic of great interest, which is 

expected to garner considerable insight into how alterations in neuronal trafficking pathways 

contribute to PD pathogenesis.

Auxilin

Aside from LRRK2 and its interactors, additional genes implicated in PD have roles in SV 

trafficking. Specifically, mutations in DNAJC6 have been associated with juvenile 

Parkinsonism and early-onset PD [54, 77, 78]. DNAJC6 encodes auxilin, a protein enriched 

in nerve terminals where it functions in clathrin uncoating during endocytosis [79–82]. The 

effects of its PD-linked mutations on synaptic endocytosis are currently unknown and 

warrant further study.

Parkin

Mutations in Parkin, an E3 ubiquitin ligase, result in juvenile-onset PD [83]. While the role 

of Parkin in mitophagy has been extensively studied [84, in this issue], the role of Parkin in 

regulating synaptic proteins remains under investigation Several synaptic proteins have been 

shown to be Parkin substrates and/or interactors [85–90]. In particular, Parkin has been 

shown to ubiquitinate EndoA, synj1, and dynamin, proteins critical in regulating SV 

endocytosis, as well as another PD-risk factor, Synaptotagmin XI (Syt11) that will be 

discussed later in this review [87, 90]. The effect of Parkin ubiquitination of these proteins is 

yet to be investigated; however, marked Parkin upregulation is seen in the brains of both 

EndoA triple KO mice and synj1-RQ knock-in mice [62, 90]. One potential explanation for 

this finding is that Parkin upregulation functions as a compensatory mechanism to 

counteract autophagy defects in these mutant mice [19]. Altogether, these findings 

suggesting a complex interplay between Parkin and SV endocytic proteins and further 

corroborate a link between SV endocytosis, autophagy, and PD pathogenesis.
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α-synuclein

Mutations or copy number variations of SNCA, the gene encoding α-synuclein, are 

associated with familial PD [91, 92] while the accumulation of α-synuclein in Lewy bodies 

is a pathological hallmark of sporadic and many genetically linked PD cases. While wild-

type α-synuclein is degraded by chaperone-mediated autophagy (CMA), mutated α-

synuclein impairs CMA [93]. Additionally, aggregates of α-synuclein impair 

autophagosome clearance during macroautophagy [94] and overexpression of α-synuclein 

inhibits Rab1a activation, which is necessary for macroautophagy [95]. However, 

knockdown of α-synuclein also disrupts macroautophagy [96], suggesting that α-synuclein 

plays a role in macroautophagy. As α-synuclein was shown to be associated with SVs, many 

studies have investigated its potential role in SV trafficking; however, the exact function of 

α-synuclein in SV cycling is still under debate. Many early studies pointed to a role of this 

protein in regulating SV exocytosis, while more recent studies also implicate α-synuclein in 

SV endocytosis; this point of controversy was recently reviewed elsewhere [97].

Summary

While the many proteins described here have strong connections to both autophagy and SV 

cycling, the majority of the studies performed have investigated the role of these proteins in 

the two pathways independently. While limited, recent evidence has just begun to reveal how 

SV proteins modulate autophagy activity at the presynapse [98]. A detailed investigation of 

the link between these two pathways will allow for a greater understanding of PD 

pathogenesis and facilitate the targeted correction of PD-related disruptions in neuronal 

membrane trafficking.

Lysosomal dysfunction in PD

Evidence suggests that many PD-linked genes may affect the degradative capacity of 

autophagy by impairing lysosomal function. In this section, we review recent investigations 

into the role of LRRK2 and other PD-linked genes in regulating lysosomal function. 

Although LRRK2 is expressed highly in astrocytes, few studies have investigated its role in 

these cells. Recently, Henry et al. showed the expression of various LRRK2 PD mutants 

(G2019S, R1441C, or Y1699C) results in enlarged lysosomes with decreased degradative 

capacity. Although the study is carried out in astrocytes, the high expression of LRRK2 in 

these cells has drawn interest in examining the role of LRRK2 in astrocytes. Ultrastructural 

analysis of cortical neurons transfected with LRRK2 G2019S show enlarged electron-dense 

structures reminiscent of swollen lysosomes suggesting a general role of LRRK2 in 

regulating lysosomal function across neural cell types [99]. Further mechanistic 

investigation into this finding suggested that G2019S expression reduces lysosomal pH and 

results in increased expression of another PD gene, ATP13A2. The application of LRRK2 

kinase inhibitors blocks this effect suggesting these results are kinase-dependent. 

Intriguingly, both G2019S and sporadic PD patient brains show decreased LAMP2 intensity 

in the prefrontal cortex while only G2019S patients show enhanced ATP13A2 expression 

[100]. ATP13A2 is a lysosomal ATPase linked to a juvenile form of Parkinsonism with 

dementia [101]. Expression of mutant ATP13A2 in cells results in lysosomal impairment, 

decreased cathepsin D activity, and α-synuclein accumulation [102]. Intriguingly, ATP13A2 
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has recently been linked to another PD risk factor gene, Syt11 [103]. Knockdown of Syt11 

phenocopied the lysosomal defects observed upon loss of ATP13A2 while double 

knockdown of these two genes did not further impair functionality suggesting they act in the 

same pathway [17]. Further studies suggest Syt11 may control the clearance of 

autophagosomes by regulating autophagosome-lysosome fusion [17]. Syt11 has also been 

linked to SV endocytosis in dorsal root ganglion and hippocampal neurons [104]. 

Knockdown studies suggest Syt11 ensures precision in synaptic vesicle endocytosis by 

limiting membrane retrieval sites [104]. Overall, these findings suggest a network of PD 

genes that converge on SV trafficking and the autophagy-lysosome pathway.

Additional genes linked to PD have roles in regulating lysosomal function. These include β-

glucocerebrosidase (GBA), LAMP2A, and sphingomyelin phosphodiesterase-1 (SMPD1). 

Mutations in these genes tend to reduce lysosomal function and lead to increased α-

synuclein levels. Aside from increasing levels of α-synuclein through a lack of degradation, 

lysosomal dysfunction has also been linked to an increase in the propagation of α-synuclein 

[105]. Indeed, decreased enzymatic activity of GBA has been shown to increase the 

propagation of α-synuclein aggregates [106]. While homozygous mutations in GBA are 

known to cause Gaucher’s disease, a lysosomal storage disorder, heterozygous mutations in 

GBA were found to greatly increase the risk of PD [107]. As LAMP2A is the major receptor 

for CMA, it is not surprising that decreased levels of LAMP2A result in impaired clearance 

of α-synuclein, a known CMA substrate [105]. LAMP2A was found as a risk factor in 

sporadic PD [7], and mistrafficking of LAMP2A has been implicated as a pathogenic 

mechanism in VPS35 linked familial PD [108]. VPS35 is associated with retromer 

trafficking from endosomes to the trans-golgi network. Mutations in VPS35 result not only 

in the mistrafficking of LAMP2A but also of Atg9A, which leads to impaired autophagy 

[109]. Intriguingly, a recent study in Drosophila has shown that the loss of VPS35 results in 

SV cycling defects that are not rescued by PD-associated mutants [110]. While this finding 

awaits confirmation in mammalian systems, it adds to the emerging evidence of dysfunction 

in the coordination of SV cycling and autophagy in PD. Another PD-risk factor, SMPD1 is 

typically associated with Niemann-Pick lysosomal storage disorder and has been shown to 

be relevant for lysosomal homeostasis [111]. More recently, a role of sphingolipids in 

autophagy has been recognized, suggesting yet another link between PD and autophagy/

lysosomal function [112].

Conclusion

Recent years have seen an advancement in linking PD pathogenesis to dysfunction within 

the autophagy-lysosomal system. Now, emerging evidence connects PD to SV cycling, an 

important neuronal membrane trafficking pathway at presynaptic terminals. The studies over 

the past few years have shown that these two pathways are not entirely independent and 

may, in fact, share a number of regulatory proteins. The implication of many of these 

proteins in PD suggests dysfunction in neuronal membrane trafficking pathways as a key 

contributor to PD pathogenesis (Figure 2). Although most of these current studies do not 

directly explain how dysfunctional membrane trafficking leads to neuronal cell death, 

studies from animal models of PD and other neurodegenerative diseases suggest that 

changes in SVs and axons represent the earliest detectable phenotypes [44, 99, 113–115]. 
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Additionally, functional imaging in PD patients suggests early changes in dopaminergic 

terminals in the striatum occur many years before cell loss is observable in the substantia 

nigra [116]. These findings suggest that the dystrophic changes that occur in axon terminals 

following defects in autophagy and SV cycling likely represent the initiation of degeneration 

at the nerve terminal that leads to the “dying-back” or retrograde degeneration of these 

neurons. This process and its implications in neurodegeneration, especially related to PD, 

have recently been reviewed elsewhere [117]. As these changes may occur early in the 

disease, greater understanding of these proteins in regulating autophagy and SV cycling and 

determination of how deregulation in these membrane trafficking pathways leads to neuronal 

dysfunction will facilitate the development of interventional therapies aimed at halting PD 

progression.
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Highlights

• Multiple PD related genes are known to regulate membrane trafficking 

pathways.

• Autophagy and synaptic vesicle cycling share regulatory proteins.

• Mutations within these common regulators are implicated in PD.

• Disruption in neuronal trafficking pathways may underlie PD pathogenesis.
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Figure 1. PD linked genes have roles in SV trafficking
Synaptic vesicles release neurotransmitters through highly regulated and tightly coupled 

rounds of exo- and endocytosis. Many PD-linked genes including α-synuclein, LRRK2, 

EndoA, synj1, auxilin, syt11, and dynamin are involved in SV cycling, particularly in SV 

endocytosis. LRRK2 and Parkin, associated with familial PD, are known to post-

translationally modify a number of SV endocytosis genes. LRRK2 phosphorylates the SV 

endocytosis proteins: EndoA, synj1 as well as multiple Rab GTPases that may be involved in 

SV cycling. Parkin ubiquitinates EndoA, synj1, syt11, and dynamin though more studies are 

necessary to determine how modification of these proteins influence their function in SV 

cycling.
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Figure 2. Involvement of PD linked genes in SV trafficking and autophagy degradation pathways
Many genes implicated in PD have roles in multiple neuronal trafficking and degradation 

pathways. For example, LRRK2 and its substrate, EndoA and synj1, are implicated in the 

dual regulation of SV trafficking and autophagy. The Rab GTPases, also LRRK2 substrates, 

are likely to regulate trafficking in a number of these pathways but further study of their 

roles in neurons is necessary. The other PD genes shown here have been implicated in 

various pathways and require further study to determine their roles in these pathways and 

how PD-related mutations alter their function. Putative LRRK2 substrates are underlined.
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